Spectral Element Methods

Paola Gervasio DICATAM, Università degli Studi di Brescia

Jan 20 2015, MOX

Spectral (Element) Methods - S(E)M

- S(E)M are high-order numerical methods to solve boundary value problems
- they are alternative to low-order FEM, but you can combine them with FEM (e.g., through a MORTAR approach)
- historically they were designed on quadrilaterals (quads)
- they have been extended to **simplices** more recently
- in SEM, **continuity** at interface elements is imposed (otherwise one speaks about DG-SEM)
- SEM are also known as either spectral/hp or hp-FEM

Gottlieb & Orszag (1977), Canuto, Hussaini, Quarteroni, & Zang (1988), Bernardi & Maday (1992)

Spectral Methods: one quad element Ω and global support of the polynomial basis functions on $\Omega.$

One parameter: N = polynomial degree (\nearrow)

Nomenclature

Patera (1984)

Spectral Element Methods: conformal partition of quads in Ω , global C^0 basis functions (local polynomials) with local support. Two parameters: $N = \text{pol. degree} (\nearrow)$ $h = \text{mesh size (=elements diameter)} (\searrow 0)$

Nomenclature

Patera (1984) for SEM on quads, Dubiner (1991), Sherwin & Karniadakis (1995) for SEM on simplices

spectral/*hp* conformal partition of quads/simplices in Ω , global C^0 basis functions (local polynomials) with local support. Two parameters: $p(=N) = \text{pol. degree} (\nearrow)$ $h = \text{mesh size (=elements diameter)} (\searrow 0)$

Nomenclature

h-FEM: fixed low degree refinement in h (simplices and quads)
One parameter:
h =mesh size (the same on quads)

p-FEM: fixed hrefinement in p(simplices and quads) One parameter: p =pol. degree (the same on quads)

hp-FEM: refinement in both *h* and *p* (simplices and quads) Two parameters: $p = \text{pol. degree} (\nearrow)$ $h = \text{mesh size} (=\text{elements diameter}) (\searrow 0)$

The borderline between spectral/hp and hp-FEM seems invisible

Spectral Elements on quads

Spectral Element Methods on quads

Strong points (of the most used form nowadays)

- 1 nodal (Lagrange) basis
- **2** the interpolation nodes are the Legendre Gauss Lobatto (LGL) nodes
- **B** when Numerical Integration is used (SEM-GNI) then the **quadrature nodes** are exactly the **interpolation nodes** and Lagrange basis is orthogonal w.r.t. the discrete L^2 inner product (induced by quadrature) \implies diagonal mass matrices (in \mathbb{R}^d , $d \ge 1$)
- 4 tensorial structure of the basis functions in \mathbb{R}^d (with $d \ge 2$) \implies high computational efficiency

The reference problem

Given $\nu(\mathbf{x}) \geq \nu_0 > 0$ and $\gamma(\mathbf{x}) \geq 0$ in $L^{\infty}(\Omega)$; $f \in L^2(\Omega)$

look for $u: \Omega \subset \mathbb{R}^d \to \mathbb{R}$:

strong	$\int -\nabla \cdot (\nu \nabla u) + \gamma u = f$	in Ω ,
form	$\int u = 0$	on $\partial \Omega$

By setting
$$V = H_0^1(\Omega)$$
, $a(u, v) = \int_{\Omega} \nu \nabla u \cdot \nabla v d\Omega + \int_{\Omega} \gamma u v d\Omega$,
 $(f, v) = \int_{\Omega} f v d\Omega$

$$\begin{array}{ll} \mathsf{weak} \\ \mathsf{form} \end{array} ? u \in V: \quad \mathsf{a}(u,v) = (f,v) \qquad \forall v \in V \end{array}$$

The computational domain $\Omega \subset \mathbb{R}^d$, $(d \geq 2)$

Historically SM are designed on quads

Reference domain: $\widehat{\Omega} = (-1, 1)^d$. Lipschitz bounded domain $\Omega \in \mathbb{R}^d$: $\exists \mathbf{F} : \widehat{\Omega} \to \Omega$ bijective and differentiable

SEM (or hp-fem) on quads. $\mathcal{T} = \{Q_k\}_{k=1}^{Ne}$ is a conforming partition of Ω : $\Omega = \bigcup_{k=1}^{Ne} Q_k$ and $\exists \mathbf{F}_k : \widehat{\Omega} \to Q_k$ bij and diff (for any $k = 1, \dots, Ne$)

How to design mappings \mathbf{F}_k

Conformal mappings preserve orthogonality, the divergence and the gradient (Milne-Thomson 1966, Israeli 1981, Trefethen 1980, Gordon-Hall 1973)

The simplest ones are linear blending mappings

In \mathbb{R}^2 , given the maps $\pi_{\ell}^{(k)} : [-1, 1] \to \Gamma_{\ell}$ (arcs in \mathbb{R}^2) for $\ell = 1, \ldots, 4$, $\mathbf{F}_k : \widehat{\Omega} \to Q_k$ is defined as

$$\begin{bmatrix} x \\ y \end{bmatrix} = \mathbf{F}_{k} \left(\begin{bmatrix} \hat{x} \\ \hat{y} \end{bmatrix} \right) = \frac{1 - \hat{y}}{2} \pi_{1}^{(k)}(\hat{x}) + \frac{1 + \hat{y}}{2} \pi_{3}^{(k)}(\hat{x}) + \frac{1 - \hat{x}}{2} \begin{bmatrix} \pi_{4}^{(k)}(\hat{y}) - \frac{1 + \hat{y}}{2} \pi_{4}^{(k)}(1) - \frac{1 - \eta}{2} \pi_{4}^{(k)}(-1) \end{bmatrix} + \frac{1 + \hat{x}}{2} \begin{bmatrix} \pi_{2}^{(k)}(\hat{y}) - \frac{1 + \hat{y}}{2} \pi_{2}^{(k)}(1) - \frac{1 - \hat{y}}{2} \pi_{2}^{(k)}(-1) \end{bmatrix}$$

Similar construction in 3D, now $\pi_\ell: [-1,1]^2 \to \Sigma_\ell$ (faces in \mathbb{R}^3) for $\ell = 1, \dots, 6$.

Finite dimensional spaces

Let $p \ge 1$ integer and \mathbb{Q}_p the space of polynomials of degree $\le p$ w.r.t. each variable x_1, \ldots, x_d . Set

$$X_{\delta} = \{ v \in C^0(\overline{\Omega}) : v|_{Q_k} = \hat{v} \circ \mathbf{F}_k^{-1}, \text{ with } \hat{v} \in \mathbb{Q}_p(\widehat{\Omega}), \forall Q_k \in \mathcal{T} \}$$

mesh size $h = \max_k h_k$, $h_k = \operatorname{diam}(Q_k)$, polynomial degree p

$$\Rightarrow \delta = (h, p)$$

Set $V_{\delta} = X_{\delta} \cap V$

$$\begin{array}{ll} \mathsf{Galerkin} \\ \mathsf{SEM} \end{array} ? u_{\delta} \in V_{\delta}: \quad \mathsf{a}(u_{\delta}, \mathsf{v}_{\delta}) = (f, \mathsf{v}_{\delta}) \qquad \forall \mathsf{v}_{\delta} \in V_{\delta} \end{array}$$

At element interface, u_{δ} is merely continuous. The continuity of the flux at interfaces is ensured only in the limit $p \to \infty$.

Attention: large computational effort in evaluating integrals \implies Galerkin with Numerical Integration (SEM-GNI)

Numerical Integration

$$\int_{-1}^{1} f(\hat{x}) d\hat{x} \simeq \sum_{\ell=0}^{p} f(\hat{\xi}_{\ell}) \hat{w}_{\ell}$$

 $\hat{\xi}_{\ell}$ and \hat{w}_{ℓ} ($\ell = 0, ..., p$) Legendre Gauss Lobatto (LGL) quadrature nodes and weights

Degree of exactness = 2p - 1 when (p + 1) nodes are used.

Numerical integration $(\Omega \subset \mathbb{R}^2)$

Global: composite LGL quadrature

$$\int_{\Omega} u(\mathbf{x}) v(\mathbf{v}) d\mathbf{x} \simeq \sum_{k=1}^{Ne} (u, v)_{\delta, Q_k} = (u, v)_{\delta, \Omega}$$

Quadrature error: $\exists c = c(\Omega) > 0$: $\forall f \in H^{s}(\widehat{\Omega}), \ s \geq 1, \ v_{p} \in \mathbb{Q}_{p}$

$$\left|\int_{\widehat{\Omega}} f v_{\rho} - (f, v_{\rho})_{\delta, \widehat{\Omega}}\right| \leq c \ \rho^{-s} \|f\|_{H^{s}(\widehat{\Omega})} \|v_{\rho}\|_{L^{2}(\widehat{\Omega})}$$

How to represent $v_{\delta} \in V_{\delta}$

 $Np = total number of nodes in \Omega$ Nodal Lagrange basis functions $\{\varphi_i\}_{i=1}^{Np}$ w.r.t. the LGL nodes $\xi_i \varphi_i$ are globally continuous in $\overline{\Omega}$, and locally polynomials of degree p w.r.t. each variable x_1, \ldots, x_d .

Interpolation error at LGL nodes:

$$\|u - I_{p}u\|_{H^{k}(-1,1)} \leq C(s)p^{k-s}\|u\|_{H^{s}(-1,1)}, \qquad s \geq 1, k = 0, 1$$

SEM-GNI formulation

$$\begin{array}{lll} \mathsf{SEM-GNI} & ?u_{\delta} \in V_{\delta}: & \mathsf{a}_{\delta}(u_{\delta},v_{\delta}) = (f,v_{\delta})_{\delta} & \forall v_{\delta} \in V_{\delta} \end{array}$$

At element interface, u_{δ} is merely continuous The continuity of the flux at interfaces is ensured only in the limit $p \to \infty$.

Expand u_{δ} w.r.t. the Lagrange basis: $u_{\delta}(\mathbf{x}) = \sum_{i=1}^{NP} u_{\delta}(\mathbf{x}_i)\varphi_i(\mathbf{x})$ and choose $v_{\delta}(\mathbf{x}) = \varphi_i(\mathbf{x})$ for any i = 1, ..., Np. SEM-GNI reads:

look for
$$\mathbf{u} = [u_{\delta}(\mathbf{x}_j)]_{j=1}^{Np}$$
:

$$\sum_{j=1}^{Np} a_{\delta}(\varphi_j, \varphi_i) \mathbf{u}_j = (f, \varphi_i)_{\delta} \quad \text{for any } i = 1, \dots, Np$$

where $a_{\delta}(\varphi_j, \varphi_i) = (\nu \nabla \varphi_j, \nabla \varphi_i)_{\delta} + (\gamma \varphi_j, \varphi_i)_{\delta}$.

How to evaluate derivatives $\nabla \varphi_i$ efficiently

Derivatives computation (let us work on Ω)

$$\left(\nu\nabla\varphi_{j},\nabla\varphi_{i}\right)_{\delta,\widehat{\Omega}}=\sum_{q,r=0}^{\nu}\nu(\hat{\xi}_{q},\hat{\xi}_{r})\nabla\varphi_{j}(\hat{\xi}_{q},\hat{\xi}_{r})\cdot\nabla\varphi_{i}(\hat{\xi}_{q},\hat{\xi}_{r})\hat{w}_{q}\hat{w}_{i}$$

We need to know derivatives at quadrature nodes (=interpolation nodes), then (recalling that $\varphi_j(\mathbf{x}) = \varphi_{j1}^{(1)}(x_1)\varphi_{j2}^{(1)}(x_2)$)

$$\frac{\partial \varphi_j}{\partial \hat{x}_1}(\hat{\xi}_q, \hat{\xi}_r) = \frac{\partial \varphi_{j1}^{(1)}}{\partial \hat{x}_1}(\hat{\xi}_q)\varphi_{j2}^{(1)}(\hat{\xi}_r) = D_{q,j1}\delta_{r,j2}$$
$$\frac{\partial \varphi_j}{\partial \hat{x}_2}(\hat{\xi}_q, \hat{\xi}_r) = \varphi_{j1}^{(1)}(\hat{\xi}_q)\frac{\partial \varphi_{j2}^{(1)}}{\partial \hat{x}_2}(\hat{\xi}_r) = \delta_{q,j1}D_{r,j2}$$

spectral derivative matrix

$$D_{ij} = \begin{bmatrix} \dots & \varphi_j'(\hat{\xi}_i) & \dots \\ & \dots & \\ & & \end{bmatrix} \qquad D_{ij} = \begin{cases} \frac{L_p(\hat{\xi}_j)}{L_p(\hat{\xi}_i)} \frac{1}{\hat{\xi}_j - \hat{\xi}_i} & j \neq i \\ -\frac{p(p+1)}{4} & j = i = 0 \\ \frac{p(p+1)}{4} & j = i = p \\ 0 & \text{otherwise} \end{cases}$$

Paola Gervasio - unibs.it

Derivatives on $Q_k = \mathbf{F}_k(\widehat{\Omega})$

Standard arguments:

 $(\varphi_j(\mathbf{x}) = \hat{\varphi}_j(\hat{\mathbf{x}}))$

$$\begin{bmatrix} \frac{\partial \varphi_j}{\partial x_1}(\boldsymbol{\xi}_i) \\ \frac{\partial \varphi_j}{\partial x_2}(\boldsymbol{\xi}_i) \end{bmatrix} = \frac{1}{\det J_k(\hat{\boldsymbol{\xi}}_i)} \begin{bmatrix} \frac{\partial x_2}{\partial \hat{x}_2}(\hat{\boldsymbol{\xi}}_i) & -\frac{\partial x_2}{\partial \hat{x}_1}(\hat{\boldsymbol{\xi}}_i) \\ -\frac{\partial x_1}{\partial \hat{x}_2}(\hat{\boldsymbol{\xi}}_i) & \frac{\partial x_1}{\partial \hat{x}_1}(\hat{\boldsymbol{\xi}}_i) \end{bmatrix} \begin{bmatrix} \frac{\partial \hat{\varphi}_j}{\partial \hat{x}_1}(\hat{\boldsymbol{\xi}}_i) \\ \frac{\partial \hat{\varphi}_j}{\partial \hat{x}_2}(\hat{\boldsymbol{\xi}}_i) \end{bmatrix}$$

Paola Gervasio - unibs.it

Convergence analysis for SEM-GNI

$$?u_{\delta} \in V_{\delta}: \quad a_{\delta}(u_{\delta},v_{\delta}) = (f,v_{\delta})_{\delta} \qquad orall v_{\delta} \in V_{\delta}$$

 u_{δ} converges with spectral accuracy (with respect to p) to the exact solution when the latter and f are smooth:

$$\|u-u_{\delta}\|_{H^{1}(\Omega)} \leq C_{1}(s) \Big(\begin{array}{c} h^{\min(p+1,s)-1}p^{1-s}\|u\|_{H^{s}(\Omega)} \ +h^{\min(p+1,r)}p^{-r}\|f\|_{H^{r}(\Omega)} \Big)$$

Convergence rate

2. *s* small
$$(s \le p+1)$$
 $||u-u_{\delta}||_{H^1(\Omega)} \le C_1(s) \left(\frac{h}{p}\right)^{s-1} ||u||_{H^s(\Omega)}$

s = 4, r = 2, f composite \mathbb{Q}_2 , null quadrature error on f, when p > 2

20/5

Paola Gervasio - unibs.it

Algebraic aspects of SEM-GNI

Recall that $a_{\delta}(\varphi_j, \varphi_i) = (\nu \nabla \varphi_j, \nabla \varphi_i)_{\delta} + (\gamma \varphi_j, \varphi_i)_{\delta}$

$$\begin{split} & A \in \mathbb{R}^{N_p \times N_p} : \quad a_{\delta}(\varphi_j, \varphi_i) \\ & M \in \mathbb{R}^{N_p \times N_p} : \quad M_{ij} = (\varphi_j, \varphi_i)_{\delta} \qquad \text{mass matrix} \\ & K \in \mathbb{R}^{N_p \times N_p} : \quad K_{ij} = (\nabla \varphi_j, \nabla \varphi_i)_{\delta} \quad \text{stiffness matrix} \end{split}$$

Let us define the Spectral condition number

$$cond(A) := \frac{\max_j |\lambda_j(A)|}{\min_j |\lambda_j(A)|} \qquad \forall A \in \mathbb{R}^{n \times n} \text{ non-singular}$$

It is responsible for Conjugate-Gradient (in general Krylov) iterations:

$$\#it \simeq \sqrt{cond(A)}$$

- diagonal for any $d \ge 1$
- *M*_{ii} > 0
- $\lambda_{min}(M) = \mathcal{O}(p^{-2d}h^d), \ \lambda_{max}(M) = \mathcal{O}(p^{-d}h^d)$
- $cond(M) = \mathcal{O}(p^d)$ (Bernardi, Maday '92)
- $\widetilde{M} = [(\gamma \varphi_j, \varphi_i)_{\delta}]_{i,j=1}^{N_p}$ is diagonal even when $\gamma = \gamma(\mathbf{x})$.

Stiffness matrix K

SEM-GNI Algebraic System

Let us consider the differential problem

$$\left\{ \begin{array}{ll} -\Delta u = f & \text{ in } \Omega \subset \mathbb{R}^d, \ (d = 2, 3) \\ u = 0 & \text{ on } \partial \Omega \end{array} \right.$$

SEM-GNI:

$$\mathbf{u} = [u_{\delta}(\mathbf{x}_j)]_{j=1}^{Np}: \sum_{j=1}^{Np} a_{\delta}(\varphi_j, \varphi_i) \mathbf{u}_j = (f, \varphi_i)_{\delta} \quad i = 1, \dots, Np$$

Since A = K, by setting $\mathbf{f} = [f(\mathbf{x}_j)]_{j=1}^{N_p}$, the algebraic system reads

$$K\mathbf{u} = M\mathbf{f}$$
weak form
or equivalently $M^{-1}K\mathbf{u} = \mathbf{f}$ strong (or collocation) form
 $cond(K) \simeq c_1 p^3 h^{-2}$
 $cond(M^{-1}K) \simeq c_2 p^4 h^{-2}$

Preconditioning on quads by low-order FEM

Preconditioning by low-order Finite Element Matrices

The LGL nodes in each spectral element Q_k induce a mesh of simplicial or quadrilateral elements.

Quadrilaterals: Q_1 (exact integration or high order LGL q.f.) $Q_{1,NI}$ (trapezoidal quadrature formula)

Simplices: \mathbb{P}_1 (exact integration or high order LGL q.f.)

FEM Matrices

 ${\it Quadrilaterals}/{\it Hexahedra:}$

Triangles/Tetrahedra:

 $\begin{array}{ll} \mathbb{Q}_1 \mbox{ (exact integration)} & \mathbb{P}_1 \mbox{ (exact integration)} \\ \mathbb{Q}_{1, \textit{NI}} \mbox{ (trapezoidal quadrature formula)} \end{array}$

Different mass and stiffness matrices for any choice

$$d = 1. \quad \begin{array}{l} K_{\mathbb{Q}_1} = K_{\mathbb{P}_1} = K_{\mathbb{Q}_1,_{NI}};\\ M_{\mathbb{Q}_1} = M_{\mathbb{P}_1} \neq M_{\mathbb{Q}_1,_{NI}} \end{array}$$

$$d = 2. \quad \begin{array}{l} K_{\mathbb{Q}_1} \neq K_{\mathbb{P}_1} = K_{\mathbb{Q}_1, N}; \\ M_{\mathbb{Q}_1} \neq M_{\mathbb{P}_1} \neq M_{\mathbb{Q}_1, N} \end{array}$$

$$d = 3. \quad \begin{array}{l} K_{\mathbb{Q}_1} \neq K_{\mathbb{P}_1} \neq K_{\mathbb{Q}_1, _{N'}}; \\ M_{\mathbb{Q}_1} \neq M_{\mathbb{P}_1} \neq M_{\mathbb{Q}_1, _{N'}} \end{array}$$

 $M_{\mathbb{Q}_{1,NI}}$ is diagonal and $M_{\mathbb{Q}_{1,NI}}^{-1} K_{\mathbb{Q}_{1,NI}} = L_{FD}$ (=2nd order, centered finite difference matrix)

Finite Element (Left) Preconditioners

Orszag '80, Canuto-Quarteroni '85, Deville-Mund '85, Quarteroni-Zampieri '92, Parter-Rothman '95, Parter '01, Canuto-G-Quarteroni '10 Strong form Weak form $M^{-1}K\mathbf{u} = \mathbf{f}$ $A\mathbf{u} = \mathbf{b}$ $K\mathbf{u} = M\mathbf{f}$ $P^{-1}A\mathbf{u} = P^{-1}\mathbf{b}$ $A = M^{-1}K$ A = Kstrong- \mathbb{Q}_1 weak-O1 $P = M_{\mathbb{Q}_1}^{-1} K_{\mathbb{Q}_1}$ $P = K_{\odot}^{-1}$ \mathbb{Q}_1 strong- $\mathbb{Q}_{1,NI}$ - FD weak-Q1.NI $P = M_{\mathbb{Q}_1, N}^{-1} K_{\mathbb{Q}_1, N}$ $P = K_{\mathbb{O}_1 M}$ $Q_{1,NI}$ strong- \mathbb{P}_1 weak- \mathbb{P}_1 $P = M_{\mathbb{P}_{4}}^{-1} K_{\mathbb{P}_{1}}$ $P = K_{\mathbb{P}_{*}}^{-1}$ \mathbb{P}_1

1. Which is **the best preconditioner** from both theoretical and **computational** points of view?

- analysis of the condition number of P⁻¹A in simple cases numerical test on more complex cases
 - CPU-time measurements
- 2. How to solve the system $P\mathbf{z}^{(k)} = \mathbf{r}^{(k)}$ efficiently?
 - ad-hoc direct and iterative solvers

 $cond(P^{-1}A)$. $\Omega = (-1,1)^d$, d = 1:3, one element in Ω

Theorem. $\exists c_1, \ldots, c_4 > 0$ const. indep. of both p and d:

 $\begin{array}{ll} \text{weak forms} \\ cond(K_{\mathbb{Q}_{1}}^{-1}K) & \leq c_{1}(3c_{2})^{d-1} \\ cond(K_{\mathbb{Q}_{1},\mathsf{N}}^{-1}K) & \leq c_{1}c_{2}^{d-1} \\ cond(K_{\mathbb{P}_{1}}^{-1}K) & \leq c_{1}c_{2}^{d-1}\sigma_{d}, \quad \sigma_{1} = \sigma_{2} = 1, \ \sigma_{3} = 2 \\ \text{strong forms} \\ cond((M_{\mathbb{Q}_{1}}^{-1}K_{\mathbb{Q}_{1}})^{-1}M^{-1}K) & \leq c_{3} \\ cond((M_{\mathbb{Q}_{1},\mathsf{N}}^{-1}K_{\mathbb{Q}_{1},\mathsf{N}})^{-1}M^{-1}K) & \leq c_{4}. \end{array}$

Numerically, $c_1 \le 2.5$, $c_2 \le 1.00245$, $c_3 \le 1.5$, $c_4 \le 2.5$.

No proof for the strong- \mathbb{P}_1 formulation, numerical results show that $\exists c_5 = c_5(d)$ independent of p, but depending on d s.t.

 $cond((M_{\mathbb{P}_1}^{-1}K_{\mathbb{P}_1})^{-1}M^{-1}K) \leq c_5(d)$

Single domain

Paola Gervasio - unibs.it

Paola Gervasio - unibs.it

32/50

The induced Finite Element Mesh

<u>Quadril</u>ateral or triangular 2D-mesh induced by the LGL nodes in Ω :

alternating

random

hexahedral or tetrahedral 3D-mesh.

5 tetra in each hexa alternating

Paola Gervasio - unibs.it

First conclusions (single domain)

$$Lu = -\Delta u$$
 in $\Omega = (-1, 1)^d$, $u = 0$ on $\partial \Omega$

D The **best** preconditioner for the *strong* form (by analysing the iterative condition number and the Bi-CGstab iterations) is that based on Q_1 :

$$cond(P^{-1}A) \le 1.5$$
 $\forall p, d = 1, 2, 3$

● The **best** preconditioner for the *weak* form (by analysing the iterative condition number and the CG iterations) is that based on $Q_{1,NI}$ (= \mathbb{P}_1 , for d = 2):

$$cond(P^{-1}A) \le 2.5$$
 $\forall p, \text{ for } d = 1, 2, 3$

Comparison in terms of CPU-time

Computational cost analysis (versus p)

Preprocessing: assemble and factorize the FEM preconditioner
 CG:

for $k = 1, \ldots$ until convergence

- spectral residual computation $\mathbf{r}^{(k)} = M\mathbf{f} - K\mathbf{u}^{(k)} (\mathcal{O}(p^{d+1}))$

- solve $P\mathbf{z}^{(k)} = \mathbf{r}^{(k)}$, ($P = K_{FE}$ stiffness Finite Elements) with one of the following strategies:

- CHOL: Cholesky factorization for banded matrices
- ND-MF: Nested Dissection Multi Frontal
- RIC(0)-CG: PCG with Incomplete Cholesky factorization of K_{FE}, relaxed row-sum equivalence and zero fill-in

Global costs: CHOL: $\mathcal{O}(p^{3d-2})$, ND-MF: $\mathcal{O}(p^{3d-3})$ RIC(0)-CG: $\mathcal{O}(p^{d+1})$

Oss. Each Bi-CGstab iteration $\simeq 2$ CG iterations (flops). The system $P\mathbf{z}^{(k)} = \mathbf{r}^{(k)}$ is solved by symmetric solvers: the mass matrix M_{FE} is moved at r.h.s. (only matrix-vector products by M_{FE}).

Weak- $Q_{1,NI}$ preconditioner

Paola Gervasio - unibs.it

CPU-time. d = 3

$$-\Delta u = 1 \text{ in } \Omega = (-1, 1)^3, u = 0 \text{ on } \partial \Omega$$

RIC(0)-CG

is weak-Q_{1,NI}

$cond(P^{-1}A)$: d = 2, SEM-GNI

$$\Omega = (-1, 1)^2$$

Total number of spectral elements = $Ne \times Ne$.
Dof = $(p \cdot Ne - 1)^2$.

	р	Ne = 1	Ne = 2	Ne = 4	<i>Ne</i> = 8
best weak form:	4	1.55	2.69	2.69	2.70
$\mathbb{Q}_{1,\mathit{NI}}=\mathbb{P}_1$	8	1.95	3.07	3.07	3.07
	12	2.10	3.26	3.26	3.26
		A/ 1	NL 0	N/ 4	<u> </u>
	р	$\mathit{Ne}=1$	<i>Ne</i> = 2	<i>Ne</i> = 4	<i>Ne</i> = 8
best strong form:	р 4	<i>Ne</i> = 1 1.46	<i>Ne</i> = 2 1.59	<i>Ne</i> = 4 1.59	<i>Ne</i> = 8 1.59
best strong form: \mathbb{Q}_1	р 4 8	<i>Ne</i> = 1 1.46 1.35	<i>Ne</i> = 2 1.59 1.38	<i>Ne</i> = 4 1.59 1.38	<i>Ne</i> = 8 1.59 1.38

The condition number is bounded independently of both p and Ne

 $cond(P^{-1}A)$: d = 3, SEM-GNI

$$-\Delta u = 1$$
 in $\Omega = (-1, 1)^3$, $u = 0$ on $\partial \Omega$

Total number of spectral elements = $Ne \times Ne \times Ne$. Dof = $(p \cdot Ne - 1)^3$.

	р	Ne = 1	<i>Ne</i> = 2	Ne = 4
best weak form:	4	1.46	1.59	1.59
$\mathbb{Q}_{1,NI}$	6	1.41	1.47	1.47
	8	1.35	1.38	1.38
	р	Ne = 1	Ne = 2	Ne = 4
best strong form:	4	1.55	4.97	5.00
best strong form: \mathbb{Q}_1	4 6	1.55 1.80	4.97 5.34	5.00 5.35

SEM on triangles

What happens on triangles

We recall the strong points of SEM-GNI on quads:

- **1** nodal (Lagrange) basis
- **2** the interpolation nodes are the Legendre Gauss Lobatto (LGL) nodes
- **3** the quadrature nodes are exactly the interpolation nodes and Lagrange basis is orthogonal w.r.t. the discrete L^2 inner product (induced by quadrature) \implies diagonal mass matrices (in \mathbb{R}^d , $d \ge 1$)
- 4 tensorial structure of the basis functions in \mathbb{R}^d (with $d \ge 2$) \implies high computational efficiency

Unfortunately, it is not possible to preserve simultaneously all these upsides on simplices

Nodal basis and tensorial structure are incompatible in T, then two alternatives are possible:

1. preserve tensorization and use the modal basis

or

2. preserve nodal basis and lose tensorization

1D Modal basis

Any polynomial $u_p \in \mathbb{P}_p$ has the **modal expansion**

$$u_p(x) = \sum_{k=0}^p \hat{u}_k L_k(x), \qquad \hat{u}_k$$
 are the modes

Remark: this orthogonal basis is not useful to impose Dirichlet boundary conditions and the continuity at the interfaces of spectral elements.

The Legendre basis is adapted to the boundary

$$\begin{aligned} \varphi_0(\xi) &= \frac{1}{2} (L_0(\xi) - L_1(\xi)) = \frac{1 - \xi}{2} \\ \varphi_p(\xi) &= \frac{1}{2} (L_0(\xi) + L_1(\xi)) = \frac{1 + \xi}{2} \\ \varphi_k(\xi) &= \frac{1}{2(2k - 1)} (L_{k-2}(\xi) - L_k(\xi)) \\ \text{for } k = 1, \dots, p - 1, \ -1 \le \xi \le 1 \end{aligned}$$

boundary adapted modal basis (or **modified** C^0 **basis**) and

$$u_{
ho}(\xi) = \sum_{k=0}^{
ho} ilde{u}_k arphi_k(\xi), \qquad ext{for any } u_{
ho} \in \mathbb{P}_{
ho}$$

Remark: Now we can easily impose Dirichlet b.c. (and continuity at interfaces) but we lose orthogonality.

The mass matrix $M_{ij} = (\varphi_j, \varphi_i)_{L^2(-1,1)}$ is a pentadiagonal matrix.

The expansion with the ${\bf modal}$ basis instead of the ${\bf nodal}$ one is very easy to implement in one-dimensional SEM

How to set up an adapted modal basis functions on triangles in order to exploit tensorization?

- 1 Collapsed Cartesian coordinates
- 2 Warped tensorial basis functions

Collapsed Cartesian coordinates

First,

<u>collapse the reference square into the reference triangle by the map \widehat{F} :</u>

 $\begin{aligned} \widehat{Q} &= \{ (\xi_1, \xi_2) \in \mathbb{R}^2 \ : \ -1 < \xi_1, \xi_2 < 1 \} \text{ is the reference square} \\ \widehat{\mathcal{T}} &= \{ (x_1, x_2) \in \mathbb{R}^2 \ : \ -1 < x_1, x_2 \ ; \ x_1 + x_2 < 0 \} \text{ is the reference triangle} \end{aligned}$

$$\widehat{\mathbf{F}}\left(\left[\begin{array}{c}\xi_1\\\xi_2\end{array}\right]\right) = \left[\begin{array}{c}\frac{1}{2}(1+\xi_1)(1-\xi_2)-1\\\xi_2\end{array}\right] = \left[\begin{array}{c}x_1\\x_2\end{array}\right]$$

is a bijective map, singular at the upper vertex of the triangle. Nevertheless it stays bounded as one approaches the vertex.

Warped tensorial basis

1. Given the polynomial degree p, let $\mathbb{P}_p(\widehat{T})$ be the space of polynomials of global degree p, $\dim(\mathbb{P}_p(\widehat{T})) = \frac{(p+1)(p+2)}{2} = nb$. $2.\varphi_{k1}^{(1)}(\xi_1)$, for $-1 \le \xi_1 \le 1$ and $k1 = 0, \ldots, p$, are the boundary adapted

 $2 \cdot \varphi_{k1}(\xi_1)$, for $-1 \le \xi_1 \le 1$ and $\kappa_1 = 0, \dots, p$, are the boundary adapted 1D basis functions along the 1st coordinate

 $3.\varphi_{k1,k2}^{(2)}(\xi_2)$, for $-1 \le \xi_2 \le 1$ are the boundary adapted 1D basis functions along the 2nd coordinate. Each polynomial depends on the index k2, but also on k1.

$$\varphi_{k1,k2}^{(2)}(\xi_2) = \begin{cases} \varphi_{k2}^{(1)}(\xi_2) & k1 = 0, \ 0 \le k2 \le p \\ \left(\frac{1-\xi_2}{2}\right)^{k1+1} & 1 \le k1 \le p-1, \ k2 = 0 \\ \left(\frac{1-\xi_2}{2}\right)^{k1+1} \left(\frac{1+\xi_2}{2}\right) P_{k2-1}^{(2k1+1,1)}(\xi_2) & 1 \le k1 \le p-1, \ \text{and} \\ 1 \le k2 \le p-k1-1 \\ \varphi_{k2}^{(1)}(\xi_2) & k1 = p, \ 0 \le k2 \le p-1 \end{cases}$$

where $P_k^{(\alpha,\beta)}$ is the Jacoby polynomial of degree k.

Warped tensorial basis

Let k = (k1, k2) a bijection to use 1-index ordering. The **boundary** adapted modal basis in 2d on \hat{T} (also named modified C^0 modal expansion) reads

$$\begin{split} \phi_k(x_1, x_2) &= \varphi_k(\xi_1, \xi_2) = \varphi_{k1}^{(1)}(\xi_1)\varphi_{k1,k2}^{(2)}(\xi_2) \\ \text{where } (x_1, x_2) &= \widehat{\mathbf{F}}(\xi_1, \xi_2), \ -1 \leq \xi_1, \xi_2 \leq 1. \\ \text{but at the corner point } V_3(-1, 1): \ \phi_3(x_1, x_2) = \varphi_3(\xi_1, \xi_2) = \frac{1+\xi_2}{2} \end{split}$$

Mass matrix on one triangle

You can exploit the tensorial structure of the basis functions:

Stiffness matrix on one triangle

You can exploit the tensorial structure of the basis functions to compute derivatives, but not to compute integrals for a generic triangle.

$$\frac{\partial \varphi_j}{\partial x_1}(x_1, x_2) = \frac{\partial \varphi_{j1}^{(1)}}{\partial x_1}(x_1)\varphi_{j1,j2}^{(2)}(x_2) \qquad \frac{\partial \varphi_j}{\partial x_2}(x_1, x_2) = \varphi_{j1}^{(1)}(x_1)\frac{\partial \varphi_{j1,j2}^{(2)}}{\partial x_2}(x_2)$$

and, as usual,

$$K_{ij} = \int_{\hat{T}} \nabla \phi_j \cdot \nabla \phi_i d\hat{T} = \int_{\hat{Q}} \left(\frac{J^{cof}}{detJ_F} \nabla \varphi_j \right) \cdot \left(\frac{J^{cof}}{detJ_F} \nabla \varphi_i \right) det J_F d\hat{Q}$$

 $det J_F = 0$ at $V_3(-1, 1)$, thus you can use:

Legendre-Gauss-Lobatto along x- direction (quadrature nodes are in [-1, 1]) Legendre-Gauss-Radau along y- direction (quadrature nodes are in [-1, 1])

Dirichlet boundary conditions or global C^0

To impose Dirichlet b.c. or the continuity across adjacent elements, replace the 3*p* equations associated to the boundary modes with

$$\mathbb{P}_{p} \ni u_{p}(\mathbf{x}_{\ell}) = \sum_{k=1}^{nb} \tilde{u}_{k} \phi_{k}(\mathbf{x}_{\ell}) = g(\mathbf{x}_{\ell}) \qquad \ell = 1, \dots, 3p$$

where g is a known function and \mathbf{x}_{ℓ} on each edge are the image, through $\widehat{\mathbf{F}}$, of the p + 1 Legendre-Gauss-Lobatto nodes.

$$\begin{cases} -\Delta u + u = 1 & \text{in } \Omega = \widehat{T} \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

 $A = K + M, \mathbf{f} = [(1, \phi_i)_{L^2(\Omega)}]_{i=1}^{nb}$ Modify 3p equations to impose Dir b.c. and solve $A\widetilde{\mathbf{u}} = \mathbf{f}$.

The numerical solution is $u_p(\mathbf{x}) = \sum_{k=1} \tilde{u}_k \phi_k(\mathbf{x})$

For a general partition, standard arguments for assembling matrices and ordering the modes/nodes can be applied.

Paola Gervasio - unibs.it

Triangular SEM with boundary adapted modal basis

Condition number of the stiffness matrix (Laplace operator) is $cond(A) = O(p^3h^{-2})$

Preconditioners designed by Babuska et al. (1991) for \mathbb{P}_p can be used: coarse \mathbb{P}_1 , and coarse average.

For both: $cond(P^{-1}A) = O(\log^2 p)$, independently of *h*, but it does depend on the interior angles and aspect ratios of the elements.

Convergence analysis: spectral accuracy in both L^2 - and H^1 -norm versus p:

Triangular SEM with nodal basis

Given
$$p$$
, $\mathbb{P}_p(\widehat{T})$, dim $(\mathbb{P}_p(\widehat{T})) = \frac{(p+1)(p+2)}{2} = nb$.

- Nodal Lagrange basis {φ_i(x)} (on T̂) associated with a set of interpolation nodes {x_i} (on T̂): φ_j(x_i) = δ_{ij}
- choose the set of interpolation nodes $\{\mathbf{x}_i\}$ so that:
 - it includes LGL nodes on the edges (to use triangles in conjuction with quads)
 - the interpolation is stable (small Lebesgue constant)
 - \implies electrostatic points (Hesthaven (1998)),
 - Fekete points (Bos (1983), Chen & Babuska (1995), Taylor et al. (2000))

Both sets are not known explicitely, but computable by suitable algorithms. They provide very poor quadrature formulas.

• choose a set of quadrature nodes and weights. A good choice: Gaussian quadrature formulas on \widehat{Q} and collapse the nodes on \widehat{T} by $\widehat{\mathbf{F}}$

Lagrange basis on $\widehat{\mathcal{T}}$

While the Lagrange polynomials have an explicit form in $\left[-1,1\right]$

$$\varphi_j(\xi) = -\frac{1}{p(p+1)} \frac{(1-\xi^2)}{\xi-\xi_j} \frac{L'_p(\xi)}{L_p(\xi_j)}$$

and this is the keypoint to compute efficiently derivatives,

there is not a closed-form expression for the Lagrange polynomials associated with an arbitrary set of points in T.

 \implies express the Lagrange polynomials in terms of another polynomial basis, e.g. the orthogonal modal basis (Dubiner) polynomials $\{\psi_k(\boldsymbol{\xi})\}$ in \widehat{Q} and, if $\boldsymbol{\xi}_i = \widehat{\mathbf{F}}^{-1}(\mathbf{x}_i)$ (*nb* interpolation nodes),

$$\psi_k(\boldsymbol{\xi}) = \sum_{j=1}^{nb} \underbrace{\psi_k(\boldsymbol{\xi}_j)}_{V_{jk}} \varphi_j(\boldsymbol{\xi}), \qquad \varphi_j(\boldsymbol{\xi}) = \sum_{k=1}^{nb} (\mathsf{V}^{-1})_{kj} \psi_k(\boldsymbol{\xi}) \qquad j, k = 1, \dots, nb$$

V is the matrix of basis change, also known as **generalized** Vandermonde matrix.

Triangular SEM with nodal basis

Derivatives: V and V^{-1} are used to compute derivatives of basis functions.

Analogous matrices are used for Quadrature:

$$\widetilde{\mathsf{V}}_{\ell,k}=\psi_k(oldsymbol{\eta}_\ell),\qquad k=1,\ldots,\mathsf{nb},\quad \ell=1,\ldots,\mathsf{nq}$$

In general $nq \ge nb$ and \widetilde{V} is rectangular

Condition number. V and $\widetilde{\mathsf{V}}$ affect the condition number of both mass and stiffnesss matrices.

Numerical results show that $cond(A) = C(h)(p^4)$ when A is the stiffness matrix of the Laplace operator. (Pasquetti & Rapetti (2004)).

Preconditiong: \mathbb{P}_1 FEM stiffness matrix (induced by either Fekete and electrostatic meshes) is not an optimal preconditioner, contrary to what happens for quads. $cond(P^{-1}A) = \mathcal{O}(p)$ (independent of *h*) (Warburton, Pavarino, & Hesthaven (2000))

Convergence rate: numerical results show spectral accuracy, only if quadrature formulas are adeguate. (Warburton & Pavarino & Hesthaven (2000), Pasquetti & Rapetti (2004), (2006), (2010))

To finish (today) and to begin (tomorrow)

Essential bibliography (books)

- BM C. Bernardi, Y. Maday. *Approximations Spectrales de Problèmes aux Limites Elliptiques.* Springer Verlag (1992)
- KS G.E. Karniadakis, S.J. Sherwin. Spectral/hp Element Methods for Computational Fluid Dynamics, 2nd ed. Oxford University Press (2005)
- CHQZ2 C. Canuto, M.Y. Hussaini, A. Quarteroni, T. Zang. Spectral Methods. Fundamentals in Single Domains. Springer (2006)
- CHQZ3 C. Canuto, M.Y. Hussaini, A. Quarteroni, T. Zang. Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer (2007)

A simple matlab library for spectral methods:

paola-gervasio.unibs.it/CHQZ_lib

