Home > Src > Elliptic_2d > Schwarz > call_schwarz_2d.m

call_schwarz_2d

PURPOSE ^

CALL_SCHWARZ_2D Script for pre and post processing schwarz_2d.

SYNOPSIS ^

This is a script file.

DESCRIPTION ^

 CALL_SCHWARZ_2D Script for pre and post processing schwarz_2d.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 % CALL_SCHWARZ_2D Script for pre and post processing schwarz_2d.
0002 %
0003 
0004 %   Written by Paola Gervasio
0005 %   $Date: 2007/04/01$
0006 
0007 [uex,uex_x,uex_y,ff,g,h,gam]=setfun_lap_2d;  % -Delta u + gam *u =f
0008 %
0009 xa=-1;xb=1;   % Omega=(xa,xb) x (ya,yb)
0010 ya=-1;yb=1;
0011 cb='dddd'; % schwarz_2d works only if cb='dddd';
0012     param=zeros(20,1);  
0013     param(1)=2;    % 1:P=I, 2: P=P_as
0014     param(2)=2; % number of levels
0015     param(3)=2;   % 1=PCG, 2=PBicgstab
0016     param(4)=1;   % computes errors
0017 fprintf('nx   nex   iter      res         err_inf          err_h1       err_l2\n')
0018 for nex=4;
0019     ney=nex;  % decomposition of Omega in nex x ney rectangles
0020 for nx=4:16  % polynomial degree in each element along x-direction
0021     ny=nx;     % polynomial degree in each element along y-direction
0022     param(5)=1;    % 0 exact norms, 1= discrete norms
0023     param(6)=nx*2;   % nq for LG quadrature formulas
0024     param(7)=1;    % 0 =absolute errors, 1=relative errors
0025     param(8)=0;    % 0 no plot, 1 mesh, 2 surf, 3 contour
0026     param(9)=(nx+1); % nodes used to plot numerical solution
0027     param(10)=1.d-12; % tolerance for pcg
0028     param(11)=400; % maxit for pcg
0029     gammax=[]; gammay=[]; % if SEM decomposition is not uniform:
0030                           % they are the arrays with intefaces positions
0031 
0032    % call schur
0033 
0034 [xy,un,param]=schwarz_2d(xa,xb,ya,yb,gam,...
0035           uex,uex_x,uex_y,ff,g,h,cb,nex,nx,ney,ny,gammax,gammay,param);
0036  
0037 % output
0038 fprintf('%d    %d     %d    %11.4e      %11.4e     %11.4e %11.4e \n',...
0039     nx,nex,param(21), param(22), param(25),param(26),param(27))
0040 
0041 end
0042 end

Generated on Fri 21-Sep-2007 10:07:00 by m2html © 2003