POL_LEGENDRE recursive construction of Legendre basis function formula (2.3.19), pag. 77, CHQZ2 [lnp1]=pol_legendre(n,ln,lnm1) called by plot_legendre Input: n = polynomial degree ln = character expression of L_n(x) lnm1 = character expression of L_{n-1}(x) Output: lnp1 = character expression of L_{n+1}(x) Reference: CHQZ2 = C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, "Spectral Methods. Fundamentals in Single Domains" Springer Verlag, Berlin Heidelberg New York, 2006.
0001 function [lnp1]=pol_legendre(n,ln,lnm1) 0002 % POL_LEGENDRE recursive construction of Legendre basis function 0003 % formula (2.3.19), pag. 77, CHQZ2 0004 % [lnp1]=pol_legendre(n,ln,lnm1) 0005 % called by plot_legendre 0006 % 0007 % Input: n = polynomial degree 0008 % ln = character expression of L_n(x) 0009 % lnm1 = character expression of L_{n-1}(x) 0010 % 0011 % Output: lnp1 = character expression of L_{n+1}(x) 0012 % 0013 % Reference: CHQZ2 = C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, 0014 % "Spectral Methods. Fundamentals in Single Domains" 0015 % Springer Verlag, Berlin Heidelberg New York, 2006. 0016 0017 % Written by Paola Gervasio 0018 % $Date: 2007/04/01$ 0019 0020 ns=num2str(n); 0021 lnp1=['(2*',ns,'+1)/(',ns,'+1).*x.*(',ln,')-',ns,'/(',ns,'+1).*(',lnm1,')']; 0022 return 0023