ELL_1D_SE Assembles 1D global SEM matrix associated to -nu u''+beta u'+gam u [A]=ell_1d_se(npdx,ne,nov,nu,beta,gam,wx,dx,jacx); produces the matrix A_{ij}=nu*((phi_j)',(phi_i)')+beta((phi_j)',phi_i)+gam(phi_j,phi_i) of size (noe,noe) where noe=nov(npdx,ne) is the number of d.o.f. Input : npdx = polynomial degree in every element ne = number of spectral elements nov = local -global map, previously generated by cosnov1d nu = viscosity (constant>0) beta = coefficient of first order term (constant) gam = coefficient of zero order term (constant>=0) wx = npdx LGL weigths in [-1,1], (produced by calling [x,w]=xwlgl(npdx)) (npdx = number of nodes, =n+1, if n=polynomial degree) dx = first derivative LGL matrix (produced by calling d=derlgl(x,npdx)) jacx = jacobian of the map F:[-1,1]---->[xa_ie,b_ie] Output: A = matrix (noe,noe) Reference: CHQZ2 = C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, "Spectral Methods. Fundamentals in Single Domains" Springer Verlag, Berlin Heidelberg New York, 2006.
0001 function [A]=ell_1d_se(npdx,ne,nov,nu,beta,gam,wx,dx,jacx); 0002 % ELL_1D_SE Assembles 1D global SEM matrix associated to -nu u''+beta u'+gam u 0003 % 0004 % [A]=ell_1d_se(npdx,ne,nov,nu,beta,gam,wx,dx,jacx); produces the matrix 0005 % 0006 % A_{ij}=nu*((phi_j)',(phi_i)')+beta((phi_j)',phi_i)+gam(phi_j,phi_i) 0007 % 0008 % of size 0009 % (noe,noe) where noe=nov(npdx,ne) is the number of d.o.f. 0010 % 0011 % Input : npdx = polynomial degree in every element 0012 % ne = number of spectral elements 0013 % nov = local -global map, previously generated by cosnov1d 0014 % nu = viscosity (constant>0) 0015 % beta = coefficient of first order term (constant) 0016 % gam = coefficient of zero order term (constant>=0) 0017 % wx = npdx LGL weigths in [-1,1], 0018 % (produced by calling [x,w]=xwlgl(npdx)) 0019 % (npdx = number of nodes, =n+1, if n=polynomial degree) 0020 % dx = first derivative LGL matrix (produced by calling d=derlgl(x,npdx)) 0021 % jacx = jacobian of the map F:[-1,1]---->[xa_ie,b_ie] 0022 % 0023 % Output: A = matrix (noe,noe) 0024 % 0025 % 0026 % Reference: CHQZ2 = C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, 0027 % "Spectral Methods. Fundamentals in Single Domains" 0028 % Springer Verlag, Berlin Heidelberg New York, 2006. 0029 0030 % Written by Paola Gervasio 0031 % $Date: 2007/04/01$ 0032 0033 noe=nov(npdx,ne); 0034 A=sparse(noe,noe); 0035 for ie=1:ne 0036 Al=ell_1d_sp(nu,beta,gam,wx,dx,jacx(ie)); 0037 A(nov(1:npdx,ie),nov(1:npdx,ie))=A(nov(1:npdx,ie),nov(1:npdx,ie))+Al; 0038 end 0039 0040