Home > Src > Level_1 > setfun_lap_1d.m

setfun_lap_1d

PURPOSE ^

SETFUN_LAP_1D Sets functions and coefficients for lap_1d, precolap_1d

SYNOPSIS ^

function [uex,uexx,ff,nu,gam]=setfun_lap_1d

DESCRIPTION ^

  SETFUN_LAP_1D  Sets functions and coefficients for lap_1d, precolap_1d

    [uex,uexx,ff,nu,gam]=setfun_lap_1d

 Output: uex =@(x)[....] function handle to the expression of exact
               solution
         uexx =@(x)[....] function handle to the expression of the first 
               derivative of the exact solution
         ff =@(x)[....] function handle to the expression of function 
              at right hand side
         nu = viscosity coefficient (constant>0)
         gam = coefficient of zero-order term (constant >=0)

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [uex,uexx,ff,nu,gam]=setfun_lap_1d
0002 %  SETFUN_LAP_1D  Sets functions and coefficients for lap_1d, precolap_1d
0003 %
0004 %    [uex,uexx,ff,nu,gam]=setfun_lap_1d
0005 %
0006 % Output: uex =@(x)[....] function handle to the expression of exact
0007 %               solution
0008 %         uexx =@(x)[....] function handle to the expression of the first
0009 %               derivative of the exact solution
0010 %         ff =@(x)[....] function handle to the expression of function
0011 %              at right hand side
0012 %         nu = viscosity coefficient (constant>0)
0013 %         gam = coefficient of zero-order term (constant >=0)
0014 %
0015  
0016 %   Written by Paola Gervasio
0017 %   $Date: 2007/04/01$
0018 
0019 syms  x
0020 nu=1;gam=0;
0021 Uex=cos((1+x)*pi*3).*sin((0.5+x)*pi/5)+sin(pi/10); % exact solution
0022 Uexx=diff(Uex,x); % first derivative of exact solution
0023 Ff=(gam*(Uex)-diff(nu*(Uexx))); % right hand side
0024 %Ff=1+0*x;
0025 
0026 uex=vectorize(char(Uex));
0027 uexx=vectorize(char(Uexx));
0028 ff=vectorize(char(Ff));
0029 
0030 uex=@(x)[eval(uex)];
0031 uexx=@(x)[eval(uexx)];
0032 ff=@(x)[eval(ff)];
0033

Generated on Fri 21-Sep-2007 10:07:00 by m2html © 2003