Home > Src > Level_1 > ell_1d_sp.m

ell_1d_sp

PURPOSE ^

ELL_1D_SP Computes 1D local SEM matrix associated to -nu* u''+beta u' +gam u

SYNOPSIS ^

function [A]=ell_1d_sp(nu,beta,gam,wx,dx,jacx)

DESCRIPTION ^

 ELL_1D_SP   Computes 1D local SEM matrix associated to -nu* u''+beta u' +gam u

     [A]=ell_1d_sp(nu,beta,gam,wx,dx,jacx) computes stiffness matrix A:
         A_{ij} =nu*(phi_j', phi'_i)_N+beta(phi_j',phi_i)_N

 Input: 
        nu   = viscosity (constant>0)
        beta  = coefficient of first order term (constant)
        gam  = coefficient of zero-order term (constant>=0)
        wx= npdx LGL weigths in [-1,1],  
            (produced by calling [x,wx]=xwlgl(npdx))
            (npdx = number of nodes, =n+1, if n=polynomial degree)
        dx= first derivative LGL matrix (produced by calling dx=derlgl(x,npdx))
        jacx =  jacobian of the map F:[-1,1]---->[a,b]

 Output: A = matrix (npdx,npdx) 

 Reference: CHQZ2 = C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang,
                    "Spectral Methods. Fundamentals in Single Domains"
                    Springer Verlag, Berlin Heidelberg New York, 2006.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [A]=ell_1d_sp(nu,beta,gam,wx,dx,jacx)
0002 % ELL_1D_SP   Computes 1D local SEM matrix associated to -nu* u''+beta u' +gam u
0003 %
0004 %     [A]=ell_1d_sp(nu,beta,gam,wx,dx,jacx) computes stiffness matrix A:
0005 %         A_{ij} =nu*(phi_j', phi'_i)_N+beta(phi_j',phi_i)_N
0006 %
0007 % Input:
0008 %        nu   = viscosity (constant>0)
0009 %        beta  = coefficient of first order term (constant)
0010 %        gam  = coefficient of zero-order term (constant>=0)
0011 %        wx= npdx LGL weigths in [-1,1],
0012 %            (produced by calling [x,wx]=xwlgl(npdx))
0013 %            (npdx = number of nodes, =n+1, if n=polynomial degree)
0014 %        dx= first derivative LGL matrix (produced by calling dx=derlgl(x,npdx))
0015 %        jacx =  jacobian of the map F:[-1,1]---->[a,b]
0016 %
0017 % Output: A = matrix (npdx,npdx)
0018 %
0019 % Reference: CHQZ2 = C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang,
0020 %                    "Spectral Methods. Fundamentals in Single Domains"
0021 %                    Springer Verlag, Berlin Heidelberg New York, 2006.
0022 
0023 %   Written by Paola Gervasio
0024 %   $Date: 2007/04/01$
0025 
0026   n=length(wx);
0027   coef1=nu/jacx; coef2=gam*jacx;
0028   A=(coef1*dx'+beta*speye(n))*spdiags(wx,0,n,n)*dx+coef2*spdiags(wx,0,n,n);
0029 
0030 return

Generated on Fri 21-Sep-2007 10:07:00 by m2html © 2003