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The mortar finite element method is a well-established method for the numerical solution of partial differential 
equations on domains displaying non-conforming interfaces. The method is known for its application 
in computational contact mechanics. However, its implementation remains challenging as it relies on 
geometrical projections and unconventional quadrature rules. The INTERNODES (INTERpolation for NOn-
conforming DEcompositionS) method, instead, could overcome the implementation difficulties thanks to flexible 
interpolation techniques. Moreover, it was shown to be at least as accurate as the mortar method making it 
a very promising alternative for solving problems in contact mechanics. Unfortunately, in such situations the 
method requires solving a sequence of ill-conditioned linear systems. In this paper, preconditioning techniques 
are designed and implemented for the efficient solution of those linear systems.
1. Introduction

Contact mechanics is about the interaction of bodies as they move 
close to each other. In this paper, the linear elasticity theory will be 
used to find the deformed configuration of bodies coming into con-
tact. Contrary to single-body elasticity problems, contact problems are 
intrinsically nonlinear even for the simplest linear constitutive model. 
The nonlinearity is tied to the unknown contact interface and the result-
ing inequality constraints. Contact problems are extremely challenging 
mathematically and we must emphasize that the existence and unique-
ness of a solution has only been proved in special cases. Yet, a wide 
range of computational methods has been developed to meet the in-
dustry needs. Unsurprisingly, the inequality constraints tightly bound 
computational contact mechanics with optimization. In addition, finite 
element discretizations are typically used to approximate the infinite-
dimensional variational problem. Yet again, additional challenges arise 
in the computations if compared with a single-body elasticity prob-
lem. Indeed, different bodies lead to different domains and the solution 
to the underlying partial differential equation must be coupled across 
them. This task is hindered by a priori independent discretizations of 
the bodies, which lead to nonconforming meshes at the interface. The 
underlying type of nonconformity is inherently geometric, meaning 
there may exist small gaps or overlaps between the two discrete sub-
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domains. The issue has been traditionally addressed using the mortar 
finite element method [1–3]. It is based on projection techniques for 
transferring information between the interfaces. However, this method 
is known to be difficult to implement and requires ad hoc strategies, 
for instance to ensure sufficiently accurate numerical quadrature rules 
and for the special treatment of cross-points when more than two sub-
domains meet. The INTERNODES (INTERpolation for NOn-conforming 
DEcompositionS) method [4] appears as a very promising alternative 
for solving problems in contact mechanics. It is a flexible interpolation 
based method which overcomes many of the implementation issues of 
the mortar method and was shown to be at least as accurate [5]. In 
a recent paper [6], the authors have shown that INTERNODES, like 
the Mortar method, allows to approximate the conservation of spe-
cific quantities, namely that both total force and total work generated 
by the numerical solution at the interface of the decomposition van-
ish in an optimal way when the mesh size tends to zero. Preliminary 
work in computational contact mechanics showed that the INTERN-
ODES method could be successfully applied but also revealed several 
challenges in efficiently solving the sequence of linear systems arising 
from the method [7].

In this work, we investigate preconditioning techniques for solv-
ing these linear systems. We propose an efficient preconditioner which 
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achieves a very fast convergence independently of the mesh size. The 
performance of the method relies on a single matrix factorization and 
targets medium size applications. While the method performs best for 
exact factorizations, it still performs well for inexact ones. Although 
the preconditioner can be used for much larger applications, different 
methods must be sought for solving linear systems with the precondi-
tioning matrix. Large 3D applications and related solution techniques 
are left as future work. The remainder of the paper is structured as fol-
lows. Interpolation being one of the key features of the INTERNODES 
method, Section 2 provides the necessary background. The emphasis is 
set on a specific type of interpolation based on radial basis functions. 
The section extends the work of [8] and discusses implementation as-
pects. Section 3 covers the mathematical modeling of contact problems 
in its most basic form. A linear elastic constitutive model is assumed 
for simplicity. From the strong form of the differential problem, the 
weak form is derived followed by a finite element discretization. This 
section covers the application of the INTERNODES method to contact 
problems. Section 4 gathers some of the properties of the INTERNODES 
matrix which is an essential step towards preconditioning. Section 5
presents preconditioning techniques tailored to the INTERNODES ma-
trix. Section 6 presents some numerical experiments illustrating the 
effectiveness of the developed preconditioner. Finally, Section 7 sum-
marizes our findings and discusses issues and prospects.

2. Radial basis function interpolation

Interpolation is at the heart of the INTERNODES method and dis-
tinguishes it from mortar finite element methods which are based on 
projection techniques. In the INTERNODES method, interpolation can 
be either based on Lagrange or radial basis function (RBF) interpolants. 
However, RBF interpolants are preferred for problems with geometric 
non-conformities [4] (geometric non-conformities occur when the two 
meshes are not watertight at the common interface and small holes 
and overlaps may be present), and since it is the situation encoun-
tered in contact mechanics problems, this section gives the necessary 
background on RBF. A part of the discussion extends the work in [8]
where several modifications to the classical RBF interpolation were in-
troduced. RBF interpolation is especially popular for the interpolation 
of scattered data and has found applications in particular in neural net-
works [9] and the numerical solution of partial differential equations 
[10,11]. For more details on radial basis functions, we refer the reader 
to the survey paper [12], where both globally and locally supported ra-
dial basis functions are presented with an overview of their theoretical 
properties including convergence of the interpolant to the true function 
in a neighborhood of the interpolation point.

In the first part of this section, a short introduction to RBF interpo-
lation is given and the modifications introduced in [8] are discussed. 
Necessary conditions for the modifications to be well defined were al-
ready established by the same authors. Sufficient conditions are now 
derived and implementation aspects are discussed to ensure that the 
interpolation matrices satisfy such sufficient conditions.

2.1. An introduction to radial basis function interpolation

Let Ξ = {𝝃𝑚}𝑀𝑚=1 be a set of interpolation points where some func-
tion evaluations are known. We define the global interpolant Π𝑓 (𝐱) of a 
function 𝑓 ∶ ℝ𝑑 →ℝ as

Π𝑓 (𝐱) =
𝑀∑
𝑚=1

𝛾𝑓𝑚𝜙(‖𝐱 − 𝝃𝑚‖, 𝑟),
where 𝛾𝑓𝑚 ∈ ℝ for 𝑚 = 1, … , 𝑀 are coefficients and 𝜙 is a radial basis 
function which depends on the euclidean distance ‖𝐱− 𝝃𝑚‖ from the in-
terpolation point 𝝃𝑚 and is parameterized by a radius 𝑟. Typical choices 
for radial basis functions are listed in Table 1. In the table, the defini-
tion of 𝜙 is given as a function of the normalized distance 𝛿 = ‖𝐱−𝝃𝑚‖

𝑟
, 

while (1 − 𝛿)+ = max{0, 1 − 𝛿}.
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Table 1

Common radial basis functions.

Name 𝜙

Thin-plate splines 𝛿2 ln 𝛿
Inverse multiquadratic 1

𝑟
√
𝛿2+1

Gaussian splines e−𝛿2

Wendland 𝐶2 (1 − 𝛿)4+(1 + 4𝛿)

Thin-plate splines, inverse multiquadratic and Gaussian splines are 
all globally supported whereas the Wendland 𝐶2 radial basis functions 
are locally supported. A compact support is very interesting as it leads 
to sparse interpolation matrices.

Let 𝐟𝜉 ∈ ℝ𝑀 be the vector containing function evaluations at the 
interpolation points {𝑓 (𝝃𝑚)}𝑀𝑚=1 and 𝜸𝑓 ∈ ℝ𝑀 be the interpolation co-
efficients. The interpolation conditions Π𝑓 (𝝃𝑚) = 𝑓 (𝝃𝑚) for 𝑚 = 1, … , 𝑀
lead to the linear system

Φ𝑀𝑀𝜸
𝑓 = 𝐟𝜉 ,

where Φ𝑀𝑀 ∈ℝ𝑀×𝑀 is such that (Φ𝑀𝑀 )𝑖𝑗 = 𝜙(‖𝝃𝑖 − 𝝃𝑗‖, 𝑟). The radius 
𝑟 being common to all interpolation points, the resulting coefficient ma-
trix Φ𝑀𝑀 is symmetric. In addition, for many radial basis functions of 
practical interest, Φ𝑀𝑀 is also positive definite and thus the solution 
to the linear system is unique. This is the case when using for instance 
Gaussian or inverse multiquadratic radial basis functions. This property 
is also satisfied for the Wendland 𝐶2 basis functions [13]. However, 
this is not the case for thin-plate splines, where a low degree polyno-
mial term must be added to ensure that the interpolation coefficients 
can be uniquely computed [12]. Moreover, radial basis functions that 
take only nonnegative values generate nonnegative matrices (matrices 
with only positive or zero entries).

Let Λ = {𝜻𝑛}𝑁𝑛=1 be a set of points where the interpolant is to be eval-
uated. Let 𝐟𝜁 ∈ℝ𝑁 be the vector containing the evaluations {Π𝑓 (𝜻𝑛)}𝑁𝑛=1. 
Then

𝐟𝜁 =Φ𝑁𝑀𝜸
𝑓 =Φ𝑁𝑀Φ−1

𝑀𝑀
𝐟𝜉

and Φ𝑁𝑀Φ−1
𝑀𝑀

defines an interpolation matrix. In [8] two modifica-
tions were introduced:

1. A localized radius was chosen for the radial basis functions. Thus,

(Φ𝑀𝑀 )𝑖𝑗 = 𝜙(‖𝝃𝑖 − 𝝃𝑗‖, 𝑟𝑗 ) 𝑖, 𝑗 = 1,… ,𝑀

(Φ𝑁𝑀 )𝑖𝑗 = 𝜙(‖𝜻 𝑖 − 𝝃𝑗‖, 𝑟𝑗 ) 𝑖 = 1,… ,𝑁, 𝑗 = 1,… ,𝑀.

Using a localized radius allows to take advantage of a nonuniform 
distribution of interpolation points. In regions where the density of 
points is high, the radius can be reduced without affecting much 
the accuracy and allows to spare storage for the interpolation ma-
trices. However, the localized radius unfortunately destroys the 
symmetry of the matrix Φ𝑀𝑀 and the arguments used to prove 
the positive definiteness of the matrix do not readily extend.

2. A rescaling of the radial basis functions was introduced which en-
ables the exact interpolation of constant functions. Let 𝟏𝜉 ∈ℝ𝑀 be 
a vector containing only ones. We define

𝐟𝜁 =Φ𝑁𝑀Φ−1
𝑀𝑀

𝐟𝜉 and 𝐠𝜁 =Φ𝑁𝑀Φ−1
𝑀𝑀

𝟏𝜉

and set 𝑓𝜁𝑖 =
𝑓𝜁𝑖
𝑔𝜁𝑖

𝑖 = 1, 2, … , 𝑁 . This rescaling is in fact equivalent 

to defining a new interpolant Π̄𝑓 (𝐱) =
Π𝑓 (𝐱)
Π1(𝐱)

. Thus, if Π was initially 
a polynomial function, then Π̄ is a rational function. On the alge-
braic side, the rescaling is equivalent to defining the interpolation 
matrix

𝑅𝑁𝑀 =𝐷−1 Φ𝑁𝑀Φ−1

𝑁𝑁 𝑀𝑀
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where 𝐷𝑁𝑁 = diag(𝐠𝜁 ) is a diagonal matrix formed by the compo-
nents of the vector 𝐠𝜁 . The matrix 𝑅𝑁𝑀 will be used extensively 
throughout the next sections. The numerical results presented in 
[8] showed that the rescaling greatly improved the accuracy of the 
interpolation. Yet, the rescaling is only possible if none of the com-
ponents of the vector 𝐠𝜁 is zero.

Therefore, to assert well-posedness of the interpolation, we must 
find conditions which guarantee that:

1. The matrix Φ𝑀𝑀 is invertible.
2. The vector 𝐠𝜁 does not contain a zero entry.

Clearly, a necessary condition for the second requirement is that Φ𝑁𝑀

does not contain a row of zeros. It is equivalent to ensuring that each 
evaluation point 𝜻𝑛 for 𝑛 = 1, 2, … , 𝑁 lies in the support of at least one 
basis function. In particular, the second requirement is met if all compo-
nents of 𝐠𝜁 are strictly positive. We will now find sufficient conditions 
which not only guarantee the invertibility of Φ𝑀𝑀 but also the afore-
mentioned property.

2.2. Sufficient conditions for the rescaled-localized radial basis functions to 
be well-defined

We will first find a sufficient condition for the matrix Φ𝑀𝑀 to be 
invertible. Then, we will show that the second requirement is also sat-
isfied without further assumptions for some important classes of radial 
basis functions, including Wendland 𝐶2 and Gaussian splines. One of 
the key concepts of this section is the one of (strict) diagonal domi-
nance. A matrix 𝐴 ∈ ℂ𝑛×𝑛 is said to be strictly diagonally dominant by 
rows if

|𝑎𝑖𝑖| > 𝑛∑
𝑗=1
𝑗≠𝑖

|𝑎𝑖𝑗 | 𝑖 = 1,2,… , 𝑛.

An analogous definition exists for strictly diagonally dominant matrices 
by columns. The proof of the next theorem can be found for example in 
[14].

Theorem 2.1 (Levy–Desplanques theorem). Let 𝐴 ∈ ℂ𝑛×𝑛 be a strictly diag-
onally dominant matrix by rows or columns. Then, 𝐴 is invertible.

Consequently, ensuring that Φ𝑀𝑀 is strictly diagonally dominant by 
rows is sufficient for its invertibility. Now, we are particularly interested 
in knowing something about 𝜸 =Φ−1

𝑀𝑀
𝟏𝜉 .

Theorem 2.2. Let 𝜸 be the solution of 𝐴𝜸 = 𝟏 where 𝐴 ∈ℝ𝑛×𝑛 is a nonneg-
ative strictly diagonally dominant matrix by rows with unit diagonal entries 
(𝑎𝑖𝑖 = 1 for 𝑖 = 1, … , 𝑛) and 𝟏 is the vector of all ones. Then,

0 < 𝛾𝑖 ≤ 1 𝑖 = 1,2,… , 𝑛.

Proof. We begin by proving a few useful implications. Considering the 
𝑖th equation of 𝐴𝜸 = 𝟏, we have

𝛾𝑖 +
𝑛∑

𝑗=1
𝑗≠𝑖

𝑎𝑖𝑗𝛾𝑗 = 1 𝑖 = 1,… , 𝑛. (1)

Let us investigate different cases:

• Assume that 𝛾𝑖 > 1, then, from equation (1), 𝛾𝑖
⏟⏟⏟

>1

+ 
𝑛∑

𝑗=1, 𝑗≠𝑖
𝑎𝑖𝑗 𝛾𝑗

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
<0

=

1. Thus, there exists at least one index 𝑘 ≠ 𝑖 such that 𝛾𝑘 < 0 and 
𝑎𝑖𝑘 > 0.
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• Assume that 𝛾𝑖 ≤ 0, then we deduce that 𝛾𝑖
⏟⏟⏟

≤0
+ 

𝑛∑
𝑗=1, 𝑗≠𝑖

𝑎𝑖𝑗 𝛾𝑗

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
≥1

= 1. 

Thus, there exists a 𝛾𝑘 > 1 for some index 𝑘 ≠ 𝑖. Indeed, since 𝐴 is 
nonnegative and strictly diagonally dominant by rows, even if all 
𝛾𝑗 = 1 for 𝑗 ≠ 𝑖, we would have ∑𝑛

𝑗=1
𝑗≠𝑖

𝑎𝑖𝑗𝛾𝑗 =
∑𝑛

𝑗=1
𝑗≠𝑖

𝑎𝑖𝑗 < 𝑎𝑖𝑖 = 1 which 

does not satisfy the equation. Similarly, if all 𝛾𝑗 < 1 for 𝑗 ≠ 𝑖, we 
still have ∑𝑛

𝑗=1
𝑗≠𝑖

𝑎𝑖𝑗 𝛾𝑗 < 1. Hence, there exists at least one index 𝑘 ≠ 𝑖

such that 𝛾𝑘 > 1.

To summarize, we have the following implications:

• 𝛾𝑖 > 1 ⟹ ∃𝛾𝑘 < 0 𝑘 ≠ 𝑖

• 𝛾𝑖 ≤ 0 ⟹ ∃𝛾𝑘 > 1 𝑘 ≠ 𝑖, from the first point we deduce that ∃𝛾𝑙 <
0 𝑙 ≠ 𝑘.

These implications form a circle. We will now prove that having a 𝛾𝑖 > 1
is in fact impossible, and therefore 𝛾𝑖 ∈ (0, 1] for 𝑖 = 1, … , 𝑛.

Let 𝑖 and 𝑘 be two indices such that 𝛾𝑖 = max𝑗 𝛾𝑗 and 𝛾𝑘 = min𝑗 𝛾𝑗 . 
Assuming that ∃𝛾𝑗 > 1 implies that 𝛾𝑖 = 1 + 𝑑 with 𝑑 > 0 since it is the 
maximum. Then, from equation (1)

−
𝑛∑

𝑗=1
𝑗≠𝑖

𝑎𝑖𝑗 𝛾𝑗 = 𝑑.

Since 𝛾𝑖 > 1, from our previous findings there exists a 𝛾𝑗 < 0. Thus, 𝛾𝑘 < 0
since it is the minimum. Now, let us remark that

𝑑 = −
𝑛∑

𝑗=1
𝑗≠𝑖

𝑎𝑖𝑗 𝛾𝑗 ≤ −𝛾𝑘
𝑛∑

𝑗=1
𝑗≠𝑖

𝑎𝑖𝑗 < −𝛾𝑘,

where again we have used the assumption that 𝐴 is strictly diagonally 
dominant by rows. Thus, 𝛾𝑖 < 1 − 𝛾𝑘. Now considering equation 𝑘 of the 
linear system 𝐴𝜸 = 𝟏, we have

𝛾𝑘 +
𝑛∑

𝑗=1
𝑗≠𝑘

𝑎𝑘𝑗𝛾𝑗 = 1,

thus,

1 − 𝛾𝑘 =
𝑛∑

𝑗=1
𝑗≠𝑘

𝑎𝑘𝑗𝛾𝑗 ≤ 𝛾𝑖

𝑛∑
𝑗=1
𝑗≠𝑘

𝑎𝑘𝑗 < 𝛾𝑖

and 𝛾𝑖 > 1 − 𝛾𝑘 which is a contradiction. Hence, 𝛾𝑖 > 1 is impossible. 
Since assuming the existence of a 𝛾𝑘 ≤ 0 leads to the existence of a 
𝛾𝑖 > 1, having a 𝛾𝑘 ≤ 0 is also impossible. Therefore, 𝛾𝑖 ∈ (0, 1] for 𝑖 =
1, … , 𝑛. □

The additional assumptions of nonnegativity with unit diagonal en-
tries are not limiting, as they are satisfied in particular by Wendland 𝐶2, 
and Gaussian splines. Let us summarize the main results of this section. 
Provided the following conditions are satisfied:

C1 Φ𝑁𝑀 does not contain a row of zeros,
C2 Φ𝑀𝑀 is strictly diagonally dominant by rows,
C3 (a) Φ𝑀𝑀 is nonnegative with unit diagonal,

(b) Φ𝑁𝑀 is nonnegative,

then the matrix Φ𝑀𝑀 is invertible and 𝐠𝜁 = Φ𝑁𝑀Φ−1
𝑀𝑀

𝟏𝜉 > 0 compo-
nent-wise.
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2.3. The choice of the radius

We will now discuss how to ensure that the constructed matrix Φ𝑀𝑀

is strictly diagonally dominant by rows while restricting the discus-
sion to the compactly supported Wendland 𝐶2 radial basis functions. In 
[8], different choices of RBF were considered, but the rescaled-localized 
Wendland 𝐶2 radial basis functions were the most promising because 
of their good interpolation accuracy while being only locally supported. 
Moreover, the numerical experiments reported in [8] revealed that the 
condition number of Φ𝑀𝑀 grew very slowly with the size of the inter-
polation problem. Since matrix-vector products with the interpolation 
matrix 𝑅𝑁𝑀 require solving a linear system with Φ𝑀𝑀 , a small condi-
tion number for this matrix is desirable. We recall that the Wendland 
𝐶2 radial basis functions are defined as 𝜙(𝛿) = (1 − 𝛿)4+(1 +4𝛿). Note that 
this definition suggests 𝜙(𝛿) decays extremely fast as 𝛿 grows.

We must investigate how to enforce conditions C1 and C2. In fact, 
for computational reasons, we will enforce a stronger condition (than 
C1) on Φ𝑁𝑀 : any of its nonzero entries must be safely away from zero. 
This requirement is set to avoid dividing by a very small number (po-
tentially even smaller than machine precision). However, it was shown 
in [15] that the entries of 𝜸 could be arbitrarily close to zero. Thus, 
the condition on the entries of Φ𝑁𝑀 is not enough: we could poten-
tially encounter the situation where the only nonzero in a row of Φ𝑁𝑀

multiplies an entry of 𝜸 = Φ−1
𝑀𝑀

𝟏𝜉 which is 𝜖 away from zero. Fortu-
nately, this situation is unlikely in practice. For any 𝑗 = 1, … , 𝑀 , let 𝑟𝑗
denote the radius of the basis function centered at 𝝃𝑗 . We will enforce 
the following conditions:

∃𝑐 ∈ (0,1)∶ ∀𝑗 = 1,… ,𝑀 ‖𝝃𝑖 − 𝝃𝑗‖2 ≥ 𝑐𝑟𝑗 for any 𝑖 ≠ 𝑗, (2)

∃𝐶 ∈ (𝑐,1)∶ ∀𝑖 = 1,… ,𝑁 ∃𝑗 ∶ ‖𝜻 𝑖 − 𝝃𝑗‖2 ≤ 𝐶𝑟𝑗 . (3)

Condition (2) prevents quick loss of diagonal dominance of Φ𝑀𝑀 . In-
deed, if two distinct points 𝝃𝑖 and 𝝃𝑗 are too close to each other (relative 
to the radius chosen), then 𝜙(‖𝝃𝑖 − 𝝃𝑗‖, 𝑟𝑗 ) ≈ 𝜙(0, 𝑟𝑗 ) = 1 and diagonal 
dominance will be quickly lost. Condition (2) alone is critical and pre-
vents us from choosing a too large radius. On the other hand, condition 
(3) avoids having a single nonzero entry in a row of Φ𝑁𝑀 which is too 
close to zero. Condition (3) is equivalent to stating that any point 𝜻 𝑖 is 
well within the support of at least one interpolation point 𝝃𝑗 . In other 
words, it is safely away from the boundary of the support. If this con-
dition is not met, the point 𝜻 𝑖 will be considered isolated and removed 
from the set of evaluation points. A feasible situation is illustrated in 
Fig. 1. From the figure, the number of nonzeros in the 𝑗th column of 
Φ𝑀𝑀 and Φ𝑁𝑀 can be deduced: they are the number of points 𝝃𝑖 for 
𝑖 = 1, … , 𝑀 and 𝜻 𝑖 for 𝑖 = 1, … , 𝑁 , respectively, in the support of 𝝃𝑗 . 
Both are equal to 3 in Fig. 1. However, the number of nonzeros in each 
row of Φ𝑀𝑀 and Φ𝑁𝑀 can only be deduced once all radiuses have been 
computed. More specifically, the number of nonzeros in the 𝑖th row of 
Φ𝑀𝑀 is the number of supports to which point 𝝃𝑖 belongs. Similarly, the 
number of nonzeros in the 𝑖th row of Φ𝑁𝑀 is the number of supports to 
which point 𝜻 𝑖 belongs. If the point 𝜻 𝑖 does not belong to any support, 
then the 𝑖th row of Φ𝑁𝑀 will contain only zeros and the rescaling fails. 
Such a point will also be considered isolated and removed from the set 
of evaluation points.

Thanks to condition (2), and since 𝜙 is a decreasing function of ‖𝐱‖, 
we deduce that

𝜙(‖𝝃𝑖 − 𝝃𝑗‖, 𝑟𝑗 ) ≤ (1 − 𝑐)4(1 + 4𝑐) 𝑖 ≠ 𝑗.

Let us assume that point 𝝃𝑖 belongs to the support of 𝑛 different radial 
basis functions (excluding itself). Then, there are 𝑛 nonzero off-diagonal 
elements in the 𝑖th row of Φ𝑀𝑀 . Consequently,

𝑀∑
𝑗=1

𝜙(‖𝝃𝑖 − 𝝃𝑗‖, 𝑟𝑗 ) ≤ 𝑛(1 − 𝑐)4(1 + 4𝑐).
𝑗≠𝑖
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Fig. 1. A feasible radius 𝑟𝑗 satisfying condition (2). Point 𝜻 𝑖−1 belongs indeed 
to the support of 𝝃𝑗 but ‖𝜻 𝑖−1 − 𝝃𝑗‖2 > 𝐶𝑟𝑗 . If ∄𝑘∶ ‖𝜻 𝑖−1 − 𝝃𝑘‖2 ≤ 𝐶𝑟𝑘, then the 
point 𝜁𝑖−1 will be considered isolated.

In order to enforce strict diagonal dominance by rows, we set the con-
dition

𝑛(1 − 𝑐)4(1 + 4𝑐) < 𝜙(0, 𝑟𝑖) = 1 ⟺ 𝑛 <
1

(1 − 𝑐)4(1 + 4𝑐)
. (4)

Thus, the interpolation point 𝝃𝑖 must not belong to too many different 
supports. The number of supports is controlled by the parameter 𝑐. In 
practice, it must be sufficiently greater than 0 but the range of feasible 
values depends on the dimension of the problem. In order to choose 
a suitable value of 𝑐, we can think of how many nonzeros we should 
allow in each row of Φ𝑀𝑀 . Our choice is guided by the increasing 
function 𝑓 (𝑐) = 1

(1−𝑐)4(1+4𝑐) . We must allow 𝑛 to be sufficiently large for 
feasibility purposes. In fact, 𝑛 ≥ 2 is a minimum requirement for 2D 
problems, based on the application we will consider next. Consequently, 
𝑐 must also be sufficiently large. On the other hand, choosing 𝑐 too large 
will much increase the orange area in Fig. 1 and might eventually also 
lead to an infeasible problem. In all our experiments, we chose 𝑐 =
0.5 and never encountered any problem. This implies 𝑛 ≤ 5 and Φ𝑀𝑀

will never contain more than 5 off-diagonal nonzeros per row. Thus, 
choosing the parameter 𝑐 determines 𝑛. The algorithm then proceeds 
iteratively: each radius 𝑟𝑗 is selected such that it satisfies condition (2). 
This choice is not unique. An initial guess is made for the radius. If it 
violates condition (2) (the radius is too large), 𝑟𝑗 is set to the largest 
feasible value min𝑖≠𝑗 ‖𝝃𝑖−𝝃𝑗‖2

𝑐
. Once all radii are known, the number of 

nonzero off-diagonal elements in each row of Φ𝑀𝑀 is determined. If 
any of these numbers is greater than 𝑛, the matrix Φ𝑀𝑀 may not be 
strictly diagonally dominant. In this case, the parameter 𝑐 is slightly 
increased (allowing 𝑛 to increase as well) and the process is repeated 
until the number of off-diagonal nonzeros in each row does not exceed 
𝑛.

Choosing 𝐶 is less critical and depends only on the function 𝑓 (𝐶) =
(1 − 𝐶)4(1 + 4𝐶). Any value of 𝐶 for which 𝑓 (𝐶) is safely away from 
machine precision is suitable. Thus, 𝐶 must be sufficiently smaller than 
1. In our experiments we chose 𝐶 = 0.95. Consequently, if 𝜻 𝑖 is not an 
isolated node, then there exists an index 𝑗 such that 𝜙(‖𝜻 𝑖 − 𝝃𝑗‖, 𝑟𝑗 ) ≥
3 × 10−5 thanks to inequality (3). The values for the parameters 𝑐 and 
𝐶 mentioned here are only indicative. In our experiments, good results 
were obtained over a relatively large range of values.

The discussion held so far shows that the conditions C1 and C2 
which are enforced on the matrices Φ𝑁𝑀 and Φ𝑀𝑀 , respectively, are 
controlled by the radii of the radial basis functions only. Thus, the ma-
trices Φ𝑁𝑀 and Φ𝑀𝑀 which are subsequently assembled satisfy the 
conditions by construction.
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Fig. 2. Contact problem between two deformable bodies.

3. The INTERNODES method for contact problems

The mathematical description of contact problems has been treated 
in several references. For an in-depth discussion of the functional anal-
ysis, we refer the reader to the mathematical literature such as in 
[16,17]. A discussion related to computational and implementation as-
pects can be found in [18]. The description we provide in this section is 
neither complete nor rigorous. Instead, we wish to illustrate the applica-
tion of the INTERNODES method for the numerical solution of contact 
problems. The three most popular solution methods in computational 
contact mechanics are the penalty method, Lagrange multiplier method 
and augmented Lagrangian method. The method presented in this chap-
ter is a Lagrange multiplier method.

In this section, we will first consider the continuous description of 
a contact problem between two deformable elastic bodies. We will as-
sume a linear elastic constitutive model in static loading conditions. 
The following three subsections are a formalization of the work of [7]. 
The strong form is first stated and the weak form is then established. 
The finite element discretization is covered and combined with the IN-
TERNODES method: it leads to an algebraic system of equations and the 
associated matrix will be referred to as the INTERNODES matrix. The 
nonlinear nature of the contact constraints requires in fact solving a se-
quence of such linear systems. Their efficient solution will be the focus 
of the upcoming sections.

3.1. Strong form

The strong (or differential) form of the problem stems from the bal-
ance of momentum and Newton’s laws of motion. We must define the 
mathematical properties of the quantities involved. Let Ω𝑘, 𝑘 = 1, 2, be 
an open connected domain of ℝ𝑑 , 𝑑 = 2, 3, with Lipschitz boundary such 
that Ω1 ∩ Ω2 = ∅. Let Γ𝑘

𝐷
, Γ𝑘

𝑁
and Γ𝑘

𝐶
form a partition of the bound-

ary 𝜕Ω𝑘. The contact interface Γ𝐶 is common to both bodies. Thus, 
Γ1
𝐶
= Γ2

𝐶
= Γ𝐶 . Γ𝑘

𝐷
and Γ𝑘

𝑁
are the Dirichlet and the Neumann exter-

nal boundaries of Ω𝑘, respectively. We write 𝜕Ω𝑘 = Γ𝑘
𝐷
∪ Γ𝑘

𝑁
∪ Γ𝑘

𝐶
with 

Γ𝑘
𝐷
∩ Γ𝑘

𝑁
= ∅, Γ𝑘

𝐷
∩ Γ𝑘

𝐶
= ∅ and Γ𝑘

𝑁
∩ Γ𝑘

𝐶
= ∅. An illustration is provided 

in Fig. 2. In this section, we will make all the necessary assumptions on 
the regularity of the data for the problem to be well-posed.

Our goal is to approximate the displacement field 𝐮𝑘 of each body 
𝑘 = 1, 2. We will formulate the equilibrium equations for a given body 
𝑘. The strong form of the problem reads: find 𝐮𝑘 ∶ Ω𝑘 →ℝ𝑑 for 𝑘 = 1, 2, 
such that
52
⎧⎪⎪⎨⎪⎪⎩

−div(𝜎(𝐮𝑘)) = 𝐟𝑘(𝐱) in Ω𝑘 (a)
𝐮𝑘(𝐱) = 𝐠𝑘(𝐱) on Γ𝑘

𝐷
(b)

𝜎(𝐮𝑘)𝐧𝑘 = 𝐭𝑘(𝐱) on Γ𝑘
𝑁

(c)
𝜎(𝐮𝑘)𝐧𝑘 = 𝝀𝑘(𝐱) on Γ𝐶 (d)
𝝀𝑘(𝐱) ⋅ 𝐧𝑘 ≤ 0 on Γ𝐶 (e)

(5)

Equation (5a) is the differential equation to be solved, 𝜎 ∶ ℝ𝑑 →ℝ𝑑×𝑑 is 
the Cauchy stress tensor, and 𝐟𝑘 ∈ [𝐿2(Ω𝑘)]𝑑 is the body force acting on 
the solid (for example the gravity). Equation (5b) prescribes Dirichlet 
boundary conditions, 𝐠𝑘 is a prescribed displacement field on Γ𝑘

𝐷
. Equa-

tion (5c) prescribes Neumann boundary conditions, 𝐭𝑘 ∈ [𝐿2(Γ𝑘
𝑁
)]𝑑 are 

surface tractions prescribed on Γ𝑘
𝑁

and 𝐧𝑘 is the unit outward normal 
vector. On the contact interface Γ𝐶 , the normal vectors point in oppo-
site directions (𝐧2 = −𝐧1). Equation (5d) results from the interaction of 
the two bodies. 𝝀𝑘 is the stress vector at the contact interface and is un-
known. Inequality (5e) is one of the Hertz-Signorini-Moreau conditions 
[19] which are equivalent to the Karush-Kuhn-Tucker (KKT) conditions 
in optimization [20,21]. Physically speaking, the stress state must be 
in compression all along the contact interface. Compression is negative 
according to the sign convention used in structural mechanics.

These sets of equations must be complemented with another of the 
Hertz-Signorini-Moreau conditions. It takes the form of a compatibil-
ity condition of the displacement fields at the interface and ensures the 
coupling between the two bodies. Indeed, in the deformed configura-
tion, the current position on the contact interface must be identical. 
Thus,

𝐮1 + 𝐫1 = 𝐮2 + 𝐫2 on Γ𝐶 (6)

where 𝐫𝑘 is the position vector in the initial configuration. Furthermore, 
note that 𝝀1 and 𝝀2 are related through Newton’s third law by 𝝀2 =
−𝝀1. In linear elasticity, the stress tensor 𝜎 is a linear function of the 
infinitesimal strain tensor

𝜖(𝐮) = 1
2
(∇𝐮+∇𝐮𝑇 ),

for some displacement field 𝐮, which allows to introduce the constitu-
tive model as

𝜎(𝐮) =  ∶ 𝜖(𝐮) (7)

where  is the linear elastic fourth-order tensor, which can be simplified 
to

𝑖𝑗𝑘𝑙 = 𝜆𝛿𝑖𝑗𝛿𝑘𝑙 + 𝜇(𝛿𝑖𝑘𝛿𝑗𝑙 + 𝛿𝑖𝑙𝛿𝑗𝑘), (8)

for isotropic materials, with 𝜇, 𝜆 ≥ 0 the Lamé constants which are ma-
terial dependent (see [22] for a comprehensive introduction to constitu-
tive equations). We will restrict the discussion in this paper to materials 
which follow this law.

3.2. Weak form

The surface tractions are unknown on the boundary Γ𝑘
𝐷

. Hence, 
let us define 𝑉 𝑘 = [𝐻1(Ω𝑘)]𝑑 and choose 𝐯𝑘 ∈ 𝑉 𝑘

0 where 𝑉 𝑘
0 = {𝐯 ∈

𝑉 𝑘 ∶ 𝐯|Γ𝑘
𝐷
= 𝟎}, for 𝑘 = 1, 2, where the evaluation on the boundary must 

be understood in the sense of traces of functions in 𝑉 𝑘. Let us further-
more define the space 𝑉 𝑘

Γ𝐷
= {𝐯 ∈ 𝑉 𝑘 ∶ 𝐯|Γ𝑘

𝐷
= 𝐠𝑘} and Λ = [𝐿2(Γ𝐶 )]𝑑 . 

The weak form of (5a)–(5d) reads: find (𝐮𝑘, 𝝀𝑘) ∈ 𝑉 𝑘
Γ𝐷

× Λ for 𝑘 = 1, 2
such that

∫
Ω𝑘

𝜖(𝐮𝑘) ∶  ∶ 𝜖(𝐯𝑘) dΩ − ∫
Γ𝐶

𝝀𝑘 ⋅ 𝐯𝑘 d𝑆

= ∫
Ω𝑘

𝐟𝑘 ⋅ 𝐯𝑘 dΩ+ ∫
Γ𝑘
𝑁

𝐭𝑘 ⋅ 𝐯𝑘 d𝑆 ∀𝐯𝑘 ∈ 𝑉 𝑘
0 .

(9)

We define the bilinear forms 𝑎𝑘 ∶ 𝑉 𝑘 × 𝑉 𝑘 →ℝ and 𝑏𝑘 ∶ 𝑉 𝑘 ×Λ →ℝ
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𝑎𝑘(𝐮𝑘,𝐯𝑘) = ∫
Ω𝑘

𝜖(𝐮𝑘) ∶  ∶ 𝜖(𝐯𝑘) dΩ and

𝑏𝑘(𝐯𝑘,𝝀𝑘) = −∫
Γ𝐶

𝐯𝑘 ⋅ 𝝀𝑘 d𝑆,

and the linear functional 𝐹𝑘 ∶ 𝑉 𝑘 →ℝ

𝐹𝑘(𝐯𝑘) = ∫
Ω𝑘

𝐟𝑘 ⋅ 𝐯𝑘 dΩ+ ∫
Γ𝑘
𝑁

𝐭𝑘 ⋅ 𝐯𝑘 d𝑆.

Thus, equation (9) may be more compactly written as: find (𝐮𝑘, 𝝀𝑘) ∈
𝑉 𝑘
Γ𝐷

×Λ for 𝑘 = 1, 2 such that

𝑎𝑘(𝐮𝑘,𝐯𝑘) + 𝑏𝑘(𝐯𝑘,𝝀𝑘) = 𝐹𝑘(𝐯𝑘) ∀𝐯𝑘 ∈ 𝑉 𝑘
0 .

Now, for the compatibility conditions in equation (6), taking the inner 
product with a test function 𝐰 ∈ Λ and integrating over the contact 
interface leads to

∫
Γ𝐶

𝐮1 ⋅𝐰 d𝑆 − ∫
Γ𝐶

𝐮2 ⋅𝐰 d𝑆 = ∫
Γ𝐶

𝐫2 ⋅𝐰 d𝑆 − ∫
Γ𝐶

𝐫1 ⋅𝐰 d𝑆,

that may be compactly written as (𝐮1 − 𝐮2, 𝐰)𝐿2(Γ𝐶 ) = (𝐫2 − 𝐫1, 𝐰)𝐿2(Γ𝐶 )
where (⋅, ⋅)𝐿2(Γ𝐶 ) denotes the inner product in 𝐿2(Γ𝐶 ). To account for 
the Dirichlet boundary conditions, we write 𝐮𝑘 = 𝐮𝑘0 + 𝐬𝑘 where 𝐮𝑘0 ∈ 𝑉 𝑘

0
and 𝐬𝑘 ∈ 𝑉 𝑘 is such that 𝐬𝑘|Γ𝑘

𝐷
= 𝐠𝑘 in the sense of the trace. We may 

directly replace 𝐮𝑘 with 𝐮𝑘0 + 𝐬𝑘 and all the previous equations can now 
be combined in a single system as: look for (𝐮𝑘0 , 𝝀

𝑘) ∈ 𝑉 𝑘
0 × Λ for 𝑘 = 1, 2

such that

𝑎1(𝐮10,𝐯
1) + 𝑏1(𝐯1,𝝀1) = 𝐹1(𝐯1) − 𝑎1(𝐬1,𝐯1) ∀𝐯1 ∈ 𝑉 1

0

𝑎2(𝐮20,𝐯
2) + 𝑏2(𝐯2,𝝀2) = 𝐹2(𝐯2) − 𝑎2(𝐬2,𝐯2) ∀𝐯2 ∈ 𝑉 2

0

(𝐮10 − 𝐮20,𝐰)𝐿2(Γ𝐶 ) = (𝐫2 − 𝐫1,𝐰)𝐿2(Γ𝐶 ) ∀𝐰 ∈Λ

𝝀2 = −𝝀1.

(10)

Equations (10) form a saddle point type system which is typical from 
constrained optimization problems. The system is so named because 
the solution is a saddle point of a Lagrangian function. These equations 
are the first order conditions for a stationary point of the Lagrangian 
function. See for instance [23] for the theory of saddle point problems 
and their well-posedness. We will now derive their discrete counterpart 
obtained through the finite element method.

3.3. Finite element approximation

We will approximate problem (10) by the Galerkin approach and 
more precisely by using the finite element method. For this purpose 
we introduce a triangulation 𝜏𝑘

ℎ
of the domain Ω𝑘 for 𝑘 = 1, 2 where 

𝜏𝑘
ℎ
=
⋃𝑁𝑘

𝑖=1𝐾
𝑘
𝑖

with 𝐾𝑘
𝑖

being the finite elements and 𝑁𝑘 the number 
of elements used to approximate the domain Ω𝑘. The triangulations 
are typically nonconforming in the vicinity of the discrete contact in-
terface. The nonconformity is essentially geometric. There might exist 
small gaps or overlaps. However, 𝜏1

ℎ
and 𝜏2

ℎ
taken alone are conform-

ing. We are seeking an approximation 𝐮𝑘0,ℎ of 𝐮𝑘0 with 𝐮𝑘0,ℎ ∈ 𝑉 𝑘
0,ℎ ⊂ 𝑉 𝑘

0 . 
Similarly, we look for an approximation 𝝀𝑘

ℎ
∈ Λ𝑘

ℎ
⊂ Λ𝑘. Note that in the 

discrete problem, the interface spaces Λ1
ℎ

and Λ2
ℎ

must be distinguished. 
Moreover, we must choose in which of these two spaces the test func-
tion 𝐰ℎ belongs. This choice amounts to deciding which body should 
be the master (using the terminology of mortar methods). For the dis-
crete problem, we introduce some finite element spaces. Let 𝑋𝑘

ℎ,𝑟
be the 

space of piecewise polynomials of degree 𝑟 in each of the 𝑑 components 
with 𝑑 = 2, 3 in Ω𝑘

ℎ
, the approximation of Ω𝑘, such that

𝑋𝑘 = {𝐯ℎ ∈ [𝐶0(Ω𝑘)]𝑑 ∶ 𝐯ℎ|𝐾 ∈ [ℙ𝑟]𝑑 𝐾 ∈ 𝜏𝑘} 𝑘 = 1,2.

ℎ,𝑟 ℎ ℎ

53
Its subsets are

𝑉 𝑘
ℎ,0 = {𝐯ℎ ∈𝑋𝑘

ℎ,𝑟
∶ 𝐯ℎ|Γ𝑘

𝐷
= 𝟎}, 𝑉 𝑘

ℎ,Γ𝐷
= {𝐯ℎ ∈𝑋𝑘

ℎ,𝑟
∶ 𝐯ℎ|Γ𝑘

𝐷
= 𝐠𝑘}.

We must now introduce two intergrid transfer operators, Π12 ∶ Λ2
ℎ
→Λ1

ℎ

and Π21 ∶ Λ1
ℎ
→ Λ2

ℎ
. The distinguishing feature of the INTERNODES 

method is that they are interpolation operators (see [4,24]). In particu-
lar, due to the geometric nonconformities encountered in our problem, 
they will be based on radial basis function interpolation. The finite 
element approximation of (10), in which the coupling is achieved by 
INTERNODES, reads: find (𝐮𝑘0,ℎ, 𝝀

𝑘
ℎ
) ∈ 𝑉 𝑘

ℎ,0 × Λ𝑘
ℎ

for 𝑘 = 1, 2 such that

𝑎1(𝐮10,ℎ,𝐯
1
ℎ
) + 𝑏1(𝐯1ℎ,𝝀

1
ℎ
) = 𝐹1(𝐯1ℎ) − 𝑎1(𝐬1ℎ,𝐯

1
ℎ
) ∀𝐯1

ℎ
∈ 𝑉 1

0,ℎ

𝑎2(𝐮20,ℎ,𝐯
2
ℎ
) + 𝑏2(𝐯2ℎ,𝝀

2
ℎ
) = 𝐹2(𝐯2ℎ) − 𝑎2(𝐬2ℎ,𝐯

2
ℎ
) ∀𝐯2

ℎ
∈ 𝑉 2

0,ℎ(
𝐮10,ℎ|Γ1

𝐶
−Π12(𝐮20,ℎ|Γ2

𝐶
),𝐰ℎ

)
𝐿2(Γ1

𝐶
)

=
(
Π12(𝐫2ℎ|Γ2

𝐶
) − 𝐫1

ℎ
|Γ1

𝐶
,𝐰ℎ

)
𝐿2(Γ1

𝐶
) ∀𝐰ℎ ∈Λ1

ℎ

𝝀2
ℎ
= −Π21𝝀

1
ℎ
.

(11)

3.4. Algebraic system of equations

Since any 𝐯𝑘
ℎ

for 𝑘 = 1, 2 and 𝐰ℎ can be expressed as a linear combi-
nation of the basis functions of the respective finite dimensional spaces, 
it is enough to enforce all the equations of (11) for all basis functions 
of the appropriate spaces. Moreover, 𝐮𝑘0,ℎ and 𝝀𝑘

ℎ
can be expanded with 

respect to the Lagrange basis of the respective space as

𝐮𝑘0,ℎ(𝐱) =
∑
𝑗

𝑢𝑘𝑗𝝍
𝑘
𝑗 (𝐱), 𝝀𝑘

ℎ
(𝐱) =

∑
𝑗

𝜆𝑘𝑗𝝓
𝑘
𝑗 (𝐱),

where {𝝍𝑘
𝑗
} and {𝝓𝑘

𝑗 } are the basis of 𝑉 𝑘
0,ℎ and Λ𝑘

ℎ
, respectively. No-

tice that {𝝓𝑘
𝑗 } are the restrictions to Γ𝑘

𝐶
of the basis functions {𝝍𝑘

𝑗
}. 

Furthermore, as we have already noted, the coefficients 𝜆𝑘
𝑗

for 𝑘 = 1, 2
are related. In the discrete setting, this relation may be conveniently 
expressed using the intergrid transfer operators. These operators act 
separately on each component of a vector valued function. Therefore, 
the presentation can be restricted to a single component. By a slight 
abuse of notation, we will also denote Π21 the interpolation operator 
acting on individual components. Thus, for any component 𝑗 of the vec-
tor functions we have:

𝜆2
ℎ,𝑗

(𝐱) = −Π21𝜆
1
ℎ,𝑗

(𝐱)

= −
∑
𝑙

(Π21𝜆
1
ℎ,𝑗

)(𝐱2
𝑙
)𝜙2

𝑙
(𝐱) = −

∑
𝑙

∑
𝑖

𝜆1𝑖,𝑗 (Π21𝜙
1
𝑖 )(𝐱

2
𝑙
)𝜙2

𝑙
(𝐱),

where 𝑙 and 𝑖 denote summation indices taken over the interface nodes 
of body 2 and 1, respectively, and 𝐱2

𝑙
are the interface nodes of body 2. 

In the INTERNODES method, we need small interface mass matrices of 
the type

(𝑀𝑘)𝑖𝑗 = (𝝓𝑘
𝑗 ,𝝓

𝑘
𝑖 )𝐿2(Γ𝑘

𝐶
), 𝑘 = 1,2, (12)

where the indices 𝑖 and 𝑗 span the range of degrees of freedom on the 
interface Γ𝑘

𝐶
. After a suitable ordering of the unknowns, the interpola-

tion matrices 𝑅12 and 𝑅21 associated with the interpolation operators 
Π12 and Π21, respectively, are block diagonal with identical blocks de-
fined as

(𝑅𝑏
12)𝑖𝑗 = (Π12𝜙

2
𝑗 )(𝐱

1
𝑖 ), (𝑅𝑏

21)𝑖𝑗 = (Π21𝜙
1
𝑗 )(𝐱

2
𝑖 ), 𝑏 = 1,… , 𝑑,

for appropriate indices 𝑖 and 𝑗 taken over the interface nodes. The alge-
braic system coupled by INTERNODES reads

⎛⎜⎜⎜⎜⎜⎝

𝐾Ω1Ω1
𝐾Ω1Γ1 0 0 0

𝐾Γ1Ω1
𝐾Γ1Γ1 0 0 −𝑀1

0 0 𝐾Ω2Ω2
𝐾Ω2Γ2 0

0 0 𝐾Γ2Ω2
𝐾Γ2Γ2 𝑀2𝑅21

0 𝑀 0 −𝑀 𝑅 0

⎞⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎝

𝐮Ω1
𝐮Γ1
𝐮Ω2
𝐮Γ2
𝝀

⎞⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎝

𝐟Ω1
𝐟Γ1
𝐟Ω2
𝐟Γ2
𝐬

⎞⎟⎟⎟⎟⎟⎠
,

1 1 12
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where the unknowns are denoted with a subscript Γ𝑘 if they belong to 
the interface and with Ω𝑘 otherwise, and 𝑘 = 1, 2 refers to the subdo-
mains. The matrices 𝐾Ω𝑘Ω𝑘

, 𝐾Ω𝑘Γ𝑘 , 𝐾Γ𝑘Ω𝑘
, and 𝐾Γ𝑘Γ𝑘 , 𝑘 = 1, 2, denote 

the stiffness matrices for each subdomain, split into their interface and 
non-interface parts. The vector 𝐬 is given by 𝐬 = 𝑀1(𝑅12𝐫Γ2 − 𝐫Γ1 ) and 
𝑅12 and 𝑅21 are the interpolation matrices introduced in the previous 
section. The matrix 𝑀1 can be eliminated from the last block row as 
it is symmetric positive definite (and therefore invertible). It leads to 
solving the linear system 𝐴𝐱 = 𝐛 with

𝐴 =

⎛⎜⎜⎜⎜⎜⎝

𝐾Ω1Ω1
𝐾Ω1Γ1 0 0 0

𝐾Γ1Ω1
𝐾Γ1Γ1 0 0 −𝑀1

0 0 𝐾Ω2Ω2
𝐾Ω2Γ2 0

0 0 𝐾Γ2Ω2
𝐾Γ2Γ2 𝑀2𝑅21

0 𝐼 0 −𝑅12 0

⎞⎟⎟⎟⎟⎟⎠
,

𝐱 =

⎛⎜⎜⎜⎜⎜⎝

𝐮Ω1
𝐮Γ1
𝐮Ω2
𝐮Γ2
𝝀

⎞⎟⎟⎟⎟⎟⎠
, 𝐛 =

⎛⎜⎜⎜⎜⎜⎝

𝐟Ω1
𝐟Γ1
𝐟Ω2
𝐟Γ2
𝐝

⎞⎟⎟⎟⎟⎟⎠
,

and 𝐝 =𝑅12𝐫Γ2 − 𝐫Γ1 . The second formulation is slightly more appealing 
from a computational point of view as it avoids unnecessary matrix-
vector multiplications with the matrix 𝑀1 when solving linear systems 
iteratively. Secondly, the vector 𝐝 we recover has a direct physical 
interpretation: it measures the nodal gap in the initial configuration. 
Although we eventually chose the second formulation, the precondi-
tioning strategies we will investigate in the next sections can be easily 
adjusted for the first formulation. However, regardless of which for-
mulation is used, one should notice immediately that the sign of the 
Lagrange multipliers has not been enforced anywhere. Inequality con-
straints are a common source of nonlinearity in optimization and do 
not spare contact mechanics [16–18]. In practice, the problem is first 
relaxed by dropping the inequality constraints on the Lagrange mul-
tipliers, hence recovering a linear problem. On the discrete level, it 
translates to solving a linear system. Once this linear system is solved, 
the inequality constraints are verified. If any of the constraints are vi-
olated, the active set keeping track of the contact interface is updated 
and the related blocks in the INTERNODES matrix and the right-hand 
side are updated. This iterative procedure leads to solving a sequence 
of linear systems 𝐴(𝑛)𝐱(𝑛) = 𝐛(𝑛) for 𝑛 = 0, 1, … until the constraints are 
finally satisfied [15,7]. Techniques for solving efficiently this sequence 
of linear systems will be discussed in Section 5. Before that, some of the 
properties of the matrices involved will be discussed in the next section.

4. The INTERNODES matrix: its structure and conditioning

As we have seen, the continuous problem already has a saddle point 
structure which we recover on the discrete level. It seems therefore 
natural to preserve the structure from which the linear system stems. It 
leads to considering a 2 ×2 block structure commonly known as a saddle 
point system in the literature. Thus, we will most frequently work with 
the submatrices and subvectors of this linear system defined as follows:

𝐾 =

⎛⎜⎜⎜⎜⎝
𝐾Ω1Ω1

𝐾Ω1Γ1 0 0
𝐾Γ1Ω1

𝐾Γ1Γ1 0 0
0 0 𝐾Ω2Ω2

𝐾Ω2Γ2
0 0 𝐾Γ2Ω2

𝐾Γ2Γ2

⎞⎟⎟⎟⎟⎠
𝐮 =

⎛⎜⎜⎜⎜⎝
𝐮Ω1
𝐮Γ1
𝐮Ω2
𝐮Γ2

⎞⎟⎟⎟⎟⎠
𝐟 =

⎛⎜⎜⎜⎜⎝
𝐟Ω1
𝐟Γ1
𝐟Ω2
𝐟Γ2

⎞⎟⎟⎟⎟⎠
𝐵 =

⎛⎜⎜⎜⎜⎝
0

−𝑀1
0

𝑀2𝑅21

⎞⎟⎟⎟⎟⎠
𝐵̃ =

(
0 𝐼 0 −𝑅12

)

and we consider the linear system
54
(
𝐾 𝐵

𝐵̃ 0

)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝐴

(
𝐮
𝝀

)
⏟⏟⏟

𝐱

=
(
𝐟
𝐝

)
⏟⏟⏟

𝐛

. (13)

Let us denote 𝑛 the size of the stiffness matrix 𝐾 which represents the 
bulk of the matrix and 𝑚 the number of degrees of freedom on the 
interface of body 1, which is the number of lines of 𝐵̃ and the number 
of columns of 𝐵. Thus, 𝐾 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑚, 𝐵̃ ∈ ℝ𝑚×𝑛 with 𝑛 ≫𝑚 and 
the vectors 𝐮, 𝐟 ∈ ℝ𝑛 and 𝝀, 𝐝 ∈ℝ𝑚. The matrix 𝐴 will be referred to as 
the INTERNODES matrix.

It is important to note that contrary to single-body elasticity prob-
lems, the stiffness matrix 𝐾 is only positive semidefinite in general and 
we denote 𝑠 = dimker(𝐾), the nullity of 𝐾 . In the context of mechan-
ics, displacement fields associated to non-trivial vectors in the kernel 
of the matrix are combinations of translations and rotations. They are 
called rigid modes, as they do not generate any deformation of the body. 
Consequently, the kernel of the stiffness matrix is a small dimensional 
subspace with 𝑠 = 3 in 2D (2 translations, 1 rotation) and 𝑠 = 6 in 3D 
(3 translations, 3 rotations) at most [25]. More precisely, the stiffness 
matrix is singular if not all rigid body motions are blocked simulta-
neously for both bodies. A particular case is when Dirichlet boundary 
conditions are not prescribed on one of the bodies. More generally, if 
Dirichlet boundary conditions are allowed to be prescribed on separate 
components of the displacement vector (as is customary in structural 
mechanics), both blocks of the stiffness matrix could be singular simul-
taneously. When investigating computational methods, the structure of 
𝐾 will be entirely ignored as it depends on the numbering of the nodes 
in the mesh. We must only bear in mind that it is symmetric positive 
semidefinite.

The matrices 𝐵 and 𝐵̃ are coupling matrices linking the degrees of 
freedom on the interface. The iterative nature of the contact algorithm 
means that these matrices will change from one iteration to the next. 
Clearly the matrices 𝐵 and 𝐵̃ are very sparse. However, they contain 
small dense submatrices. It is easy to verify that both matrices have full 
rank 𝑚. Indeed, the matrix 𝐵̃ contains the identity matrix in one of its 
blocks whereas the matrix 𝐵 contains the interface mass matrix of body 
1 which, from finite element theory, is known to be symmetric positive 
definite.

Let us now return to the INTERNODES linear system (13), that is 
a nonsymmetric saddle point system. Such systems arise in an impres-
sively large collection of scientific disciplines including fluid dynamics 
[26–28], optimization [29], electromagnetism [30–32] and contact me-
chanics [33,34,3] to name just a few. Due to the numerous underlying 
applications, they have been extensively studied by the scientific com-
munity and there exists abundant literature on the topic. The survey 
paper [35] is a well-established reference in the field and highlights the 
variety of solution methods proposed. We will later rely heavily on it 
for the design of preconditioners.

Verifying the well-posedness of the discrete finite-dimensional prob-
lem amounts to verifying the invertibility of the INTERNODES matrix. 
The invertibility conditions were recalled and verified in [15]. The ver-
ifications revealed that the well-posedness of the problem depends on 
the boundary conditions prescribed.

Our eventual goal being to efficiently solve linear system (13), in-
formation about the conditioning of the INTERNODES matrix is partic-
ularly relevant. The next theorem provides an insightful lower bound 
on the spectral condition number of the INTERNODES matrix. The in-
terested reader is referred to the proof in Appendix A.

Theorem 4.1. The spectral condition number of the matrix 𝐴 in (13) satis-
fies the inequality

𝜅(𝐴) ≥max
{
𝜅𝐵(𝐾)max{1,

‖𝐵‖2
𝜎1,𝐵

,
‖𝐵̃‖2
𝜎1,𝐵

}, 𝜅𝐵̃(𝐾)max{1,
‖𝐵‖2
𝜎1,𝐵̃

,
‖𝐵̃‖2
𝜎1,𝐵̃

}
}

where



Y. Voet, G. Anciaux, S. Deparis et al. Computers and Mathematics with Applications 127 (2022) 48–64
𝜎1,𝐵 = max‖𝐱‖2=1
𝐱∈ker(𝐵𝑇 )

‖𝐾𝐱‖2 𝜎𝑛,𝐵 = min‖𝐱‖2=1
𝐱∈ker(𝐵𝑇 )

‖𝐾𝐱‖2 𝜅𝐵(𝐾) =
𝜎1,𝐵

𝜎𝑛,𝐵

𝜎1,𝐵̃ = max‖𝐱‖2=1
𝐱∈ker(𝐵̃)

‖𝐾𝐱‖2 𝜎𝑛,𝐵̃ = min‖𝐱‖2=1
𝐱∈ker(𝐵̃)

‖𝐾𝐱‖2 𝜅𝐵̃(𝐾) =
𝜎1,𝐵̃

𝜎𝑛,𝐵̃
.

Several important observations stem from this theorem. First of all, 
it was shown in [36], Proposition 2.1 that for 𝐴 to be invertible, we have 
necessarily ker(𝐾) ∩ ker(𝐵̃) = {𝟎} and ker(𝐾) ∩ ker(𝐵𝑇 ) = {𝟎}. Thus, nei-
ther 𝜎𝑛,𝐵̃ , nor 𝜎𝑛,𝐵 can be zero. However, the closest these subspaces are 
in some sense, the smaller 𝜎𝑛,𝐵̃ and 𝜎𝑛,𝐵 could be and thus the larger the 
condition number of 𝐴. Experimentally, we found out that 𝜅𝐵(𝐾) and 
𝜅𝐵̃(𝐾) behaved like 𝑂(ℎ−2) for our application, where ℎ is the mesh size. 
According to the theorem, this condition number is amplified if ‖𝐵‖2 or ‖𝐵̃‖2 are large. We indeed experimentally encountered this situation if 
the quality of the interpolation was not good enough. This finding is a 
clear motivation for preconditioning: not only does the condition num-
ber grow like ℎ−2 but it may even be amplified if the interpolation is 
defective.

5. Preconditioning techniques

We now turn to the iterative resolution of the INTERNODES system 
(13). Experimentally, the iterative condition number of the INTERN-
ODES matrix (that is (𝐴) = max𝑖 |𝜆𝑖(𝐴)|∕ min𝑖 |𝜆𝑖(𝐴)|, where 𝜆𝑖(𝐴) are 
the eigenvalues of 𝐴) does not behave very differently from the one 
for the standard Poisson problem. The usual ℎ−2 growth of the iterative 
condition number with the mesh size ℎ was experienced even for very 
different applications [4,7]. This property depends on the differential 
operator and can be expected from second order unbounded operators. 
Although the iterative condition number alone cannot fully describe the 
behavior of iterative methods in the nonnormal case, we can still expect 
the number of iterations to increase with the condition number. Precon-
ditioning techniques are used to keep a small iteration count despite the 
growing size of the problem. In this section, a preconditioner for the IN-
TERNODES matrix 𝐴 is proposed and theoretical properties related to 
the eigenvalues of the preconditioned matrix are proved. The quality 
of the preconditioner will be shown to depend on a parameter which 
must be chosen suitably, according to some theoretical results presented 
thereafter. The resolution of linear systems with this preconditioner is 
then described with an algorithm.

5.1. Rescaling

The first issue we are facing for the iterative resolution of the IN-
TERNODES system (13) is linked to the different physical nature of the 
unknowns in the solution vector 𝐱. It combines the displacement vector 
𝐮 and the Lagrange multipliers 𝝀. These quantities may be numerically 
different by several orders of magnitude. This difference carries over to 
the different blocks of the INTERNODES matrix. The entries of the stiff-
ness matrix 𝐾 are extremely large in comparison to those of 𝐵 and 𝐵̃
and this difference is responsible for much of the ill-conditioning of the 
matrix. We must therefore proceed with a rescaling. In effect, it will 
lead to a solution vector 𝐱 with all entries having the same units. A 
simple and yet very efficient rescaling is given by(
𝜁−1𝐾 𝐵

𝐵̃ 0

)(
𝐮

𝜁−1𝝀

)
=
(
𝜁−1𝐟
𝐝

)
.

It simply consists in dividing the entire first block row by a scaling 
parameter 𝜁 > 0 and performing a change of variables. We redefine 
𝐾 ← 𝜁−1𝐾 , 𝝀← 𝜁−1𝝀 and 𝐟 ← 𝜁−1𝐟 . The scaling parameter 𝜁 must be 
chosen according to material properties. The most prominent material 
parameter, which generates much of the ill-conditioning is the elastic 
modulus 𝐸, which suggests to set 𝜁 = 𝐸 in case of a homogeneous ma-
terial.
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In the following, we will refer to the INTERNODES matrix as being 
the rescaled matrix. Now, the residual norm for the rescaled system ‖𝐫𝑟‖2 behaves almost like a shift of the unpreconditioned residual norm. 
We have

‖𝐫‖22 = ‖𝐟 − (𝐾𝐮+𝐵𝝀)‖22
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟‖𝐫1‖22

+‖𝐝− 𝐵̃𝐮‖22
⏟⏞⏞⏞⏟⏞⏞⏞⏟‖𝐫2‖22

,

‖𝐫𝑟‖22 = 1
𝜁2

‖𝐟 − (𝐾𝐮+𝐵𝝀)‖22
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟‖𝐫1,𝑟‖22

+‖𝐝− 𝐵̃𝐮‖22
⏟⏞⏞⏞⏟⏞⏞⏞⏟‖𝐫2,𝑟‖22

with ‖𝐫1‖2 ≫ ‖𝐫2‖2 but ‖𝐫1,𝑟‖2 ≈ ‖𝐫2,𝑟‖2. The components of the residual 
vector for the rescaled system have the same units. It can be under-
stood as a form of normalization designed to wipe out the effect of 
material parameters. It allows us to conveniently choose a tolerance for 
the stopping criterion of an iterative scheme independently of material 
parameters.

5.2. Spectral properties of the preconditioned matrix

The abundant literature on saddle point systems (see for instance 
[35–37,27]) provides us with several possibilities for preconditioning 
the INTERNODES matrix. Let us recall that 𝐾 ∈ℝ𝑛×𝑛 is symmetric pos-
itive semidefinite and 𝐵 ∈ℝ𝑛×𝑚 and 𝐵̃ ∈ℝ𝑚×𝑛 with rank(𝐵) = rank(𝐵̃) =
𝑚. Special attention must be paid to the properties of the different 
blocks of the system. In our case, we are seeking a preconditioner for a 
saddle point system with a singular (1, 1) block. For this reason, many 
preconditioning strategies based on Schur complements (requiring an 
invertible (1, 1) block) do not apply. On the contrary, techniques based 
on augmenting the (1, 1) block by adding a low rank term are most ap-
propriate when facing a singular (1, 1) block. These techniques lead to 
the large class of augmented Lagrangian preconditioners. The precondi-
tioner we propose is a slight modification of an augmented Lagrangian 
preconditioner proposed in [38] and based on earlier results from [36]. 
In [38], the author proposed a preconditioner of the form

𝑀 =
(
𝐾 +𝐵𝑊 −1𝐵̃ 𝑘𝐵

0 −𝑊

)
where 𝑘 ∈ ℝ is a scalar parameter, 𝑊 ∈ ℝ𝑚×𝑚 is an invertible weight 
matrix and we assume 𝐾 + 𝐵𝑊 −1𝐵̃ is invertible. In [38], the author 
proved theoretical properties related to the clustering of the eigenvalues 
of the preconditioned system. Here, we shall consider a generalization 
of the preconditioner of [38] that consists in adding scalar parameters 
𝛼, 𝛽, 𝛾 ∈ℝ ⧵ {0}. We therefore consider

𝑀 =
(
𝐾 + 𝛼𝐵𝑊 −1𝐵̃ −𝛽𝛾−1𝐵

0 −𝛾−1𝑊

)
. (14)

We will subsequently discuss suitable choices for the parameters 𝛼, 𝛽
and 𝛾 as well as for the matrix 𝑊 . The left preconditioned system reads 
𝑀−1𝐴𝐱 =𝑀−1𝐛. Studying the eigenvalues of the preconditioned matrix 
𝑀−1𝐴 amounts to studying the eigenvalues of the generalized eigen-
value problem 𝐴𝐯 = 𝜆𝑀𝐯, that is(
𝐾 𝐵

𝐵̃ 0

)(
𝐮
𝐩

)
= 𝜆

(
𝐾 + 𝛼𝐵𝑊 −1𝐵̃ −𝛽𝛾−1𝐵

0 −𝛾−1𝑊

)(
𝐮
𝐩

)
. (15)

The second equation in (15) yields 𝐩 = −𝛾𝜆−1𝑊 −1𝐵̃𝐮. (Obviously, 𝜆 ≠ 0, 
otherwise the preconditioned matrix 𝑀−1𝐴 would be singular.) After 
substituting back in the first equation and regrouping the terms we ob-
tain

𝜆(𝜆− 1)𝐾𝐮+ (𝛼𝜆2 + 𝛽𝜆+ 𝛾)𝐵𝑊 −1𝐵̃𝐮 = 𝟎. (16)

Three different cases must be analyzed.
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• If 𝐮 ∈ ker(𝐵̃), then equation (16) reduces to 𝜆(𝜆 − 1)𝐾𝐮 = 𝟎. Since 
𝐾𝐮 ≠ 𝟎, then 𝜆 = 1 is an eigenvalue of algebraic multiplicity 
dimker(𝐵̃) = 𝑛 −𝑚.

• If 𝐮 ∈ ker(𝐾), equation (16) reduces to (𝛼𝜆2 + 𝛽𝜆 + 𝛾)𝐵𝑊 −1𝐵̃𝐮 = 𝟎. 
Since 𝐵𝑊 −1𝐵̃𝐮 ≠ 𝟎, then 𝛼𝜆2 + 𝛽𝜆 + 𝛾 = 0, which yields

𝜆1,2 =
−𝛽 ±

√
𝛽2 − 4𝛼𝛾
2𝛼

.

These eigenvalues have algebraic multiplicity 𝑠 each. We must still 
identify 𝑛 +𝑚 − (𝑛 −𝑚 + 2𝑠) = 2(𝑚 − 𝑠) eigenvalues. Note that if we 
set 𝛽 = −2𝛼 and 𝛾 = 𝛼, then we again obtain 𝜆1,2 = 1 which is very 
favorable, as we already have a cluster of eigenvalues located at 1.

• If 𝐮 ∉ {ker(𝐾) ∪ ker(𝐵̃)}, then both terms of equation (16) must be 
considered. After rearranging the terms, we obtain

𝐾𝐮 = 𝛼𝜆2 + 𝛽𝜆+ 𝛾

𝜆(1 − 𝜆)
𝐵𝑊 −1𝐵̃𝐮 = 𝜇𝐵𝑊 −1𝐵̃𝐮,

having denoted 𝜇 = 𝛼𝜆2+𝛽𝜆+𝛾
𝜆(1−𝜆) . This is again a generalized eigenvalue 

problem. We can express 𝜆 as a function of 𝜇 since

𝜆̂1,2 =
𝜇 − 𝛽 ±

√
(𝛽 − 𝜇)2 − 4𝛾(𝛼 + 𝜇)
2(𝛼 + 𝜇)

. (17)

In fact, if we set 𝛽 = −2𝛼 and 𝛾 = 𝛼, the expression simplifies con-
siderably as Δ = (𝛽 − 𝜇)2 − 4𝛾(𝛼 + 𝜇) = 𝜇2. Therefore, the remaining 
eigenvalues are

𝜆̂1 = 1 and 𝜆̂2 =
𝛼

𝛼 + 𝜇
.

Clearly, lim𝛼→∞ 𝜆̂2 = 1. However, in practice, any 𝛼 such that |𝛼| ≫|𝜇| will already lead to an increasingly good eigenvalue clustering. 
As a matter of fact, even if the generalized eigenvalues 𝜇 are in gen-
eral complex, when |𝛼| ≫ |𝜇|, the imaginary part of 𝜆̂2 is very small 
and this guarantees the eigenvalue clustering around 1, providing 
the good conditioning of the preconditioned matrix.

In summary, provided 𝛼 and 𝑊 are chosen suitably, the eigenvalues of 
the preconditioned matrix are 𝜆 = 1 of multiplicity 𝑛 − 𝑚 if 𝐮 ∈ ker(𝐵̃), 
𝜆 = 1 of multiplicity 2𝑠 if 𝐮 ∈ ker(𝐾), 𝜆 = 1 of multiplicity (𝑚 − 𝑠) and 
𝜆 ≈ 1 of multiplicity (𝑚 − 𝑠) if 𝐮 ∈ ℂ𝑛 ⧵ {ker(𝐾) ∪ ker(𝐵̃)}. Naturally, the 
values 𝜇 that are the generalized eigenvalues of

𝐾𝐮 = 𝜇𝐶𝐮, with 𝐶 = 𝐵𝑊 −1𝐵̃ (18)

depend on 𝑊 . We will therefore proceed in two steps: by first choos-
ing 𝑊 and characterizing 𝜇 and then choosing 𝛼 suitably. Although the 
preconditioner defined in (14) is a generalization of the preconditioner 
proposed in [38], with the choice 𝛽 = −2𝛼 and 𝛾 = 𝛼, our precondi-
tioner is equivalent to the original preconditioner proposed in [38] after 
setting 𝑘 = 2 and replacing 𝑊 by 𝛼−1𝑊 . The advantage of our precondi-
tioner consists in introducing a new weighting parameter 𝛼 that helps us 
in clustering the generalized eigenvalues 𝜆 of (15). In [38], 𝜆̂2 = (1 +𝜇)−1
and 𝑊 must be chosen such that |𝜇| is small. In our case, we highlight 
the artificial weighting parameter 𝛼 while considering a more natural 
choice for 𝑊 which will control |𝜇|. This setup will ease the presen-
tation in the upcoming sections. The main contribution of our work is 
not in proposing an entirely new preconditioner but rather making bet-
ter use of an existing one when it is applied to solve the INTERNODES 
system.

The analysis above revealed that the choices 𝛽 = −2𝛼 and 𝛾 = 𝛼 are 
quite advantageous. Moreover, we choose 𝑊 =𝑀1, the mass matrix on 
the interface Γ1

𝐶
defined in (12). Thus, our preconditioner reads

𝑀 =
(

𝐾 + 𝛼𝐵𝑀−1
1 𝐵̃ −2𝐵

0 𝛼−1𝑀−1
1

)
. (19)

In the next subsections we are going to bound the generalized eigenval-
ues 𝜇, this will help us in setting the parameter 𝛼 to design the most 
efficient preconditioner 𝑀 for the INTERNODES matrix 𝐴.
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5.3. Sign of the generalized eigenvalues 𝜇

There are only 2(𝑚 − 𝑠) non-trivial eigenvalues 𝜇 of problem (18) as-
sociated to eigenvectors in the subspace  =ℂ𝑛 ⧵ {ker(𝐾) ∪ ker(𝐵̃)}. All 
the other eigenvalues 𝜇 are either zero or infinity and lead to eigen-
values 𝜆 = 1. The first issue we must resolve is related to the sign of 
the real and/or imaginary parts of 𝜇. This information is valuable to 
avoid some unfortunate situations. For example, assuming 𝜇 is real and 
𝛼 is chosen such that |𝛼| ≈ |𝜇| but sign(𝛼) = − sign(𝜇), then, computing 
𝛼+𝜇 would lead to cancellation and this quantity could get dangerously 
close to zero. Since it appears at the denominator in equation (17), the 
eigenvalues of the preconditioned matrix could increase tremendously. 
Numerical experiments confirmed that such an event could have disas-
trous consequences for the preconditioner. We could safely avoid this 
situation by knowing the sign of 𝜇. Let us consider the generalized 
eigenvalue problem

𝐾𝐮 = 𝜇𝐶𝐮 𝐮 ∈ (20)

with 𝐶 =𝐵𝑀−1
1 𝐵̃. We define the generalized Rayleigh quotient

𝑞(𝐮) = 𝐮∗𝐾𝐮
𝐮∗𝐶𝐮

𝐮 ∈  =ℂ𝑛 ⧵ {ker(𝐾) ∪ ker(𝐵𝑇 ) ∪ ker(𝐵̃)}.

The subspace over which 𝐮 is taken must be further restricted with 
respect to  when defining the Rayleigh quotient, indeed, if 𝐮 ∈ ℝ𝑛

and 𝐮 ∈ ker(𝐵𝑇 ), then the denominator vanishes. We then consider the 
field of values

 =
{
𝑞(𝐮)∶ 𝐮 ∈ }.

Clearly, the numerator of 𝑞(𝐮) is positive for all 𝐮 ∈  . Only the de-
nominator must be analyzed. The matrix 𝐶 is expressed as 𝐶 = −𝑈1𝑈

𝑇
2 , 

where we have defined

𝑈1 = −𝐵𝑀−1
1 =

⎛⎜⎜⎜⎜⎝
0
𝐼𝑚
0
𝑄1

⎞⎟⎟⎟⎟⎠
, 𝑈2 = 𝐵̃𝑇 =

⎛⎜⎜⎜⎜⎝
0
𝐼𝑚
0
𝑄2

⎞⎟⎟⎟⎟⎠
, (21)

with the matrices 𝑄1 = −𝑀2𝑅21𝑀
−1
1 and 𝑄2 = −𝑅𝑇

12. Moreover,

𝐮∗𝐶𝐮 = −(𝑈𝑇
1 𝐮)

∗(𝑈𝑇
2 𝐮) = −(𝐮Γ1 +𝑄𝑇

1 𝐮Γ2 )
∗(𝐮Γ1 +𝑄𝑇

2 𝐮Γ2 ) = −𝐲∗1𝐲2,

with 𝐲1 = 𝐮Γ1 +𝑄𝑇
1 𝐮Γ2 and 𝐲2 = 𝐮Γ1 +𝑄𝑇

2 𝐮Γ2 . Assuming the vector 𝐮 has 
real components, 𝐮𝑇 𝐶𝐮 would be positive only if the vectors 𝐲1 and 
𝐲2 would be pointing in two very different directions. This can only 
happen if the matrices 𝑄1 and 𝑄2 are very different in some sense. This 
situation seems highly unlikely provided the interpolation is accurate 
enough. Therefore, in the general case, we can expect the eigenvalues 
𝜇 to have negative real part. In fact, an important result may be stated 
for the conforming case.

Lemma 5.1. For a conforming mesh, the matrix 𝐶 is symmetric negative 
semidefinite and the eigenvalues 𝜇 of interest are all strictly negative.

Proof. In the conforming case, 𝑀1 = 𝑀2 and 𝑅12 = 𝑅21 = 𝐼 and one 
can easily verify that ker(𝐵̃) = ker(𝐵𝑇 ) such that the subspaces  and 
 coincide. Moreover, 𝐶 is obviously symmetric and 𝐲1 = 𝐲2 = 𝐲 = 𝐮Γ1 −
𝐮Γ2 . Thus, 𝐮∗𝐶𝐮 = −‖𝐲‖22 < 0 ∀𝐮 ∈  =  . Consequently,  ⊂ (−∞, 0)
and in particular all generalized eigenvalues of interest are real strictly 
negative numbers. □

After investigating the sign of 𝜇, we will now draw attention to its 
modulus.
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5.4. Bounds on the generalized eigenvalues 𝜇

In this subsection, we seek bounds on the eigenvalues 𝜇 of the gen-
eralized eigenvalue problem (20). We know that the matrix 𝐶 has rank 
𝑚, and we will assume the following ordering for its singular values

𝜎1(𝐶) ≥ 𝜎2(𝐶) ≥⋯ ≥ 𝜎𝑚(𝐶) > 𝜎𝑚+1(𝐶) =⋯𝜎𝑛(𝐶) = 0.

Denoting 𝑟 = rank(𝐾) = 𝑛 − 𝑠, we will assume the following ordering for 
the eigenvalues of 𝐾

𝜆1(𝐾) ≥ 𝜆2(𝐾) ≥⋯ ≥ 𝜆𝑟(𝐾) > 𝜆𝑟+1(𝐾) =⋯ = 𝜆𝑛(𝐾) = 0.

The next theorem provides an upper and lower bound on the modulus 
of 𝜇.

Theorem 5.1. Let 𝜇 be an eigenvalue of the generalized eigenvalue problem 
(20), then it satisfies the following bounds:

𝜆𝑟(𝐾)
𝜎1(𝐶)

≤ |𝜇| ≤ 𝜆1(𝐾)
𝜎𝑚(𝐶)

.

Proof. We define the following subspaces  = ℂ𝑛 ⧵ ker(𝐾) and  =
ℂ𝑛 ⧵ ker(𝐵̃) and let us note that  ⊆  and  ⊆ . Without loss of gen-
erality, we assume all eigenvectors have unit norm. From the eigenvalue 
problem, we have

‖𝐾𝐮‖2 = |𝜇|‖𝐶𝐮‖2.
We bound the left and right-hand sides as follows:

𝜆1(𝐾) = max
𝐯∈ℂ𝑛‖𝐯‖2=1

‖𝐾𝐯‖2 ≥ max
𝐯∈‖𝐯‖2=1

‖𝐾𝐯‖2 ≥ ‖𝐾𝐮‖2 = |𝜇|‖𝐶𝐮‖2,
𝜎𝑚(𝐶)|𝜇| = min

𝐯∈‖𝐯‖2=1
|𝜇|‖𝐶𝐯‖2 ≤ min

𝐯∈‖𝐯‖2=1
|𝜇|‖𝐶𝐯‖2 ≤ |𝜇|‖𝐶𝐮‖2,

and we obtain the upper bound

|𝜇| ≤ 𝜆1(𝐾)
𝜎𝑚(𝐶)

.

Similarly for the lower bound

𝜆𝑟(𝐾) = min
𝐯∈‖𝐯‖2=1

‖𝐾𝐯‖2 ≤ min
𝐯∈‖𝐯‖2=1

‖𝐾𝐯‖2 ≤ ‖𝐾𝐮‖2 = |𝜇|‖𝐶𝐮‖2,
𝜎1(𝐶)|𝜇| = max

𝐯∈ℂ𝑛‖𝐯‖2=1
|𝜇|‖𝐶𝐯‖2 ≥ max

𝐯∈‖𝐯‖2=1
|𝜇|‖𝐶𝐯‖2 ≥ |𝜇|‖𝐶𝐮‖2,

and we obtain the lower bound

|𝜇| ≥ 𝜆𝑟(𝐾)
𝜎1(𝐶)

. □

Theorem 5.1 provides an upper bound based on which we can 
choose |𝛼|. However, it is not a very practical result. Indeed, the com-
putation of 𝜎1(𝐶) and 𝜎𝑚(𝐶) may become expensive for very large prob-
lems. Therefore, we will instead seek bounds on those quantities. Let 
us first reorder the matrix 𝐶 as a 2 × 2 block matrix such that 𝐶22, the 
(2,2) block, is the only nonzero block. For non-conforming meshes at 
the interface, 𝐶22 is expressed as

𝐶22 =
(

−𝑀1
𝑀2𝑅21

)
𝑀−1

1
(
𝐼𝑚 −𝑅12

)
= −

(
𝐼𝑚
𝑄1

)
⏟⏟⏟

𝑌1

(
𝐼𝑚 𝑄𝑇

2
)

⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑌 𝑇
2

(22)

where 𝑄1 = −𝑀2𝑅21𝑀
−1
1 and 𝑄2 = −𝑅𝑇

12. The matrices 𝑌1 and 𝑌2 are 
submatrices of the reordered factors 𝑈1 and 𝑈2, respectively, introduced 
in (21). Therefore, we already have a low-rank factorization for the 
matrix 𝐶22. We already know that 𝐶22 has rank 𝑚 and we would like to 
find an expression for its truncated singular value decomposition. For 
this purpose, we need orthonormal bases for 𝑌1 and 𝑌2. The next result, 
taken from [39], will be useful.
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Lemma 5.2. Let 𝑌 ∈ℂ𝑛×𝑚 and 𝑄 ∈ℂ(𝑛−𝑚)×𝑚 with 𝑛 ≥𝑚 be given by

𝑌 =
(
𝐼𝑚
𝑄

)
.

Then the columns of 𝑈 =
(
𝐼𝑚
𝑄

)
(𝐼𝑚 +𝑄∗𝑄)−1∕2 form an orthonormal basis 

for 𝑌 .

Proof. Clearly, the columns of 𝑈 and 𝑌 span the same subspace. The 
small matrix (𝐼𝑚 + 𝑄∗𝑄)−1∕2 is for the change of basis. Moreover, the 
columns of 𝑈 are orthonormal. Indeed, by a direct computation

𝑈∗𝑈 = (𝐼𝑚 +𝑄∗𝑄)−1∕2
(
𝐼𝑚 𝑄∗ )(𝐼𝑚

𝑄

)
(𝐼𝑚 +𝑄∗𝑄)−1∕2

= (𝐼𝑚 +𝑄∗𝑄)−1∕2(𝐼𝑚 +𝑄∗𝑄)(𝐼𝑚 +𝑄∗𝑄)−1∕2 = 𝐼𝑚. □

A direct application of the previous lemma shows that the columns 
of the matrices

𝑈 =
(

𝐼𝑚
𝑄1

)
(𝐼𝑚 +𝑄𝑇

1 𝑄1)−1∕2 = 𝑌1(𝐼𝑚 +𝑄𝑇
1 𝑄1)−1∕2 and

𝑉 =
(

𝐼𝑚
𝑄2

)
(𝐼𝑚 +𝑄𝑇

2 𝑄2)−1∕2 = 𝑌2(𝐼𝑚 +𝑄𝑇
2 𝑄2)−1∕2

are orthonormal bases for 𝑌1 and 𝑌2, respectively. By using the latter 
formulas in equation (22), we obtain

𝐶22 = −𝑈 (𝐼𝑚 +𝑄𝑇
1 𝑄1)1∕2(𝐼𝑚 +𝑄𝑇

2 𝑄2)1∕2𝑉 𝑇 .

Let us now denote 𝑍1 = (𝐼𝑚 +𝑄𝑇
1 𝑄1)1∕2 and 𝑍2 = (𝐼𝑚 +𝑄𝑇

2 𝑄2)1∕2. These 
matrices are symmetric positive definite. We are only interested in the 
singular values of 𝐶22, not in the left and right singular vectors. Clearly, 
the last expression shows that the singular values of 𝐶22 are the singular 
values of 𝑍1𝑍2. The next theorem provides bounds on those singular 
values.

Theorem 5.2. Let 𝜆1(𝑀2) and 𝜆𝑚(𝑀1) denote the largest eigenvalue of 
𝑀2 and smallest eigenvalue of 𝑀1, respectively and let 𝜎(𝐶) be a nonzero 
singular value of 𝐶 . Then, it holds

1 ≤ 𝜎(𝐶) ≤
√√√√(

1 +
𝜆21(𝑀2)
𝜆2𝑚(𝑀1)

‖𝑅21‖22)(1 + ‖𝑅12‖22).
Proof. To identify bounds on the singular values, we recall that the 
singular values of a matrix 𝐴 are the square root of the eigenvalues of 
𝐴𝑇𝐴 or 𝐴𝐴𝑇 depending on the dimensions of the matrix. Then, notice 
that for all 𝐯 ∈ℝ𝑚

𝐯𝑇 𝑍2𝑍
2
1𝑍2𝐯‖𝐯‖22 =

𝐲𝑇 𝑍2
1𝐲

𝐲𝑇 𝑍−2
2 𝐲

with 𝐲 = 𝑍2𝐯. Recalling that 𝑍1 and 𝑍2 are symmetric matrices, the 
result follows immediately:

𝜎2
𝑚(𝑍1)𝜎2

𝑚(𝑍2) =
𝜆𝑚(𝑍2

1 )

𝜆1(𝑍−2
2 )

≤ 𝐲𝑇 𝑍2
1𝐲

𝐲𝑇 𝑍−2
2 𝐲

≤ 𝜆1(𝑍2
1 )

𝜆𝑚(𝑍−2
2 )

= 𝜎2
1 (𝑍1)𝜎2

1 (𝑍2),

from which we conclude that if 𝜎(𝐶) is a nonzero singular value of 𝐶22
and therefore of 𝐶 , then

𝜎𝑚(𝑍1)𝜎𝑚(𝑍2) ≤ 𝜎(𝐶) ≤ 𝜎1(𝑍1)𝜎1(𝑍2). (23)

We do not necessarily have to compute these singular values. In fact, 
finding lower bounds on 𝜎𝑚(𝑍1) and 𝜎𝑚(𝑍2) and upper bounds on 𝜎1(𝑍1)
and 𝜎1(𝑍2) is enough for our intended applications. Since 𝐼𝑚 + 𝑄𝑇

1 𝑄1
and 𝐼𝑚 +𝑄𝑇

2 𝑄2 are symmetric positive definite, the matrix square root 
is well defined and the singular values (or eigenvalues) of 𝑍1 and 𝑍2
are expressed as



Y. Voet, G. Anciaux, S. Deparis et al. Computers and Mathematics with Applications 127 (2022) 48–64
𝜎𝑖(𝑍1) =
√

1 + 𝜆𝑖(𝑄𝑇
1 𝑄1) =

√
1 + 𝜎2

𝑖
(𝑄1) 𝑖 = 1,… ,𝑚,

𝜎𝑖(𝑍2) =
√

1 + 𝜆𝑖(𝑄𝑇
2 𝑄2) =

√
1 + 𝜎2

𝑖
(𝑄2) 𝑖 = 1,… ,𝑚,

respectively. Then, we obtain straightforwardly

1 ≤ 𝜎𝑖(𝑍1) ≤
√

1 + ‖𝑄1‖22 ≤√
1 + ‖𝑀−1

1 ‖22‖𝑀2‖22‖𝑅21‖22
=

√√√√1 +
𝜆21(𝑀2)

𝜆2𝑚(𝑀1)
‖𝑅21‖22,

1 ≤ 𝜎𝑖(𝑍2) ≤
√

1 + ‖𝑄2‖22 =√
1 + ‖𝑅12‖22,

from which we deduce lower and upper bounds on the smallest and 
largest singular values, respectively, of 𝑍1 and 𝑍2. The result of the 
theorem follows from the inequalities in (23). □

Combining Theorem 5.1 and Theorem 5.2 leads to the following 
useful result:

|𝜇| ≤ 𝜆1(𝐾)
𝜎𝑚(𝐶)

≤ 𝜆1(𝐾).

Although the analysis was not entirely trivial, the result is extremely 
simple. In addition, the upper bound may be very cheaply approximated 
using the Gershgorin circles. A much better estimate could be achieved 
with a few iterations of the Lanczos algorithm or even with the power 
method. See for instance [40] for a presentation of these methods. In 
practice, a tight upper bound is not required, which allows to use the 
cheapest available method. This result permits to choose 𝛼 for instance 
as 𝛼 = −𝑢𝐾 with 𝑢𝐾 an upper bound on 𝜆1(𝐾). We can expect this choice 
to lead to a highly performing preconditioner while at the same time 
maintaining a moderate condition number for the (1, 1) block of the 
preconditioner, which will be useful when solving linear systems with 
the preconditioner.

Interestingly, the result indicates that the preconditioner should be 
unaffected by the conditioning of the INTERNODES matrix. In partic-
ular, the criterion does not explicitly depend on the matrices 𝑄1 and 
𝑄2, which will be verified in the numerical experiments of Section 6, 
where an increased condition number by several orders of magnitude 
only leads to a very small increase of the number of iterations.

5.5. Solving linear systems with the preconditioning matrix

Now that we have a criterion for choosing 𝛼, it remains to solve 
efficiently linear systems with the preconditioning matrix defined in 
(14): that is 𝑀𝐱 = 𝐲, or equivalently(
𝐾 + 𝛼𝐵𝑀−1

1 𝐵̃ 2𝐵
0 −𝛼−1𝑀1

)(
𝐱1
𝐱2

)
=
(
𝐲1
𝐲2

)
.

Using the block-triangular structure, the second equation immediately 
yields 𝐱2 = −𝛼𝑀−1

1 𝐲2. Back-substituting in the first equation then leads 
to solving a linear system for 𝐱1

(𝐾 + 𝛼𝐵𝑀−1
1 𝐵̃)𝐱1 = 𝐲1 + 2𝛼𝐵𝑀−1

1 𝐲2 = 𝐲̃1.

Solving efficiently this linear system is the main difficulty of augmented 
Lagrangian preconditioners. Our efforts are hampered for three reasons. 
Firstly, the potential singularity of 𝐾 prevents us from using the Wood-
bury matrix identity as a starting point for designing inexact solves. 
Secondly, the low rank term 𝐵𝑀−1

1 𝐵̃ changes during the course of the 
contact algorithm. Therefore, preconditioned iterative schemes would 
require recomputing a preconditioner between the iterations of the con-
tact algorithm, which may be too expensive. The lack of symmetry 
then further adds to the computational cost of the iterative scheme. 
Thirdly, the matrix cannot be formed explicitly for very large contact 
problems. Indeed, some of the blocks of the matrices 𝐵 and 𝐵̃ con-
tain interpolation matrices and their definition involves Φ−1 , which 
𝑀𝑀

58
is completely dense. Moreover, any sparsity left in the nonzero blocks 
of 𝐵 and 𝐵̃ is destroyed when carrying out the multiplication with 
𝑀−1

1 . Designing a strategy addressing all three difficulties together is 
increasingly challenging. Solution methods for related problems can be 
found in [26,27,41] and are essentially based on multigrid methods. 
The approach we propose in this paper is well-suited for medium size 
applications. Its extension to larger applications will be discussed subse-
quently. Our strategy consists in two steps. Firstly, the stiffness matrix 
𝐾 is replaced by 𝐾̃ = 𝐾 + 𝜖𝐼𝑛 with 𝜖 > 0. Adding the term 𝜖𝐼𝑛 to 𝐾
leads to a symmetric positive definite (and therefore invertible) ma-
trix. Hence, 𝐾̃ admits a Cholesky factorization 𝐾̃ = 𝐿𝐿𝑇 where 𝐿 is a 
lower triangular matrix. The Cholesky factorization is unique for sym-
metric positive definite matrices. Our strategy then relies on exploiting 
the sparsity of the blocks 𝐵 and 𝐵̃. At the heart of our method lies the 
following theorem.

Theorem 5.3. Let the matrix 𝐾̃ + 𝛼𝐵𝑀−1
1 𝐵̃ be ordered such that

𝐾̃ + 𝛼𝐵𝑀−1
1 𝐵̃ =

(
𝐾̃11 𝐾̃12
𝐾̃21 𝐾̃22

)
− 𝛼

(
0 0
0 𝑌1𝑌

𝑇
2

)
with 𝑌1 and 𝑌2 defined in (22). Moreover, let

𝐿 =
(
𝐿11 0
𝐿21 𝐿22

)
be the Cholesky factor of 𝐾̃ and let us denote 𝐺 = 𝐼 −𝛼𝐿−1

22 𝑌1𝑌
𝑇
2 𝐿−𝑇

22 . Then, 
𝐾̃ + 𝛼𝐵𝑀−1

1 𝐵̃ admits a block 𝐿𝐷𝐿𝑇 factorization given by

𝐾̃ + 𝛼𝐵𝑀−1
1 𝐵̃ =

(
𝐿11 0
𝐿21 𝐿22

)(
𝐼 0
0 𝐺

)(
𝐿𝑇
11 𝐿𝑇

21
0 𝐿𝑇

22

)
=𝐿𝐷𝐿𝑇 .

Proof. Since 𝐾̃ =𝐿𝐿𝑇 , a simple substitution leads to

𝐾̃ + 𝛼𝐵𝑀−1
1 𝐵̃ =𝐿𝐿𝑇 + 𝛼𝐵𝑀−1

1 𝐵̃ =𝐿(𝐼 + 𝛼𝐿−1𝐵𝑀−1
1 𝐵̃𝐿−𝑇 )𝐿𝑇 .

The sparsity of the matrices 𝐵 and 𝐵̃ can be used to simplify the com-
putation of 𝐿−1𝐵𝑀−1

1 𝐵̃𝐿−𝑇 :

𝐿−1𝐵𝑀−1
1 𝐵̃𝐿−𝑇

=
(

𝐿−1
11 0

−𝐿−1
22𝐿21𝐿

−1
11 𝐿−1

22

)(
0 0
0 −𝑌1𝑌 𝑇

2

)(
𝐿−𝑇
11 −𝐿−𝑇

11 𝐿𝑇
21𝐿

−𝑇
22

0 𝐿−𝑇
22

)
=
(
0 0
0 −𝐿−1

22 𝑌1𝑌
𝑇
2 𝐿−𝑇

22

)
.

Therefore, we obtain

𝐾̃ + 𝛼𝐵𝑀−1
1 𝐵̃ =

(
𝐿11 0
𝐿21 𝐿22

)(
𝐼 0
0 𝐼 − 𝛼𝐿−1

22 𝑌1𝑌
𝑇
2 𝐿−𝑇

22

)(
𝐿𝑇
11 𝐿𝑇

21
0 𝐿𝑇

22

)
.

□

Consequently, assuming 𝐺 = 𝐼 − 𝛼𝐿−1
22 𝑌1𝑌

𝑇
2 𝐿−𝑇

22 is invertible, the in-
verse of 𝐾̃ + 𝛼𝐵𝑀−1

1 𝐵̃ admits the explicit expression

(𝐾̃ + 𝛼𝐵𝑀−1
1 𝐵̃)−1

=
(
𝐿−𝑇
11 −𝐿−𝑇

11 𝐿𝑇
21𝐿

−𝑇
22

0 𝐿−𝑇
22

)(
𝐼 0
0 𝐺−1

)(
𝐿−1
11 0

−𝐿−1
22𝐿21𝐿

−1
11 𝐿−1

22

)
=𝐿−𝑇 𝐷−1𝐿−1.

We will denote 𝑏1 and 𝑏2 the sizes of 𝐿11 and 𝐿22, respectively with 
𝑏2 ≪ 𝑏1. Consequently, solving a linear system with 𝐾̃ + 𝛼𝐵𝑀−1

1 𝐵̃ only 
requires the solution of two large triangular systems and another very 
small linear system with the matrix 𝐺. In linear elasticity without any 
remeshing, the stiffness matrix 𝐾 does not change during the iterations 
of the contact algorithm. Thus, we may conveniently compute only a 
single Cholesky factorization of 𝐾̃ and reuse it during all subsequent 
iterations of the contact algorithm for solves with the preconditioning 
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Fig. 3. Hertzian contact problems, at left the first configuration, at right the 
second one.

matrix. On the other hand, the matrix 𝐺 is completely dense. However, 
if the problem is small enough, it can be computed explicitly and di-
rect methods can be used to solve these small linear systems. It must be 
noted that the Cholesky factorization is not the only factorization pos-
sible. The proof can be easily adjusted to accommodate 𝐿𝑈 or 𝐿𝐷𝐿𝑇

factorizations of 𝐾̃ . However, the Cholesky factorization is the natural 
choice for obvious storage reasons.

For very large problems, resorting to a Cholesky factorization or 
even forming the matrix 𝐺 becomes infeasible. However, the same strat-
egy could potentially be used with only a few adjustments. First of all, 
an incomplete Cholesky factorization of 𝐾̃ can be used instead of the 
complete one. Secondly, linear systems with the small matrix G may be 
solved iteratively. However, using an incomplete Cholesky factorization 
of 𝐾̃ will surely have a negative impact on the clustering of the eigen-
values of the preconditioned matrix. Some early numerical experiments 
are reported in the next section for a quantitative assessment.

6. Numerical experiments

In this section, the quality of the preconditioner is tested on contact 
problems of increasingly large size. We will consider as benchmark the 
classic Hertzian contact problem between two elastic bodies with two 
different loading conditions.1 The considered geometry and boundary 
conditions are shown in Fig. 3.

The first body is represented in gray and the second one in white. 
Between them lies the potential contact interface Γ𝐶 represented in red. 
The first body is subjected to homogeneous Dirichlet boundary condi-
tions on its base (in blue in the figure). The only difference between our 
two configurations lies in the boundary conditions of the upper body. 
In the first configuration (Fig. 3, left), we prescribe non-homogeneous 
Dirichlet boundary conditions on its top edge. In the second configura-
tion (Fig. 3, right), a uniform traction is instead applied on this same 
edge. Therefore, the second body is only subjected to Neumann bound-
ary conditions. This will result in a singularity of the stiffness matrix 𝐾 . 
The geometry has been discretized with ℙ1 finite elements of mesh size 
ℎ. To solve the contact problem we adopt an algorithm, here referred 
to as the contact algorithm, which usually requires solving a sequence 
of linear systems and not just a single one. This algorithm calls many 
different functions that include:

1. Computing the radii of radial basis functions.

1 The code used in this work is freely available at the following address: 
https://c4science .ch /diffusion /CONTACTINTERNODES/.
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Table 2

Mesh sizes and block sizes for configuration 1.

ℎ 𝑛 𝑚

0.1 530 18
0.05 1 956 34
0.01 46 484 114
0.005 184 134 88

Table 3

Mesh sizes and block sizes for configuration 2.

ℎ 𝑛 𝑚

0.1 552 18
0.05 1 998 34
0.01 46 686 114
0.005 184 536 88

2. Assembling the interpolation matrices, interface mass matrices and 
stiffness matrix.

3. Solving the linear systems with the INTERNODES matrix.
4. Verifying the convergence of the algorithm.

The maximum number of iterations for the contact algorithm was set to 
10. Most of the time, it converged within two to three iterations with 
the exception of the run with the very small mesh size, here ℎ = 0.005. 
The mesh sizes and the corresponding block sizes of the matrix 𝐴 we 
have considered are reported in Tables 2 and 3.

The block size 𝑛 depends on the total number of unknowns, thus, 
the second configuration leads to a slightly larger 𝑛 due to the Neu-
mann boundary conditions. The block size 𝑚 is equal to the number 
of degrees of freedom on Γ1

𝐶
and changes at each iteration of the con-

tact algorithm. The values reported in Tables 2 and 3 correspond to the 
first iteration of the contact algorithm. The block size is controlled by 
radial basis function interpolation requirements and the interpolation 
matrices were constructed following the strategies presented in Sec-
tion 2. We will solve the contact problem for these two configurations 
using a right preconditioned GMRES method [42] for solving the lin-
ear systems. Figs. 4 and 5 report the decrease of the residual norm for 
configurations 1 and 2, respectively, corresponding to the first itera-
tion of the contact algorithm. In all numerical experiments, an absolute 
stopping criterion was used on the norm of the residual vector with a 
tolerance of 10−8 and a GMRES restart value of 100. The elastic modulus 
was 𝐸 = 30 × 109 Pa and the Poisson ratio was 𝜈 = 0.2. As for the value 
of 𝛼, it is computed internally with the matrix infinity-norm used to 
provide a cheap upper bound on the largest eigenvalue of the stiffness 
matrix (𝛼 = −‖𝐾‖∞). Since 𝐾 is symmetric, the matrix 1-norm yields 
the same result. For 2D problems, the largest eigenvalue of the stiffness 
matrix is independent of the mesh size [43]. Our criterion for com-
puting 𝛼 captures this feature, leading to a roughly constant numerical 
value 𝛼 = −7.5023.

Figs. 4 and 5 firstly indicate that the number of iterations needed to 
reach the prescribed tolerance is almost independent of the mesh size. 
This is an extremely precious property when using an iterative solver 
such as GMRES. As its cost increases at each iteration, the method is 
efficient only if the iteration count remains small. Secondly, the pre-
conditioner is robust: cases with singular or invertible stiffness matrices 
are handled equally well, which does not come as a surprise as our pre-
conditioner was designed to handle singular stiffness matrices. Thirdly, 
we noticed that the quality of the preconditioner was not affected by the 
geometry. More complicated case studies with several points of contact 
were also solved within a few iterations.

When the size of the matrix 𝐾̃ is very large (especially in 3D prob-
lems) the Cholesky factorization could become prohibitively expensive. 
In this case an incomplete Cholesky factorization could be used instead 
of the complete one. Although the experiments should be carried out on 
very large matrices, we report here some preliminary results on small 

https://c4science.ch/diffusion/CONTACTINTERNODES/
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Fig. 4. Residual norm for configuration 1 using a complete Cholesky factoriza-
tion.

Fig. 5. Residual norm for configuration 2 using a complete Cholesky factoriza-
tion.

matrices. We emphasize that these are early numerical results and are 
not meant to draw definite conclusions. We did not carry out an exhaus-
tive grid search of parameters of the incomplete Cholesky factorization. 
Instead, a single dropping tolerance of 10−4 is used to compute the in-
complete factorization. The results for both configurations are shown 
in Figs. 6 and 7 and the iteration counts are listed in Table 4. For 
the first configuration, using an incomplete factorization still leads to 
a very good preconditioner, however, the iteration count increases with 
the size of the matrix. For the configuration having a singular stiffness 
matrix, more serious issues are encountered: the incomplete factoriza-
tion produces nonpositive (most likely zero) pivots and consequently 
the factorization fails. This is expected since the perturbed stiffness ma-
trix, defined as 𝐾̃ =𝐾 + 𝜖𝐼𝑛 with 𝜖 = 10−8, will see the perturbation 𝜖𝐼𝑛
wiped out with a dropping tolerance of 10−4. Without it, the positive 
definiteness of 𝐾̃ is lost, the matrix becomes singular and the factor-
ization fails. An easy workaround is to increase the magnitude of the 
perturbation by choosing 𝜖 larger than the drop tolerance. For instance, 
setting 𝜖 = 10−3 instead of 10−8. While it successfully removes the issue, 
it also further degrades the quality of the preconditioner, as testified 
by the increased number of iterations needed to satisfy the stopping 
criterion for a given tolerance. Moreover, we notice that although the 
Cholesky factorization exists for every symmetric positive definite ma-
trix, the incomplete factorization may fail. More investigation is needed 
before drawing definite conclusions on the prospects of incomplete fac-
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Fig. 6. Residual norm for configuration 1 using an incomplete Cholesky factor-
ization.

Fig. 7. Residual norm for configuration 2 using an incomplete Cholesky factor-
ization.

Table 4

Iteration counts for configurations 1 and 2 using an 
incomplete Cholesky factorization.

ℎ Configuration 1 Configuration 2

0.1 7 9
0.05 8 12
0.01 20 32
0.005 37 64

torizations. We certainly do not claim incomplete factorizations are the 
best strategy. On the contrary, future work should explore possible us-
age of algebraic multigrid methods for inner solves with the matrix 
𝐾̃ + 𝛼𝐵𝑀−1

1 𝐵̃.
According to Wathen [44], the cost of solving a linear system with 

the preconditioning matrix should balance the cost of computing a 
matrix-vector multiplication with the coefficient matrix. These two cost 
components are briefly analyzed here. Since 𝑚 ≪𝑛 and due to the spar-
sity of the matrices 𝐵 and 𝐵̃, matrix-vector multiplications with the 
INTERNODES matrix 𝐴 are dominated by the sparse matrix-vector mul-
tiplications with the stiffness matrix 𝐾 . Thus, computing 𝐴𝐱 is expected 
to cost 𝑂(nzz(𝐾)) where nzz denotes the number of nonzero entries. 
The cost for solving a linear system with the preconditioning matrix 
𝑀 is dominated by the inner solve with the matrix 𝐾 + 𝛼𝐵𝑀−1𝐵̃. Our 
1
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Fig. 8. Ratio of measured computational times for an application of 𝑀−1 and 𝐴
as a function of the ratio of number of nonzero entries in 𝐿 and 𝐾 .

Table 5

Spectral condition number of 𝑄1 , 𝑄2 and 𝐴.

ℎ 𝜅(𝑄1) 𝜅(𝑄2) 𝜅(𝐴)

0.1 1.12 × 106 4.86 × 105 8.31 × 103

0.05 3.37 × 107 1.89 × 107 2.78 × 105

0.01 2.22 × 1013 1.66 × 1013 5.08 × 106

0.005 7.37 × 1014 5.49 × 1014 3.89 × 107

strategy for medium size problems relies on solving two triangular sys-
tems with the Cholesky factor 𝐿 of a perturbed stiffness matrix and one 
much smaller linear system. Thus, the expected cost is 𝑂(nzz(𝐿)). De-
spite sparse reordering strategies, nzz(𝐿) > nzz(𝐾), such that applying 
𝑀−1 is more expensive than computing matrix-vector products. Fig. 8
represents the ratio of computational times measured for an application 
of 𝑀−1 and 𝐴 as a function of the ratio of the number of nonzero en-
tries in 𝐿 and 𝐾 . This experiment reuses the same mesh sizes. In order 
to measure the application cost of 𝑀−1 independently of the number of 
iterations of the contact algorithm, the preconditioner setup time is not 
included. Then, as expected, the trend is linear if the problem is large 
enough.

Although incomplete factorizations reduce the preconditioner’s foot-
print, they also increase the iteration count and the memory consump-
tion of GMRES. For all our experiments on medium size problems, the 
higher application cost of 𝑀−1 using complete factorizations always 
paid off and largely counter-balanced the increased number of itera-
tions induced by incomplete ones.

The theoretical results of Section 5.4 indicated that our criterion for 
choosing 𝛼 did not explicitly depend on the matrices 𝑄1 and 𝑄2. We 
propose to verify it experimentally by artificially increasing the condi-
tion number of the matrices. This test case illustrates the theoretical 
findings beyond contact problems. We recall that the matrices 𝑄1 and 
𝑄2 are defined as 𝑄1 = −𝑀2𝑅21𝑀

−1
1 and 𝑄2 = −𝑅𝑇

12. The matrices 𝑅21
and 𝑅12 are replaced by increasingly ill-conditioned matrices with pre-
scribed singular values. The spectral condition number of these matrices 
and of the saddle point matrix itself is reported in Table 5 for the dif-
ferent mesh sizes.

Our criterion for choosing 𝛼 only depends on the stiffness matrix and 
is roughly constant for 2D applications. For the sake of the comparison, 
it was fixed at 𝛼 = −10 independently of the mesh size. The right-hand 
side vector was taken as the vector of all ones and the parameters of 
GMRES were kept unchanged (tolerance of 10−8 and restart of 100). The 
decrease of the residual norm is shown in Fig. 9. Despite the increased 
61
Fig. 9. Residual norm for increasingly ill-conditioned matrices 𝑄1 and 𝑄2 .

Table 6

Iteration count for the preconditioners (19) and (24).

Preconditioner None 𝐴𝑢𝑔− 𝐴𝑢𝑔+ 𝐴𝑢𝑔 𝑀𝛼+
𝑀𝛼−

Iterations 638 56 39 29 28 8

condition number by several orders of magnitude, the iteration count 
increases only very mildly, supporting the theoretical findings and the 
robustness of our criterion.

In the next experiment, we show how our tuning strategy greatly 
improves the quality of the preconditioners proposed in [36] and 
[38]. Our testing includes two original block-triangular precondition-
ers developed in [36] (called 𝐴𝑢𝑔− and 𝐴𝑢𝑔+), one block-diagonal 
preconditioner (called 𝐴𝑢𝑔) proposed by the same author and one 
block-triangular preconditioner developed in [38] (𝒜 denoted here 𝑀𝛼) 
with 𝑊 replaced by 𝛼−1𝑊 in order to highlight the importance of the 
weighting factor 𝛼. As usual, we set 𝑊 =𝑀1. They are:

𝐴𝑢𝑔− =
(
𝐾 +𝐵𝑊 −1𝐵̃ 𝐵

0 −𝑊

)
, 𝐴𝑢𝑔+ =

(
𝐾 +𝐵𝑊 −1𝐵̃ 𝐵

0 𝑊

)
,

𝐴𝑢𝑔 =
(
𝐾 +𝐵𝑊 −1𝐵̃ 0

0 𝑊

)
, 𝑀𝛼 =

(
𝐾 + 𝛼𝐵𝑊 −1𝐵̃ 2𝐵

0 −𝛼−1𝑊

)
.

(24)

Note that the preconditioners 𝐴𝑢𝑔−, 𝐴𝑢𝑔+ and 𝑀𝛼 have the same 
sparsity pattern and differ only in a few constants multiplying some 
of the blocks. For the preconditioner 𝑀𝛼 , the default parameter choice 
𝛼+ = 1 is compared to our scaling strategy with 𝛼− = −‖𝐾‖∞. Fig. 10
reports the results for an intermediate mesh size ℎ = 0.05. The mate-
rial parameters are as in the previous tests. The right preconditioned 
GMRES method was again used with a restart of 100 and a tolerance 
of 10−8. The results illustrate the effectiveness of our strategy and re-
veal that the parameters in the preconditioner have a significant impact. 
Namely, for Cao’s native preconditioners and Liu’s preconditioner 𝑀𝛼

with 𝛼+ = 1, convergence is initially extremely slow before reaching a 
superconvergence regime. Thanks to our specific scaling, this regime 
is reached much faster. The iteration counts for the different precon-
ditioning strategies are listed in Table 6. The iteration count for the 
unpreconditioned GMRES method is noted for comparison.

When solving the linear system (13), a direct method could be used 
(at least for small to medium size problems) instead of our precondi-
tioned GMRES method. Thus, we are interested in comparing the per-
formance of these two methods in the context of the contact problem. 
In MATLAB, a direct method is called when using the backslash com-
mand. Due to the properties and sparsity of the INTERNODES matrix, 
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Fig. 10. Performance comparison for the preconditioners (19) and (24).

Table 7

Computational times and speedup factors.

ℎ 0.1 0.05 0.01 0.005

Time direct [s] 0.064 0.123 1.89 24.99
Time iterative 𝑀𝛼+

[s] 0.072 0.132 3.06 55.61
Time iterative 𝑀𝛼−

[s] 0.065 0.111 1.12 9.98

the backslash command calls some state-of-the-art implementation of a 
multifrontal method [45]. On the contrary, our method uses an in-house 
implementation of preconditioned GMRES. We did not use the built-in 
gmres function of MATLAB because we lacked control over the stopping 
criterion. Moreover, the MATLAB function uses the left preconditioner 
whereas we are using the right one. Our implementation is very basic 
and its performance could certainly be improved. All the experiments 
are carried out in MATLAB R2021a on MacOS with a Dual-Core Intel 
Core i7 processor with 2.2 GHz of processing speed and 8 GB of RAM. 
In Fig. 11, the computational times for the entire contact algorithm, 
including the preconditioner setup time for the iterative solution, are re-
ported for configuration 1. To further highlight the impact of the scaling 
parameter, the preconditioner with our choice of scaling (𝛼− = −‖𝐾‖∞) 
is compared with the default choice (𝛼+ = 1). These preconditioners 
have exactly the same block structure and consequently any difference 
in performance stems from the different number of iterations. Some 
important observations must be made. First of all, the computational 
times are always relatively small for both implementations (direct and 
iterative) and it is extremely challenging to outperform direct methods 
for applications where they excel: moderate size finite element matri-
ces for 2D problems. For example, for the mesh size ℎ = 0.01 associated 
with a matrix of size over 46 000, three large linear systems are solved 
and the contact algorithm computes the solution in roughly 1.89 s with 
a direct method. Despite their remarkable performance, our precondi-
tioned GMRES implementation with a suitably scaled preconditioner 
always outperforms direct methods by a large margin on small mesh 
sizes. The computational times are also reported in Table 7. Since the 
number of linear systems solved in the sequence is different for differ-
ent mesh sizes, one should not attempt to fit a trendline over the values 
reported.

The speedup is expected to increase further with the size of the ma-
trix and the number of linear systems solved in the sequence. Since our 
method uses a single Cholesky factorization for 𝐾̃ , its cost is amortized 
over several linear systems. In comparison, direct methods will recom-
pute a factorization at each iteration. Finally, qualitatively speaking, 
the numerical solutions obtained with both methods were indistinguish-
62
Fig. 11. Computational times for the contact algorithm.

able. The euclidean norm of the error was at most of the order 10−7, 
suggesting that our tolerance on the residual was adequate.

7. Conclusions and new perspectives

In this work, a highly efficient preconditioner was designed for solv-
ing the sequence of linear systems arising from the application of the 
INTERNODES method to linear elastic problems in contact mechanics. 
The saddle point type structure inherited from the variational problem 
and the properties of the stiffness matrix naturally led to considering 
an augmented Lagrangian preconditioner. We have discussed how the 
preconditioner could be suitably tuned and we have analyzed the spec-
trum of the preconditioned matrix. Taking advantage of the sparsity 
structure of the matrices, we then proposed an algorithm to efficiently 
solve linear systems with the preconditioning matrix. Assuming a lin-
ear elastic constitutive model, our strategy relies on a unique Cholesky 
factorization for the stiffness matrix 𝐾̃ which is computed once and 
for all. Resorting to a complete factorization allows the implementation 
of a nearly ideal preconditioner. Numerical experiments confirmed the 
quality and robustness of the preconditioner. In addition, they revealed 
that the convergence rate was independent of the mesh size and our pre-
conditioned iterative scheme outperformed state-of-the-art sparse direct 
solvers.

To avoid excessive memory usage, we have also discussed possible 
extensions to incomplete factorizations. We have shown experimentally 
that incomplete factorizations could still lead to an efficient precondi-
tioner. However, pivot breakdowns were also occasionally experienced 
during the factorization process. Such breakdowns are well known for 
applications in structural mechanics and robust incomplete factoriza-
tions could provide a possible remedy [46]. Yet, another unfortunate 
feature common to all incomplete factorizations is the increase of the 
iteration count with the problem size. Other solution techniques were 
already examined in an extension of our work [15]. Some of these 
Cholesky-free methods seem very promising for large 3D problems but 
there is still much empirical work left in determining the best strat-
egy. Cholesky-free methods would also certainly be favored in case the 
stiffness matrix must be reassembled at each iteration of the contact 
algorithm, for example in case of nonlinear constitutive models.

Data availability

The code and data are freely available at Code Ocean.
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Appendix A. Proof of Theorem 4.1

Let

𝐵𝑇 =𝑈𝐵[Σ𝐵 0]𝑉 𝑇
𝐵

and 𝐵̃ =𝑈𝐵̃[Σ𝐵̃ 0]𝑉 𝑇

𝐵̃

be the singular value decomposition of 𝐵𝑇 and 𝐵̃ respectively. 𝑈𝐵, 𝑈𝐵̃ ∈
ℝ𝑚×𝑚 and 𝑉𝐵, 𝑉𝐵̃ ∈ℝ𝑛×𝑛 are orthogonal matrices and Σ𝐵, Σ𝐵̃ ∈ℝ𝑚×𝑚 are 
diagonal matrices containing the singular values. The matrices 𝑉𝐵 and 
𝑉𝐵̃ are further partitioned as

𝑉𝐵 = [𝑉𝐵1
𝑉𝐵2

] and 𝑉𝐵̃ = [𝑉𝐵̃1
𝑉𝐵̃2

]

with 𝑉𝐵2
and 𝑉𝐵̃2

two bases for the kernels of 𝐵𝑇 and 𝐵̃, respectively. 
We now form the orthogonal matrices 𝑆1 and 𝑆2 such that

𝑆1 =

(
𝑉 𝑇
𝐵

0
0 𝑈𝑇

𝐵̃

)
𝑆2 =

(
𝑉𝐵̃ 0
0 𝑈𝐵

)
and consider the matrix 𝐴̃ = 𝑆1𝐴𝑆2 explicitly given by

𝐴̃ = 𝑆1𝐴𝑆2 =

(
𝑉 𝑇
𝐵

0
0 𝑈𝑇

𝐵̃

)(
𝐾 𝐵

𝐵̃ 0

)(
𝑉𝐵̃ 0
0 𝑈𝐵

)

=

(
𝑉 𝑇
𝐵
𝐾𝑉𝐵̃ 𝑉 𝑇

𝐵
𝐵𝑈𝐵

𝑈𝑇

𝐵̃
𝐵̃𝑉𝐵̃ 0

)

=
⎛⎜⎜⎜⎝
𝑉 𝑇
𝐵1

𝐾𝑉𝐵̃1
𝑉 𝑇
𝐵1

𝐾𝑉𝐵̃2
Σ𝐵

𝑉 𝑇
𝐵2

𝐾𝑉𝐵̃1
𝑉 𝑇
𝐵2

𝐾𝑉𝐵̃2
0

Σ𝐵̃ 0 0

⎞⎟⎟⎟⎠ .
Since 𝑆1 and 𝑆2 are orthogonal matrices, 𝐴 and 𝐴̃ have the same singu-
lar values and in particular 𝜅(𝐴̃) = 𝜅(𝐴). The structure of 𝐴̃ will be used 
to find a lower bound on the spectral condition number of 𝐴. We first 
prove that 𝜅(𝐴) ≥ 𝜅𝐵̃(𝐾) max{1, ‖𝐵‖2

𝜎1,𝐵̃
, ‖𝐵̃‖2
𝜎1,𝐵̃

}. All proofs are based on the 
following facts:

𝜎1(𝐴) = 𝜎1(𝐴̃) = max‖𝐱‖2=1‖𝐴̃𝐱‖2 ≥ ‖𝐴̃𝐲‖2 for some 𝐲 such that ‖𝐲‖2 = 1,

𝜎𝑛+𝑚(𝐴) = 𝜎𝑛+𝑚(𝐴̃) = min‖𝐱‖2=1‖𝐴̃𝐱‖2 ≤ ‖𝐴̃𝐲‖2 for some 𝐲 such that ‖𝐲‖2 = 1.

The strategy consists in choosing the vectors 𝐲 cleverly such that the 
resulting lower bound on the condition number is tight.

Lower bound on 𝜎1(𝐴):
Since the contributions of 𝐾 , 𝐵 and 𝐵̃ must be captured, let us con-

sider different choices.

1. Choose 𝐲𝑇 = (𝐲𝑇1 , 𝟎
𝑇 , 𝟎𝑇 ) with ‖𝐲1‖2 = 1 such that ‖Σ𝐵̃𝐲1‖2 = ‖𝐵̃‖2. If 

the singular values of 𝐵̃ have been placed in decreasing order along 
the diagonal of Σ𝐵̃ , then 𝐲1 = 𝐞1, the first vector of the canonical 
basis of ℝ𝑚. Thus,

‖𝐴̃𝐲‖22 = ‖𝑉 𝑇
𝐵
𝐾𝑉𝐵̃1

𝐲1‖22 + ‖Σ𝐵̃𝐲1‖22
= ‖𝐾𝑉𝐵̃1

𝐲1‖22 + ‖𝐵̃‖22
≥ ‖𝐵̃‖22.

2. Choose 𝐲𝑇 = (𝟎𝑇 , 𝐲𝑇2 , 𝟎
𝑇 ) with ‖𝐲2‖2 = 1 such that

‖𝐾𝑉𝐵̃2
𝐲2‖2 = max‖𝐱‖2=1

𝐱∈ker(𝐵̃)

‖𝐾𝐱‖2 = 𝜎1,𝐵̃ .

Hence, ‖𝐴̃𝐲‖2 = ‖𝑉 𝑇𝐾𝑉𝐵̃ 𝐲2‖2 = ‖𝐾𝑉𝐵̃ 𝐲2‖2 = 𝜎2 .

3.

Sin
max

‖𝐾
Hen

𝜎𝑛+

𝜅(𝐴
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the
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Choose 𝐲𝑇 = (𝟎𝑇 , 𝟎𝑇 , 𝐲𝑇3 ) with ‖𝐲3‖2 = 1 such that ‖Σ𝐵𝐲3‖2 = ‖𝐵‖2. If 
the singular values of 𝐵 have been placed in decreasing order along 
the diagonal of Σ𝐵 , then 𝐲3 = 𝐞1, the first vector of the canonical 
basis of ℝ𝑚. Then, we obtain straightforwardly ‖𝐴̃𝐲‖22 = ‖Σ𝐵𝐲3‖22 =‖𝐵‖22.

ce all particular choices yield a lower bound, we deduce that 𝜎1(𝐴) ≥
{𝜎1,𝐵̃ , ‖𝐵‖2, ‖𝐵̃‖2}.
Upper bound on 𝜎𝑛+𝑚(𝐴):
This time we simply take 𝐲𝑇 = (𝟎𝑇 , 𝐲𝑇2 , 𝟎

𝑇 ) with ‖𝐲2‖2 = 1 such that

𝑉𝐵̃2
𝐲2‖2 = min‖𝐱‖2=1

𝐱∈ker(𝐵̃)

‖𝐾𝐱‖2 = 𝜎𝑛,𝐵̃ .

ce, ‖𝐴̃𝐲‖22 = ‖𝑉 𝑇
𝐵
𝐾𝑉𝐵̃2

𝐲2‖22 = ‖𝐾𝑉𝐵̃2
𝐲2‖22 = 𝜎2

𝑛,𝐵̃
. Consequently,

𝑚(𝐴) ≤ 𝜎𝑛,𝐵̃ .
Gathering all the results, we finally obtain

) = 𝜅(𝐴̃) =
𝜎1(𝐴)

𝜎𝑛+𝑚(𝐴)
≥ max{𝜎1,𝐵̃ ,‖𝐵‖2,‖𝐵̃‖2}

𝜎𝑛,𝐵̃

= 𝜅𝐵̃(𝐾)max{1,
‖𝐵‖2
𝜎1,𝐵̃

,
‖𝐵̃‖2
𝜎1,𝐵̃

}

ce the singular values of 𝐴̃ and 𝐴̃𝑇 are the same, we may apply 
 same proof steps to 𝐴̃𝑇 instead of 𝐴̃. In this case we obtain the 
logous result 𝜅(𝐴) ≥ 𝜅𝐵(𝐾) max{1, ‖𝐵‖2

𝜎1,𝐵
, ‖𝐵̃‖2
𝜎1,𝐵

} and we conclude by 
ing the maximum of the two lower bounds. □
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