
Spectral Element Library - CHQZ lib

Release 1.0 1

Paola Gervasio2

September, 21 2007

1CHQZ2: C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods. Fundamentals in Single
Domains. Springer Verlag, Berlin Heidelberg New York, 2006. CHQZ3: C. Canuto, M.Y. Hussaini, A. Quarteroni,
T.A. Zang, Spectral Methods. Evolution to Complex Geometries and Applications to Fluid Dynamics Springer
Verlag, Berlin Heidelberg New York, 2007.

2Department of Mathematics, University of Brescia, 25133 Brescia (Italy). gervasio@ing.unibs.it

Chapter 1

Introduction

Functions developed in this library provide the numerical solution of some simple boundary value problems
in 1D, 2D and 3D geometries by either Spectral Methods with Galerkin-Numerical Integration (G-NI), in
the case of single domain formulation, or Spectral Element Methods with Numerical Integration (SEM-
NI), in the case of multi-domain formulation. Extrema eigenvalues of discrete operators are also computed
in some cases.

The present library includes matlab files we have used to produce some numerical results published
in the books:

C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spec-

tral Methods. Fundamentals in Single Domains Springer Verlag,
Berlin Heidelberg New York, 2006;

C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral

Methods. Evolution to Complex Geometries and Applications to

Fluid Dynamics Springer Verlag, Berlin Heidelberg New York,
2007.

Here is a summary of the features of the library:

1. Basic functions

• Computation of nodes and weights of Legendre-Gauss-Lobatto (LGL), Chebyshev-Gauss-
Lobatto (CGL), Legendre-Gauss (LG), Chebyshev-Gauss (CG) quadrature formulas.

• Computation of 1st and 2nd Legendre/Chebyshev derivative matrices.

• Legendre Transform.

1

Spectral Element Library 2

• Interpolation routines from either LGL or LG grid to another grid.

• Evaluation and plot of Legendre, Lagrange and boundary-adapted modal basis functions.

2. Numerical solution of 1D Boundary Value Problems:

• non periodic Burgers equation (ut +uux−νuxx = 0 in Ω, ∀t > 0, b.c. on ∂Ω and i.c. at t = 0),

• scalar linear hyperbolic equation (ut + βux = 0 in Ω, ∀t > 0, b.c. on ∂Ω and i.c. at t = 0),

• second order elliptic equation (−u′′ + βu′ + γu = f in Ω, b.c. on ∂Ω),

• FEM preconditioners for spectral matrices for elliptic self-adjoint second-order equations (−u′′+
γu = f in Ω, b.c. on ∂Ω),

3. 2D Boundary Value Problems on rectangular geometries:

• diffusion-reaction problems (−ν∆u + γu = f in Ω, b.c. on ∂Ω),

• additive Schwarz preconditioner (with overlap and coarse mesh) for diffusion-reaction problems

• Neumann-Neumann and Balancing Neumann-Neumann preconditioners for the Schur comple-
ment matrix associated to diffusion-reaction problems

4. 3D Boundary Value Problems on parallelepiped geometries:

• diffusion-reaction problems (−ν∆u + γu = f in Ω, b.c. on ∂Ω).

1.1 Download

The library can be downloaded from http://dm.ing.unibs.it/gervasio. It is free software; you can redis-
tribute it and/or modify it under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2 of the License, or any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should receive a copy of the GNU General Public License along with this library; if not, write to
the Free Software Foundation Inc, 59 Temple Pl. - Suite 330, Boston, MA 02111-1307, USA.

1.2 Requirements

1. Matlab 7.2.sp (R14) or above, since handle functions are used to evaluate mathematical functions.
The Symbolic Toolbox is used to set input data, but it is not needed to solve differential problems.
Previous releases of Matlab could be used, provided that handle functions are replaced by calls to
either eval or feval and that you replace calls to Symbolic Toolbox functions with exact derivates,
computed at hand.

2. Operating system: any.

1.3 How to install

1. Download the latest CHQZ lib.zip on the website:
http://dm.ing.unibs.it/gervasio

2. Extract files in your Matlab Repository /home/foo/matlab/ :
unzip CHQZ lib 1.0.zip

3. Add all CHQZ lib 1.0 subdirectories in your Matlab path:

Spectral Element Library 3

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Level_0

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Level_1

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Level_2

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Level_3

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Basis_functions

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Hyperbolic_1d

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Burgers

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Elliptic_1d

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Elliptic_2d

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Elliptic_2d/Schur

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Elliptic_2d/Schwarz

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Elliptic_3d

4. Ready to use.

Remark 1.3.1 You can add to your Matlab path only directories needed by a specific script (or function).
For example, if you want to call a function belonging to subdirectory CHQZ lib 1.0/Src/Elliptic 2d/Schur,
you may add only directories:

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Level_0

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Level_2

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Elliptic_2d/Schur

Functions of directory Level 0 are always needed.
To call functions for 1D problems, you have to add directory Level 1 and the directory the function
belongs to;
to call functions for 2D problems, you have to add directories Level 2 and the directory the function
belongs to;
to call functions for 3D problems, you have to add directories Level 3 and the directory the function
belongs to.

1.4 On-line documentation

On-line documentation has been produced by using M2HTML (Copyright c©2003 Guillaume Flandin

Guillaume@artefact.tk). Open the file /home/foo/matlab/CHQZ lib 1.0/Doc/Html/index.html

by either a web-browser or matlab editor.

Chapter 2

A simple example

We want to solve the 2D Poisson problem
{

−∆u = f in Ω
u = g on ∂Ω

(2.1)

where Ω = (−2, 2) × (0, 1), g(x, y) = sin(πx)cos(πy), f(x, y) = −2π2 sin(πx)cos(πy). We choose a
discretization of Ω in 4 × 2 rectangular elements while the polynomial degrees are Nx = 12 (along
x-direction) and Ny = 6 (along y-direction).

1. Start matlab

2. add some directories to matlab path:

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Level_0

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Level_2

addpath /home/foo/matlab/CHQZ_lib_1.0/Src/Elliptic_2d

3. set input data (you can modify the file Elliptic 2d/call lap 2d):

uex=@(x,y)[sin(pi*x).*cos(pi*y)]; % exact solution = boundary data

uex_x=@(x,y)[pi*cos(pi*x).*cos(pi*y)]; % du/dx

uex_y=@(x,y)[-pi*sin(pi*x).*sin(pi*y)]; % du/dy

f=@(x,y)[2*pi^2*sin(pi*x).*cos(pi*y)]; % r.h.s

g=@(x,y)[sin(pi*x).*cos(pi*y)]; % Dirichlet boundary data

h=@(x,y)[pi*sin(pi*x).*sin(pi*y);pi*cos(pi*x).*cos(pi*y);...

-pi*sin(pi*x).*sin(pi*y);-pi*cos(pi*x).*cos(pi*y)]; % Neumann boundary data

gam=0; % coefficient of the term of order zero.

xa=-2;xb=2; % Omega=(xa,xb) x (ya,yb)

ya=0;yb=1;

cb=’nndd’ % For boundary conditions cb(i)=’d’ ---> Dirichlet on side i

% cb(i)=’n’ ----> Neumann on side i

nex=4;ney=2; nx=12; ny=6;

param=zeros(20,1); % "help lap_2d" for a complete description of param

param(1)=1; % 1=SEM-NI, 2= Patching

param(2)=2; % 0=no reordering, 1=CM ordering, 2=AMD ordering

param(3)=3; % 1= solve linear system by Cholesky fact.

% 2= compute extrema eigenvalues of A

% 3 solve by Schur complement

% 4= compute extrema eigenvalues of the Schur complement

4

Spectral Element Library 5

param(4)=1; % computes errors

param(5)=1; % 0 exact norms, 1= discrete norms

param(6)=nx*2; % nq for LG quadrature formulas

param(7)=1; % 0 =absolute errors, 1=relative errors

param(8)=2; % 0 no plot, 1 mesh, 2 surf, 3 contour

param(9)=(nx+1); % nodes used to plot numerical solution

gammax=[]; gammay=[]; % if SEM decomposition is not uniform:

% they are the arrays with intefaces positions

% along x- and y- directions, respectively

4. call the function lap 2d

[xy,un,D,param]=lap_2d(xa,xb,ya,yb,gam,uex,uex_x,uex_y,f,g,h,cb,...

nex,nx,ney,ny,gammax,gammay,param);

5. print the errors

fprintf(’nx=%d,nex=%d,err_inf=%11.4e, err_h1=%11.4e,err_l2=%11.4e \n’,...

nx,nex,param(29),param(30),param(31))

The 2-indexes arrays xy contains coordinates of the nodes of the mesh used, while un contains numer-
ical solution. param(29), param(30), param(31) are the relative errors between exact and numerical
solution with respect to L∞(Ω)-norm, H1(Ω)-norm and L2(Ω)-norm, respectively. A figure has been
generated with the plot of the numerical solution, in particular the command surf has been used.

Chapter 3

Notations

From now on, we will use the following notations:
CGL Chebyshev-Gauss-Lobatto
CG Chebyshev-Gauss
LGL Legendre-Gauss-Lobatto
LG Legendre-Gauss
G-NI Galerkin formulation with Numerical Integration
SEM Spectral Element Method
SEM-NI Spectral Element Method with Numerical Integration

3.1 Functions setting

All mathematical functions, such as exact solution, right hand side, variable coefficients, are referred by
following the function handle syntax. If you want to define the function f(x) =

√
πx + 2, the matlab

instruction do to this is:

f=@(x)[sqrt(pi*x+2)];

Matlab instruction to evaluate the function f at x = 4 is

y=f(4);

If you want to define the function u(x, y) = sin(πx) cos(πy) the matlab instruction do to this is:

u=@(x,y)[sin(pi*x).*cos(pi*y)];

Matlab instruction to evaluate the function u at (x, y) = (0.5, 0.3) is

z=u(0.5,0.3);

3.2 1D b.v.p. defaults

For 1D problems, nodes are ordered from left to right. Spectral elements are ordered from left to right,
too. Only uniform decompositions are provided, i.e. the elements have equal size and equal number of
nodes.

In the following list we show the correspondence between commonly used variables and their meaning.

xa left extreme of Ω

xb right extreme of Ω

ne number of spectral elements in Ω

6

Spectral Element Library 7

1452

4 7 10 13

8

6 9 1512

11

3

1

Si
de

 2

Si
de

 4

Side 3

Side 1V1 V2

V3V4

1 2 3 4 5

6
7 8 9 10

11 15

20 25

....

Figure 3.1: Elements ordering for 2D boundary value problems (left), nodes ordering inside each spectral
element (right).

nx polynomial degree in each spectral element (the same in each element)

npdx number of nodes in each spectral element (npdx=nx+1)

noe global number of nodes in Ω

xy column array with global nodes coordinates in Ω

x column array with npdx LGL (or CGL, or LG, or CG) nodes on the reference interval
[−1, 1]

w column array with npdx LGL (or CGL, or LG, or CG) weights on the reference
interval [−1, 1]

dx first derivative LGL (or CGL, or LG, or CG) matrix

nov two indexes array whose size is (npdx,ne)which implements the restriction/extension
map from element local-meshes to global mesh. i.e. ig=nov(il,m): ig is the global-
mesh index associated to node il of element m.

cb two elements character array for setting boundary conditions on ∂Ω. The character
cb(1) is associated to the left extreme of Ω, while cb(2) is associated to the right
extreme of Ω. cb(i)=’d’ stands for Dirichlet boundary conditions at extreme i,
while cb(i)=’n’ stands for Neumann boundary conditions at extreme i.

param row arrow containing scalar input parameters used for selecting an approach instead
of another. Some times param is used to pass scalar outputs, such number of CG
iterations, errors, extrema eigenvalues

3.3 2D b.v.p. defaults

For 2D problems, only rectangular geometries Ω = (xa, xb) × (ya, yb) are provided.
The nodes are ordered following local element by element order. The elements are ordered first along
y-direction, then along x-direction, as shown in Fig. 3.1. On the contrary, inside each element, the nodes
are ordered first along x-direction, then along y-direction (lexicographical order).

Uniform and non-uniform decompositions are provided, i.e. the elements may have different sizes,
nevertheless the local number of nodes along single directions are the same in each spectral element. You
can chose two different numbers of nodes along x and y directions.
The sides of Ω are sorted as shown in Fig. 3.1.
The vertexes of both Ω and each spectral element are counterclockwise ordered, starting from the bottom-
left vertex.

In the following list we show the correspondence between commonly used variables and their meaning.

Spectral Element Library 8

nex number of spectral elements in Ω along x-direction

ney number of spectral elements in Ω along y-direction

ne global number of spectral elements in Ω

xx 2-indexes array of size (4,ne). xx(1:4,m)=[x V1 m;x V2 m;x V3 m;x V4 m], where
x Vi m denotes the abscissa of vertex i in element m.

yy 2-indexes array of size (4,ne). yy(1:4,m)=[y V1 m;y V2 m;y V3 m;y V4 m], where
y Vi m denotes the ordinate of vertex i in element m.

nx polynomial degree along x-direction in each spectral element (the same in each
element)

npdx number of nodes along x-direction in each spectral element (npdx=nx+1)

ny polynomial degree along y-direction in each spectral element (the same in each ele-
ment)

npdy number of nodes along y-direction in each spectral element (npdy=ny+1)

noe global number of nodes in Ω

xy two-indexes array (of length noe) with global nodes coordinates (x, y) in Ω

x column array with npdx LGL (or CGL, or LG, or CG) nodes on the reference interval
[−1, 1]

wx column array with npdx LGL (or CGL, or LG, or CG) weights on the reference
interval [−1, 1]

dx first x-derivative LGL (or CGL, or LG, or CG) matrix

y column array with npdy LGL (or CGL, or LG, or CG) nodes on the reference interval
[−1, 1]

wy column array with npdy LGL (or CGL, or LG, or CG) weights on the reference
interval [−1, 1]

dy first y-derivative LGL (or CGL, or LG, or CG) matrix

ldnov number of nodes in each spectral element

nov two indexes array whose size is (ldnov,ne)which implements the restriction/extension
map from element local-meshes to global mesh. i.e. ig=nov(il,m): ig is the global-
mesh index associated to node il of element m.

cb four elements character array for setting boundary conditions on ∂Ω. Each character
of cb is associated to a side of ∂Ω (cb(i) is associated to side i of Ω) and cb(i)=’d’

stands for Dirichlet boundary conditions on Side i, while cb(i)=’n’ stands for
Neumann boundary conditions on Side i. A Dirichlet boundary condition dominates
Neumann boundary condition at vertexes.

ifro Column array of length noe with values 0, 1, -1, 31.
ifro(i)=0 means that node i is internal to Ω
ifro(i)=1 means that node i is on ∂Ω and a Dirichlet boundary condition is im-
posed at node i

ifro(i)=-1 means that node i is internal to Ω and it belongs to interface Γ between
spectral elements
ifro(i)=31 means that node i is on ∂Ω and a Neumann boundary condition is
imposed at node i

param row arrow containing scalar input parameters used for selecting an approach instead
of another. Some times param is used to pass scalar outputs, such number of CG
iterations, errors, extrema eigenvalues

Spectral Element Library 9

3.4 3D b.v.p. defaults

For 3D problems, only parallelepiped geometries Ω = (xa, xb) × (ya, yb) × (za, zb) are provided.
The nodes are ordered following local element by element order. The elements are ordered first along
z-direction, then along y-direction and finally along x-direction. Inside each element nodes are ordered
first along x-direction, then along y-direction and finally along z-direction.

Uniform and non-uniform decompositions are provided, i.e. the elements may have different sizes,
nevertheless the local number of nodes along single directions are the same in each spectral element. You
can chose different numbers of nodes along x, y and z directions.
The vertexes of both Ω and each spectral element are counterclockwise ordered, starting from the bottom-
left vertex, first on bottom face and then on top face.

In the following list we show the correspondence between commonly used variables and their meaning.

nex number of spectral elements in Ω along x-direction

ney number of spectral elements in Ω along y-direction

nez number of spectral elements in Ω along z-direction

ne global number of spectral elements in Ω

xx 2-indexes array of size (8,ne). xx(1:8,m)=[x V1 m;x V2 m;x V3 m;x V4 m;

x V5 m;x V6 m;x V7 m;x V8 m], where x Vi m denotes the abscissa of vertex i in
element m.

yy 2-indexes array of size (8,ne). yy(1:8,m)=[y V1 m;y V2 m;y V3 m;y V4 m;

y V5 m;y V6 m;y V7 m;y V8 m], where y Vi m denotes the ordinate of vertex i in
element m.

zz 2-indexes array of size (8,ne). zz(1:8,m)=[z V1 m;z V2 m;z V3 m;z V4 m;

z V5 m;z V6 m;z V7 m;z V8 m], where z Vi m denotes the third coordinate of vertex
i in element m.

nx polynomial degree along x-direction in each spectral element (the same in each
element)

npdx number of nodes along x-direction in each spectral element (npdx=nx+1)

ny polynomial degree along y-direction in each spectral element (the same in each ele-
ment)

npdy number of nodes along y-direction in each spectral element (npdy=ny+1)

nz polynomial degree along z-direction in each spectral element (the same in each ele-
ment)

npdz number of nodes along z-direction in each spectral element (npdz=nz+1)

noe global number of nodes in Ω

xyz two-indexes array (of length noe) with global nodes coordinates (x, y, z) in Ω

x column array with npdx LGL (or CGL, or LG, or CG) nodes on the reference interval
[−1, 1]

wx column array with npdx LGL (or CGL, or LG, or CG) weights on the reference
interval [−1, 1]

dx first x-derivative LGL (or CGL, or LG, or CG) matrix

y column array with npdy LGL (or CGL, or LG, or CG) nodes on the reference interval
[−1, 1]

wy column array with npdy LGL (or CGL, or LG, or CG) weights on the reference
interval [−1, 1]

dy first y-derivative LGL (or CGL, or LG, or CG) matrix

z column array with npdz LGL (or CGL, or LG, or CG) nodes on the reference interval
[−1, 1]

Spectral Element Library 10

wz

column array with npdz LGL (or CGL, or LG, or CG) weights on the reference
interval [−1, 1]

dz first z-derivative LGL (or CGL, or LG, or CG) matrix

ldnov number of nodes in each spectral element

nov two indexes array whose size is (ldnov,ne)which implements the restriction/extension
map from element local-meshes to global mesh. i.e. ig=nov(il,m): ig is the global-
mesh index associated to node il of element m.

ifro Column array of length noe with values 0, 1. ifro(i)=0 means that node i is
internal to Ω
ifro(i)=1 means that node i is on ∂Ω and a Dirichlet boundary condition is im-
posed at node i

param row arrow containing scalar input parameters used for selecting an approach instead
of another. Some times param is used to pass scalar outputs, such number of CG
iterations, errors, extrema eigenvalues

Chapter 4

Structure of the library

The library is organized in several directories:

• CHQZ lib 1.0/Src/Level 0

• CHQZ lib 1.0/Src/Level 1

• CHQZ lib 1.0/Src/Level 2

• CHQZ lib 1.0/Src/Level 3

• CHQZ lib 1.0/Src/Basis functions

• CHQZ lib 1.0/Src/Burgers

• CHQZ lib 1.0/Src/Eigenvalues 1d

• CHQZ lib 1.0/Src/Hyperbolic 1d

• CHQZ lib 1.0/Src/Elliptic 1d

• CHQZ lib 1.0/Src/Elliptic 2d

• CHQZ lib 1.0/Src/Elliptic 2d/Schur

• CHQZ lib 1.0/Src/Elliptic 2d/Schwarz

• CHQZ lib 1.0/Src/Elliptic 3d

4.1 Level 0 directory

The directory Level 0 consists of a number of functions to

• generate quadrature nodes and weights,

• assemble derivative matrices,

• interpolate data and functions from LGL (or LG) grids to other grids,

• evaluate Legendre transform,

• evaluate Legendre, Chebyshev (and all other Jacoby) polynomials, Lagrange polynomials, boundary
adapted Legendre polynomials.

11

Spectral Element Library 12

These functions have been written according to notations, identities and formulas reported in [1, Ch.1,
Ch. 2] and in [3, Ch. 4].

These functions are called by many routines of CHQZ lib 1.0.

The following is a list of the functions currently supported with a brief explanation.

chebyshev pol

Plots Chebyshev polynomials for n = 0, ..., 4

[d]=der2cgl(x,np)

Spectral (Chebyshev Gauss Lobatto) second derivative matrix

[d]=der2lgl(x,np)

Spectral (Legendre Gauss Lobatto) second derivative matrix

[d]=dercgl(x,np)

Spectral (Chebyshev Gauss Lobatto) derivative matrix

[d]=derlg(x,np)

Spectral (Legendre Gauss) derivative matrix

[d]=derlgl(x,np)

Spectral (Legendre Gauss Lobatto) derivative matrix

[a]=intlag cgl(x cgl, x new)

Computes matrix a to evaluate 1D Lagrange interpolant at CGL

[a]=intlag lg(x lg, w lg, x new)

Computes matrix a to evaluate 1D Lagrange interpolant at LG

[a]=intlag lgl(x lgl, x new)

Computes matrix a to evaluate 1D Lagrange interpolant at LGL

[p,pd] = jacobi eval(x,n,alpha,beta)

Evaluates Jacobi polynomial Pn(α, β) and its first derivative at x

jacobi pol

Script for plotting some Jacobi polynomials for n = 4

[x,flag] = jacobi roots(n,alpha,beta)

Computes the n zeros of the Jacoby polynomial Pn(α, β)(x)

legendre pol

Plots Legendre polynomials for n = 0, ..., 4

[uk]=legendre tr coef(x,u)

Spectral Element Library 13

Computes Discrete Legendre Transform coefficients

[u int]=legendre tr eval(x,u,x int)

Evaluates Discrete Legendre Transform

[a]=legendre tr matrix(x)

Computes matrix a to evaluate Discrete Legendre Transform

[p] = pnleg (x, n)

Evaluates Legendre polynomial of degree n

[p1,p] = pnleg1 (x, n)

Evaluates the first derivative of Legendre polynomial of degree n

[p2,p1,p] = pnleg2 (x, n)

Evaluates the second derivative of Legendre polynomial of degree n

[p] = pnleg all(x,n)

Evaluates Legendre polynomials, from degree 0 to n

test

Script for testing all functions of this directory

[x,w] = xwcg(np,a,b)

Computes nodes and weights of the Chebyshev-Gauss quadrature formula

[x,w] = xwcgl(np,a,b)

Computes nodes and weights of the Chebyshev-Gauss-Lobatto quadrature formula.

[x,w] = xwlg(np,a,b)

Computes nodes and weights of the Legendre-Gauss quadrature formula.

[x,w] = xwlgl(np,a,b)

Computes nodes and weights of the Legendre-Gauss-Lobatto quadrature formula.

A dependency-graph for this directory is shown in Fig. 4.1

4.2 Level 1 directory

The directory Level 1 consists of a number of functions to

• built and assemble SEM-NI mass and stiffness matrices related to 1D boundary value problems

• generate 1D SEM mesh structures

• evaluate errors in L∞-, H1-, L2-norms between numerical and exact solution of 1D boundary value
problems

Spectral Element Library 14

These functions have been written according to notations, identities and formulas reported in [1, Ch. 3].
They are called by several functions of directories Burgers, Eigenvalues 1d, Elliptic 1d, Hyperbolic 1d.
The following is a list of the functions currently supported with a brief explanation.

[A]=ad 1d se(npdx,ne,nov,nu,beta,wx,dx,jacx)

Assembles 1D global SEM-NI matrix associated to the advection diffusion operator
−νu′′ + βu′ with constant ν and β

[A]=ad 1d sp(nu,beta,wx,dx,jacx)

Computes 1D local SEM-NI matrix associated to the advection diffusion operator
−νu′′ + βu′ with constant ν and β

[A]=adr 1d se(npdx,ne,nov,nu,b,gam,wx,dx,jacx)

Assembles 1D global SEM-NI element matrix associated to the advection-diffusion-
reaction operator −(νu′ + b(x)u)′ + γu, in divergence form, with constant ν and
γ.

[A]=adr 1d sp(wx,dx,jacx,nu,b,gam)

Computes 1D local SEM-NI matrix associated to the advection-diffusion-reaction
operator −(νu′ + b(x)u)′ + γu, in divergence form, with ν and γ constants.

[nov]=cosnov 1d(npdx,ne,nov)

Constructs the 1D (local mesh → global mesh) map

[A]=ell 1d se(npdx,ne,nov,nu,beta,gam,wx,dx,jacx)

Assembles 1D global SEM-NI matrix associated to the advection-diffusion-reaction
operator −νu′′ + βu′ + γu

[A]=ell 1d sp(nu,beta,gam,wx,dx,jacx)

Computes 1D local SEM-NI matrix associated to the advection-diffusion-reaction
operator −νu′′ + βu′ + γu

[err inf,err h1,err l2]=errors 1d(nx,ne,xa,xb,un,uex,uexx,param)

Computes errors for 1D boundary value problems

[A,M]=matrices 1d(xa,xb,cb,ne,nx)

Assembles SEM-NI stiffness and mass matrices for 1D b.v.p.

[xx,jacx,xy,ww]=mesh 1d(xa,xb,ne,npdx,nov,x,wx)

Generates uniform 1D spectral elements mesh

[err h1]=normah1 1d(fdq, nq, errtype, u, uex, uexx, x, wx, dx, xx, jacx, xy,nov)

Computes H1-norm in 1D domains

[err l2]=normal2 1d(fdq, nq, errtype, u, uex, x, wx, xx, jacx, xy,nov)

Computes L2-norm in 1D domains

[ha]=plot sem 1d(fig,ne,x,wx,xx,jacx,xy,nov,un,n int)

Plots SEM-NI solution of 1D boundary value problems

[uex,uexx,ff,nu,beta,gam]=setfun adr 1d

Sets functions and coefficients for calling adr 1d

[uex,uexx,ff,nu,beta,gam]=setfun ell 1d

Sets functions and coefficients for calling ell 1d and ellprecofem 1d

[uex,uexx,ff,nu,gam]=setfun lap 1d

Sets functions and coefficients for calling lap 1d and

[A]=stiff 1d se(npdx,ne,nov,wx,dx,jacx)

Assembles 1D global stiffness SEM-NI matrix (ϕ′

j , ϕ
′

i)Ω

Spectral Element Library 15

[A]=stiff 1d sp(w,d,jac)

Computes 1D local stiffness matrix (ϕ′

j , ϕ
′

i)N,Ωm

A dependency-graph for this directory is shown in Fig. 4.2

4.3 Level 2 directory

The directory Level 2 consists of a number of functions to

• built and assemble SEM-NI mass and stiffness matrices related to 2D boundary value problems

• generate 2D SEM mesh structures

• evaluate errors in L∞-, H1-, L2-norms between numerical and exact solution of 2D boundary value
problems

• plot numerical solution of 2D boundary value problems

These functions have been written according to notations, identities and formulas reported in [1, Ch. 3].
These functions are called by several functions of directories Elliptic 2d, Elliptic 2d/Schur,

Elliptic 2d/Schwarz.
The following is a list of the functions currently supported with a brief explanation.

[nov]=cosnov 2d(npdx,nex,npdy,ney)

Constructs the 2D (local mesh → global mesh) map

[err inf,err h1,err l2]=errors 2d(x,wx,dx,xx,jacx,y,wy,dy,yy,jacy,

xy,ww,nov,un,uex,uex x,uex y,param)

Computes errors for 2D boundary value problems

[lbor,lint,lintint,lgamma,ifro]=liste(ifro,nov)

Assembles lists of internal, boundary, interface nodes

[lbor,lint,lintint,lgamma]=liste1(ifro)

Assembles lists of internal, boundary, interface nodes (similar to liste)

[xx,yy,jacx,jacy,xy,ww,ifro]=mesh2d(xa,xb,ya,yb,cb,nex,ney,npdx,npdy,

nov,x,wx,y,wy,gammax,gammay)

Constructs uniform 2D SEM mesh on rectangular domain Ω = (xa, xb) × (ya, yb)

[err h1]=normah1 2d(fdq,nq,errtype,x,wx,dx,xx,jacx,y,wy,dy,yy,jacy,

xy,ww,nov,un,u,uex,uex x,uex y);

Computes H1-norm in 2D domains

[err l2]=normal2 2d(fdq,nq,errtype,x,wx,xx,jacx,y,wy,yy,jacy,

xy,ww,nov,un,u,uex)

Computes L2-norm in 2D domains

[ha]=plot sem 2d(fig,command,nex,ney,x,xx,jacx,y,yy,jacy,xy,ww,nov, u,n int)

Spectral Element Library 16

Plots SEM numerical solution of 2D boundary value problems

[uex,uexx,uexy,ff,gam]=setfun lap 2

Sets functions and coefficients for calling lap 2d

[A]=stiff 2d se(npdx,nex,npdy,ney,nov,wx,dx,jacx,wy,dy,jacy)

Assembles 2D global stiffness SEM-NI matrix (∇ϕj ,∇ϕi)Ω

[A]=stiff 2d sp(wx,dx,jacx,wy,dy,jacy)

Computes 2D local stiffness SEM-NI matrix (∇ϕj ,∇ϕi)N

A dependency-graph for this directory is shown in Fig. 4.3

4.4 Level 3 directory

The directory Level 3 consists of a number of functions to

• built and assemble SEM-NI mass and stiffness matrices related to 3D boundary value problems

• generate 3D SEM mesh structures

• evaluate errors in L∞-, H1-, L2-norms between numerical and exact solution of 3D boundary value
problems

These functions are called by functions of directories Elliptic 3d.
The following is a list of the functions currently supported with a brief explanation.

[err inf,err h1,err l2]=errors 3d(x,wx,dx,xx,jacx,y,wy,dy,yy,jacy, z,wz,dz,zz,jacz,

xyz,ww,nov,un,uex,uex x,uex y,uex z,param)

Computes errors for 3D boundary value problems

[xx,yy,zz,jacx,jacy,jacz,xyz,ww,ifro,nov]=mesh3d(xa,xb,ya,yb,za,zb, nex,ney,nez,

npdx,npdy,npdz,x,wx,y,wy,z,wz,gammax,gammay,gammaz)

Computes uniform 3D Spectral element mesh on parallelepiped Ω = (xa, xb) ×
(ya, yb) × (za, zb)

[err h1]=normah1 3d(fdq,nq,errtype,x,wx,dx,xx,jacx,y,wy,dy,yy,jacy,

z,wz,dz,zz,jacz,xyz,ww,nov,un,u,uex,uex x,uex y,uex z)

Computes H1-norm in 3D domains

[err l2]=normal2 3d(fdq,nq,errtype,x,wx,xx,jacx,y,wy,yy,jacy,

z,wz,dz,zz,jacz,xyz,ww,nov,un,u,uex)

Computes L2-norm in 3D domains

[uex,uexx,uexy,uexz,ff,gam]=setfun lap 3d

Sets functions and coefficients for calling lap 3d

Spectral Element Library 17

[A]=stiff 3d se(npdx,nex,npdy,ney,npdz,nez,nov,wx,dx,jacx,wy,dy,jacy,wz,dz,jacz)

Assembles 3D global stiffness SEM matrix (∇ϕj ,∇ϕi)Ω

[A]=stiff 3d sp(wx,dx,jacx,wy,dy,jacy,wz,dz,jacz)

Computes 3D local stiffness SEM-NI matrix (∇ϕj ,∇ϕi)N

These functions have been written according to notations, identities and formulas reported in [1, Ch. 3].
A dependency-graph for this directory is shown in Fig. 4.4

4.5 Basis functions directory

The directory Basis functions consists of a number of functions to

• plot 1D polynomial basis functions: Lagrange, modal Legendre, boundary-adapted modal Legendre
polynomials

• plot 2D polynomial basis functions: Lagrange, boundary-adapted modal polynomials

These functions have been written according to notations, identities and formulas reported in [1, Ch. 1,
Ch. 2].

The following is a list of the functions currently supported with a brief explanation.

[dlnp1]=derpol legendre(n,ln,dln,dlnm1)

Recursive construction of first derivative of Legendre polynomials, formula (2.3.19),
pag. 77, [1]

plot 2dlagrange

Plots 2D Lagrange polynomials, formula (1.2.55), pag. 17, [1] (tensorial product),
produces part of Fig. 2.13, pag. 100 [1]

plot 2dmodal

Plots 2D modal boundary adapted polynomials, formula (2.3.31), pag. 82, [1] (ten-
sorial product), produces part of Fig. 2.13, pag. 100 [1]

plot lagrange

Plots 1D Lagrange polynomials, formula (1.2.55), pag. 17, [1], produces part of Fig.
2.12, pag. 83 [1]

plot legendre

Plots 1D Legendre polynomials, formula (2.3.2), pag. 75, [1], produces Fig. 2.12,
pag. 83 [1]

plot modal

Plots 1D modal boundary-adapted polynomials, formula (2.3.31), pag. 82, [1], pro-
duces Fig. 2.12, pag. 83 [1]

[lnp1]=pol legendre(n,ln,lnm1)

Recursive construction of Legendre basis function, formula (2.3.19), pag. 77, [1]

Spectral Element Library 18

[etak]=pol modal(k,lk,lkm2)

Recursive construction of modal basis function, formula (2.3.31), pag. 82, [1]

test

call all callable functions of directory Basis functions

A dependency-graph for this directory is shown in Fig. 4.5

4.6 Burgers directory

The directory Burgers consists of a number of functions to approximate the solution of non periodic
Burgers equation [1, Sect. 3.1],

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0 in Ω, ∀t > 0 (4.1)

that satisfies the no-flux boundary conditions

1

2
u2 − ν

∂u

∂x
= 0 at x = ±1, ∀t > 0,

and a suitable initial condition at t = 0. The approximation is based on the Legendre Galerkin with
Numerical Integration (G-NI) method [1, Sect. 3.3.5].

The following is a list of the functions currently supported with a brief explanation.

call npbur

Script to set input data and to call nonperiodic burgers

[u1]=ee(tt,deltat,f,u0,dx,A,w,visc,uex,uex1,bc)

Performs one step of Explicit Euler scheme for 1D parabolic problems

[f]=fburgers(tt,deltat,u0,A,dx,w,visc,uex,uex1,bc)

Defines the non perodic Burgers function for nonperiodic burgers

[u,err]=nonperiodic burgers(xa,xb,t0,T,visc,nx,deltat,tscheme,bc)

Numerical solution of non periodic Burgers equation (4.1)

[u1]=rk2(t,deltat,f,u0,dx,A,w,visc,uex,uex1,bc)

Performs one step of explicit 2nd order Runge-Kutta scheme for 1D parabolic prob-
lems

[u1]=rk4(t,deltat,f,u0,dx,A,w,visc,uex,uex1,bc)

Performs one step of explicit 4th order Runge-Kutta scheme for 1D parabolic prob-
lems

A dependency-graph for this directory is shown in Fig. 4.6

4.7 Eigenvalues 1d directory

The directory Eigenvalues 1d consists of a number of functions to numerically compute eigenvalues
of first and second derivative matrices of Legendre G-NI, Legendre collocation, Chebyshev collocation
approaches [1, Sect. 4.3].

The following is a list of the functions currently supported with a brief explanation.

fig4 10

Legendre collocation first-derivative eigenvalues computation and plot. Script to
produce Fig 4.10, pag. 203 [1]

Spectral Element Library 19

fig4 12

Legendre collocation/ G-NI / generalized G-NI first-derivative eigenvalues compu-
tation and plot. Script to produce Fig 4.12 (top-left) and Fig 4.13 (top-left) pag.
204 [1]

fig4 14

Legendre collocation first-derivative eigenvalues and spectral condition number. Script
to produce Fig 4.14, pag. 206 [1]

fig4 7

Extreme eigenvalues of Legendre G-NI stiffness matrices for the 2nd order derivative
operator. Script to produce Fig 4.7, pag. 199 [1]

fig4 8

Chebyshev collocation first-derivative eigenvalues computation and plot. Script to
produce Fig 4.8, pag. 201 [1]

[d,A]=lgl eig(nx,nu,pbl)

Computes eigenvalues of first/second order spectral derivative matrices: collocation/G-
NI, LGL nodes, 1D mono domain.

A dependency-graph for this directory is shown in Fig. 4.7

4.8 Hyperbolic 1d directory

The directory Hyperbolic 1d consists of a number of functions to approximate the solution of the linear
scalar hyperbolic problem [1, Sect. 3.7],

∂u

∂t
+ β

∂u

∂x
= 0 in Ω = (−1, 1), ∀t > 0 (4.2)

with constant β > 0, satisfying the inflow condition u(−1, t) = uL(t), ∀t > 0, and a suitable initial
condition at t = 0. The approximation is based on either strong collocation approach, or the Legendre
Galerkin with Numerical Integration (G-NI) method, or the penalty approach, or the staggered-grid
method. The discretization in time is based on the explicit fourth order Runge-Kutta method.

Also the stationary counterpart of (4.2) has been taken into account.
The following is a list of the functions currently supported with a brief explanation.

call hyp

Script to set input data and call scalar hyp and stag scalar hyp

call stat hyp

Script to set input data and call stat scalar hyp

[x,u,err,Psi,Phi]=scalar hyp(xa,xb,t0,T,beta,uex,u0,ul,nx,deltat,param)

Numerical solution of scalar linear hyperbolic equations, formula (3.7.1a), pag. 145,
[1]

[int]=simpcx(xx,yy)

Composite Simpson Quadrature Formula

[x,u,err,Psi,Phi]=stag scalar hyp(xa,xb,t0,T,beta,uex,u0,ul,nx,deltat)

Numerical solution of scalar linear hyperbolic equations, formula (3.7.1a), pag. 145,
[1] by staggered grids method (pag. 149, [1])

[x,u,err]=stat scalar hyp(xa,xb,beta,f,uex,ul,nx,param)

Numerical solution of a stationary scalar linear hyperbolic equation, formula (3.7.1a),
pag. 145, [1]

A dependency-graph for this directory is shown in Fig. 4.8

Spectral Element Library 20

4.9 Elliptic 1d directory

The directory Elliptic 1d consists of a number of functions to approximate the solution of 1D linear
elliptic second order problems following SEM-NI approach [1, Ch. 4], [2, Ch. 5]:

problem (1.2.52)-(1.2.53), pag. 17, [1]

{

−(νu′ + β(x)u)′ + γu = f xa < x < xb

Neumann or Dirichlet b.c. at x = xa, x = xb,
(4.3)

with constants ν > 0 and γ ≥ 0;

{

−ν d
2u

dx2 + β du
dx

+ γu = f xa < x < xb

Neumann or Dirichlet b.c. at x = xa, x = xb

(4.4)

with constants ν > 0, β ∈ R and γ ≥ 0;

{

−ν d
2u

dx2 + γu = f xa < x < xb

Neumann or Dirichlet b.c. at x = xa, x = xb

(4.5)

with constants ν > 0 and γ ≥ 0.
Optimal preconditioners, based on Finite Element Methods have been developed for problem (4.4) [1,

Sect. 4.4.2]. Two functions solving problem (4.4) are present in this directory: ell 1d and ellprecofem 1d.
In the former one the linear system is solved by a direct method by using the backslash command of
matlab, in the second one, the linear system is solved by preconditioned (with FEM preconditioners)
CG/BiCGStab methods.

The following is a list of the functions currently supported with a brief explanation.

[xy,un,err inf,err l2,err h1,der]=adr 1d(xa,xb,nu,beta,gam, uex,uexx,ff,cb,ne,p,nx,param)

Numerical solution of the 1D boundary value problem (4.3) by SEM-NI approach.

call adr 1d

Script to call adr 1d and to produce data of figure 1.4, pag. 21, [1]

call ell 1d

Script to call ell 1d and to produce data of figure 4.17, pag. 207, [1]

call ellprecofem 1d

Script to call ellprecofem 1d.

call lap 1d

Script to call lap 1d.

[xy,un]=ell 1d(xa,xb,nu,beta,gam,ff,cb,ub,ne,nx)

Numerical solution of the 1D elliptic boundary value problem (4.4) by SEM-NI
approach.

[xy,un,A,M,AFE,MFE,MFEd,d,kappa,param]=ellprecofem 1d(xa,xb,nu, beta,gam,

ff,cb,ub,ne,nx,param)

Numerical solution of the 1D elliptic boundary value problem (4.4) by SEM-NI
approach. The linear system is solved by FEM-preconditioned CG (or BiCGStab)
method (see [1, Table 4.6, pag. 221]).

[AFE,MFE,MFEd]=femp1 preco 1d(npdx,ne,nov,jacx,xy,nu,beta,gam,param)

Assembles P1 (stiffness and mass) matrices for 2-nd order 1D b.v.p. (4.4)

[xy,un,err inf,err l2,err h1]=lap 1d(xa,xb,nu,gam, uex,uexx,ff,cb,ne,nx,param)

Spectral Element Library 21

Numerical solution of the 1D Poisson boundary value problem (4.5) by SEM-NI
approach.

[Al,Ml,Mld]=matricesp1 1d(nu,beta,gam,jacx,param)

Constructs P1 local mass and stiffness matrices in [−1, 1]

[nov p1,nov p1 g]=nov p1 1d(nov)

Construct P1-FEM (local-P1 mesh → global-P1 mesh (=local spectral element))
map

[u,iter,err]=pbcgstab vdv(A, b, u, tol, maxit ,P,preco)

Preconditioned BiCGStab method with FEM preconditioners (see [1, pag. 513], [4]).

[x,iter,res]=precg(A, b, x0, tol, itmax,P,preco)

Preconditioned Conjugate Gradient method with FEM preconditioners

[AFE,MFE,MFEd]=precofem 1d se(AFE,MFE,MFEd,ne,xy,nov,nu,beta,gam,param)

Assembles P1 matrices (stiffness, mass, discrete mass) on macro spectral elements

A dependency-graph for this directory is shown in Fig. 4.9

4.10 Elliptic 2d directory

The directory Elliptic 2d consists of a number of functions to approximate the solution of the 2D linear
elliptic second order equation

{

−∆u + γu = f in Ω
Dirichlet or Neumann b.c. on ∂Ω

(4.6)

with constant γ ≥ 0, by following the SEM-NI approach [1, Ch. 4], [2, Ch. 5]. The interface Schur
complement approach has been also considered, but without preconditioner. The implementation of both
Neumann-Neumann and balancing Neumann-Neumann preconditioners for the interface Schur comple-
ment is realized in the Elliptic 2d/Schur directory.

The following is a list of the functions currently supported with a brief explanation.

call lap 2d

Script for pre- and post- processing lap 2d

[xy,un,D,param]=lap 2d(xa,xb,ya,yb,gam,uex,uex x,uex y, ff,g,h,cb,

nex,nx,ney,ny,gammax,gammay,param)

Numerical solution of the 2D b.v.p. (4.6)

[A,f]=patch se(A,f,ifro,nov,dx,jacx,dy,jacy)

Calls patch sp to impose strong continuity of normal derivatives across interfaces

A=patch sp(dx,jacx,dy,jacy)

Imposes strong continuity of normal derivatives across interfaces

plot mesh

Script for plotting SEM mesh on a rectangle

A dependency-graph for this directory is shown in Fig. 4.10

4.11 Elliptic 2d/Schwarz directory

The directory Elliptic 2d/Schwarz consists of a number of functions to approximate the solution of the
2D linear elliptic second order equation (4.6) by SEM-NI approach and by exploiting the additive Schwarz

Spectral Element Library 22

preconditioner with coarse correction [1, Ch. 4], [2, Ch. 5, Ch. 6]. Eigenvalues are also computed to
measure efficiency of Schwarz preconditioner.

The following is a list of the functions currently supported with a brief explanation.

call eig schwarz 2d

Script file for pre and post processing eig schwarz 2d

call schwarz 2d

Script for pre and post processing schwarz 2d

[nove,nvle]=cosnovenew(nx,nex,ny,ney,nov,ifro,nlevel)

Construction of restriction maps for extended elements

[param]=eig schwarz 2d(xa,xb,ya,yb,gam,cb,nex,nx,ney,ny,gammax,gammay,param)

Eigenvalues computation for the matrix associated to 2D b.v.p. (4.6), either with
Schwarz preconditioner or without preconditioner

[listaint,listadir]=liste2(ifro)

Assembles lists of internal and boundary nodes (similar to liste)

[r0t]=matr0t(nx,ny,xy,nov, novc,noec,lista coarse)

Constructs matrix RT
H referred in (6.3.21), pag. 373 [2]

[lista coarse,novc,novcg,jacxe,jacye]=meshq1 coarse(npdx,npdy,nov,xy)

Construction of structures for the coarse mesh, for Schwarz preconditioner

[novl,jacx,jacy]=meshq1 ie(nov,nvl,xy,ipar)

Construction of extended Q1 mesh, for Schwarz preconditioner

[p unity]=partition e(nove,nvle,noe)

Unity partition for the extended mesh, for Schwarz preconditioner

[z]=precoasc(r,param,noei,lint,p unity,xy,ww,nov,x,wx,y,wy,xx,jacx,yy,jacy,

Aq1,wwq1,linte,nove,nvle,Ac,Acb,wwc,r0t,lista coarse,

noec,novc,lintc,ldirc)

Solves the linear system Pasz = r where Pas is the additive Schwarz preconditioner

[p]=reorder(xyl,nex,ney)

Reordering of the array of nodes of extended element

[xy,un,param]=schwarz 2d(xa,xb,ya,yb,gam, uex,uex x,uex y,ff,g,h,cb,

nex,nx,ney,ny,gammax,gammay,param)

Numerical solution of the 2D boundary value problem (4.6) by using additive Schwarz
preconditioner with coarse mesh

[u,iter,res]=schwarz pbcgstab(u0, f, param,p unity,xy,ww,A,nov,noei, lint,

x,wx,y,wy,xx,jacx,yy,jacy,Aq1,wwq1,linte,nove,nvle,Ac,Acb,wwc,r0t,

lista coarse,noec,novc,lintc,ldirc)

BiCGStab method with additive Schwarz preconditioner with overlap and coarse
mesh

[u,iter,res]=schwarz pcg(u0, f, param,p unity,xy,ww,A,nov,noei, lint,

x,wx,y,wy,xx,jacx,yy,jacy,Aq1,wwq1,linte,nove,nvle,Ac,Acb,wwc,r0t,

lista coarse,noec,novc,lintc,ldirc)

Conjugate Gradiente method with additive Schwarz preconditioner with overlap and
coarse mesh

[Aq1,Abq1,wwq1,linte,ldire,nove]=stiffq1(ifro,nov,xy,nove,nvle)

Constructs local stiffness Q1 matrices on extended elements, for Schwarz precondi-
tioner

Spectral Element Library 23

[Ac,Acb,wwc,lista coarse,noec,novc,lintc,ldirc]=stiffq1H(nx,nex,ny,ney,

xy,nov,ifro)

Construction of stiffness Q1 matrix on the coarse grid, for Schwarz preconditioner

[A,ww]=stiffq1 se(ipar,ifro,nov,wx,dx,jacx,wy,dy,jacy)

Assembles Q1 stiffness local matrices on extended elements, for Schwarz precondi-
tioner

A dependency-graph for this directory is shown in Fig. 4.11

4.12 Elliptic 2d/Schur directory

The directory Elliptic 2d/Schur consists of a number of functions to approximate the solution of the
2D linear elliptic second order equation (4.6) by SEM-NI approach and by exploiting the interface Schur
complement matrix [2, Ch. 6]. The interface Schur complement matrix could be preconditioned by either
Neumann-Neumann or balancing Neumann-Neumann preconditioner. Eigenvalues are also computed to
measure efficiency of this approach.

The following is a list of the functions currently supported with a brief explanation.

call eig schur 2d

Script for pre and post processing eig schur 2d

call eig schur 2d file

Script for pre and post processing eig schur 2d. It produces files for Fig. 6.19 [2]

call schur 2d

Script for pre and post processing schur 2d

[novg]=cosnovg(xyi,noei,ifroi,lgamma,ldnov,novi,nvli)

Constructs matrix novg which implements operators RΓm
(for m = 1, ..., M), the

restriction operator from the vector of coefficient unknowns related to the nodes of
Γ to only those associated with Γm = Γ ∩ ∂Ωm (see [2], pag. 394)

[novi,nvli]=cosnovi(nov,ifro,lint)

Constructs matrix novi which implements operators Rm, the restriction operator
from the vector of coefficient unknowns related to the nodes of Ω to the vector of
coefficient unknowns related to the nodes of Ωm

[Rgamma]=cosrgam(novg,LGG,ne,ngamma)

Computes matrix RΓ for Schur complement preconditioners. If Γ is the interface
(union of interfaces between sub domains) and Γm := ∂Ωm ∩ Γ, then (RΓ)mj :=
1/nj if xj ∈ Γm, (RΓ)mj := 0 otherwise, where nj = is the number of sub domains
xj belongs to.

[param]=eig schur 2d(xa,xb,ya,yb,gam,cb,nex,nx,ney,ny,gammax,gammay,param)

Eigenvalues computation for interface (preconditioned) Schur complement matrix

[un]=local solver(Amm,AGm,Lmm,LGG,novi,nvli,nov,novg,lint,lgamma,ugamma,f,ub)

Solution of local problems after knowledge of u on the interface

[D]=partition(Rgamma)

Computes the diagonal weighting matrix D relative to interface unknowns

[PSH]=pinv sigma(AGG,Amm,AGm,LGG,novg,Rgamma)

Computes the pseudo inverse of ΣH

[xy,un,param]=schur 2d(xa,xb,ya,yb,gam,uex,uex x,uex y,ff,g,h,cb,

nex,nx,ney,ny,gammax,gammay,param)

Spectral Element Library 24

Numerical solution of the 2D b.v.p. (4.6) by the interface Schur complement ap-
proach

[Sigma]=schur assemb(AGG,Amm,AGm,LGG,novg,lint,lgamma,param)

Assembles global Schur complement matrix

[AGG,Amm,AGm,Lmm,LGG,Am,f]=schur loc(ifro,nov,wx,dx,jacx,wy,dy,jacy,

nvli,gam,f,ub,param)

Computes local matrices and lists for implementing the Schur method

[Sigma,PNN]=schur matrix(ifro,nov,wx,dx,jacx,wy,dy,jacy,nvli,gam,novg,lint,

lgamma,D,Rgamma,param)

Computes Schur complement matrix Sigma and its preconditioner

[v]=schur mxv(x,AGG,Amm,AGm,LGG,novg,ne)

Computes matrix vector product, where the matrix is the interface Schur comple-
ment

[x,iter,res]=schur pcg(x0, b, tol, maxit,param,AGG,Amm,AGm,LGG,Am,

nvli,novg,D,Rgamma,PSH)

Preconditioned conjugate gradient to solve the Schur complement system

[z]=schur precobnn(r,ne,nvli,novg,D,LGG,Am,Rgamma,PSH,AGG,Amm,AGm)

Solves the system (P NN
b)−1

z = r where P NN
b is the Balancing Neumann-Neumann

preconditioner for Schur complement matrix

[z]=preconnl(r,ne,nvli,novg,D,LGG,Am)

Solves the system (P NN)−1
z = r where P NN is the Neumann-Neumann precondi-

tioner for Schur complement matrix

A dependency-graph for this directory is shown in Fig. 4.12

4.13 Elliptic 3d directory

The directory Elliptic 3d consists of a number of functions to approximate the solution of the 3D linear
elliptic second order equation (4.6) by SEM-NI approach.

The following is a list of the functions currently supported with a brief explanation.

call lap 3d

Script for pre- and post-processing lap 3d

[xyz,un,D,param]=lap 3d(xa,xb,ya,yb,za,zb,gam,uex,uex x,uex y,uex z,ff,

nex,nx,ney,ny,nez,nz,gammax,gammay,gammaz,param)

Numerical solution of the 3D b.v.p. (4.6) where Ω is a parallelepiped.

A dependency-graph for this directory is shown in Fig. 4.13

4.14 Dependency graphs

Spectral Element Library 25

Figure 4.1: Dependency-graph for directory Level 0

Spectral Element Library 26

Figure 4.2: Dependency-graph for directory Level 1

Spectral Element Library 27

Figure 4.3: Dependency-graph for directory Level 2

Figure 4.4: Dependency-graph for directory Level 3

Figure 4.5: Dependency-graph for directory Basis functions

Figure 4.6: Dependency-graph for directory Burgers

Figure 4.7: Dependency-graph for directory Eigenvalues 1d

Spectral Element Library 28

Figure 4.8: Dependency-graph for directory Hyperbolic 1d

Figure 4.9: Dependency-graph for directory Elliptic 1d

Figure 4.10: Dependency-graph for directory Elliptic 2d

Spectral Element Library 29

Figure 4.11: Dependency-graph for directory Elliptic 2d/Schwarz

Figure 4.12: Dependency-graph for directory Elliptic 2d/Schur

Figure 4.13: Dependency-graph for directory Elliptic 3d

Bibliography

[1] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods. Fundamentals in Single

Domains . Springer, Heidelberg, 2006.

[2] C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang. Spectral Methods. Evolution to Complex

Geometries and Application s to Fluid Dynamics . Springer, Heidelberg, 2007.

[3] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential Equations. Springer
Verlag, Heidelberg, 1994.

[4] Henk A. van der Vorst. Iterative Krylov methods for large linear systems, volume 13 of Cambridge

Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge,
2003.

30

