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Abstract

The numerical investigation of a recent family of algebraic fractional-step methods for the solution of the incom-
pressible time-dependent Navier–Stokes equations is presented. These methods are improved versions of the Yosida

method proposed in [A. Quarteroni, F. Saleri, A. Veneziani, Factorization methods for the numerical approximation
of Navier–Stokes equations Comput. Methods Appl. Mech. Engrg. 188(1–3) (2000) 505–526; A. Quarteroni, F. Saleri,
A. Veneziani, J. Math. Pures Appl. (9), 78(5) (1999) 473–503] and one of them (the Yosida4 method) is proposed in this
paper for the first time. They rely on an approximate LU block factorization of the matrix obtained after the discret-
ization in time and space of the Navier–Stokes system, yielding a splitting in the velocity and pressure computation. In
this paper, we analyze the numerical performances of these schemes when the space discretization is carried out with a
spectral element method, with the aim of investigating the impact of the splitting on the global accuracy of the
computation.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

One of the most known techniques for an efficient solution of the incompressible Navier–Stokes equations
consists in using fractional-step methods of differential or algebraic type. In the former, the splitting is based
either on physical considerations (see, for example [13]), or on the Helmholtz decomposition principle. These
methods are called projection methods and the most famous one is the Chorin–Temam scheme [5,37]. The
accuracy of projection methods depends strongly on the boundary conditions chosen for the differential
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subproblems in which the original problem is split. In the last three decades, many papers have been devoted
to the study of high accurate differential fractional-step schemes, see for example [24,23,8,39,16,15,36,3,18–20]
and the references therein.

On the other hand, algebraic fractional-step methods are based on an algebraic decomposition of the ma-
trix arising from the full discretization (in both space and time) of the Navier–Stokes equations. Such
decomposition (or splitting) could be performed either by a sum of simpler matrices (see, for example
the methods described by Yanenko [42] and Marchuk [25]) or a product of block-triangular matrices. In
this perspective, Perot [27] revisited the Chorin–Temam method as an approximate (or inexact) block LU

factorization of the matrix arising from the fully discretized equations. Following this approach, the bound-
ary conditions were incorporated in the discretized operator and no boundary conditions have to be
selected.

The paper of Perot was followed by various works in which different formulations of the Chorin–Temam
method were proposed and investigated (see [6,30,29,41,21]).

The interpretation of the Chorin–Temam scheme from an algebraic point of view gave rise to the investi-
gation of new families of (algebraic) fractional-step schemes, with good accuracy and stability properties and
which do not have a differential counterpart (see [30,29,21]).

To set-up new algebraic methods, the idea is to choose appropriately the inexact factorization of the matrix
(say A) arising from the full discretized equations.

The Yosida method, proposed in [30,29], is an algebraic fractional-step scheme, which differs from the alge-
braic version of the Chorin–Temam (ACT) method basically for fulfilling the discrete momentum equation,
while the Chorin–Temam method guarantees the conservation of the mass. These two schemes differ from
one another also in accuracy and stability properties and they have been investigated when coupled to finite
element methods, also as preconditioners (see also [35,41]). In [10,35], a more accurate scheme (here called
Yosida3), based on the idea of adding a final correction step for the pressure computation to Yosida scheme,
is proposed.

In this paper, we present a new (and computationally feasible) modification (called Yosida4) of the Yosida
scheme, featuring better accuracy properties. Actually, when the Yosida3 method is combined with a third-
order approximation scheme in time, the discrete L2(H1)-error on the velocity behaves like Dt3 and the discrete
L2(L2)-error on the pressure-like Dt5/2 for vanishing Dt, while, if the Yosida4 method is combined with a
fourth-order approximation scheme in time, the resulting discrete L2(H1)-error on the velocity behaves like
Dt4 and the discrete L2(L2)-error on the pressure like Dt7/2. An extensive theoretical analysis of the schemes,
corroborating the numerical results presented here, will be carried out elsewhere (see [12]).

The second aim of the paper is to validate the accuracy of the Yosida schemes when conformal PN � PN�2

spectral elements are chosen for the space discretization [1].
Finally, we will compare Yosida, Yosida3 and Yosida4 schemes from a computational point of view.
An outline of this paper is as follows. In Section 2, we state the terms of the problem: we briefly recall the

notations of Navier–Stokes equations for incompressible flows, the Backward Differentiation formulas (BDF)
used for approximation in time and the spectral element methods. In Section 3, we briefly recall the Yosida
scheme and we show the numerical results obtained using it jointly with spectral methods. In Section 4, start-
ing from the strategy for improving Yosida schemes, introduced in [35] and based on a further step for the
pressure computation, we derive the new Yosida4 scheme. We prove the fourth order in time dependence
of the splitting error. Then, we illustrate several numerical results obtained by applying these schemes to spec-
tral elements approximation. Some conclusions are drawn in Section 5.
2. Definitions and settings

We consider the Navier–Stokes equations for Newtonian incompressible fluids in the primal velocity–pres-
sure formulation. For any open bounded domain X � R2 with a Lipschitz boundary, and a positive T, given
an external field f 2 [L2(0,T;L2(X))], a boundary data g 2 [L2(0,T;H1/2(oX))]2 and an initial datum
u0 2 [H1(X)]2 such that $ Æ u0 = 0, we look for the velocity field u 2 [L2(0,T;H1(X))]2 and the pressure field
p 2 L2ð0; T ; L2

0ðXÞÞ solutions of
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ou
ot � mDuþ ðu � rÞuþrp ¼ f in X� ð0; T Þ;
r � u ¼ 0 in X� ð0; T Þ;
u ¼ g on oX� ð0; T Þ;
u ¼ u0 in X� f0g;

8>>><>>>: ð1Þ
where m > 0 is the kinematic viscosity.
Problem (1) admits a unique solution if suitable smallness assumptions on the data, with respect to the vis-

cosity m, are assumed (see [38]). It is worth to mention that all methods and the analysis developed hereafter
can be applied to different kinds of boundary conditions as well.

We approximate in time the Navier–Stokes system (1) by a Backward Differentiation Formula of order p
(BDFp) and we linearize the convective term by an extrapolation formula of the same order of the BDF used.

Given Dt 2 (0,T), we set t0 = 0 and tn = t0 + nDt with n = 1, . . .,NT and NT=[T/Dt]. Given un, for n P n0
(depending on the BDF scheme used), we look for the solution (un+1,pn+1) of the system
a
Dt u

nþ1 � mDunþ1 þ ðu� � rÞunþ1 þrpnþ1 ¼ ~f
nþ1

in X;

r � unþ1 ¼ 0 in X;

unþ1 ¼ gnþ1 on oX;

8><>: ð2Þ
where
u� ¼

un; when using BDF1;

2un � un�1 when using BDF2;

3un � 3un�1 þ un�2 when using BDF3;

4un � 6un�1 þ 4un�2 � un�3 when using BDF4

8>>><>>>: ð3Þ
and
~f
nþ1 ¼

fnþ1 þ 1
Dt u

n for BDF1; n0 ¼ 1; a ¼ 1;

fnþ1 þ 1
Dt 2un � 1

2
un�1

� �
for BDF2; n0 ¼ 2; a ¼ 3

2
;

fnþ1 þ 1
Dt 3un � 3

2
un�1 þ 1

3
un�2

� �
for BDF3; n0 ¼ 3; a ¼ 11

6

fnþ1 þ 1
Dt 4un � 3un�1 þ 4

3
un�2 � 1

4
un�3

� �
for BDF4; n0 ¼ 4; a ¼ 25

12
.

8>>>><>>>>: ð4Þ
Moreover, we chose conforming spectral elements with numerical integration to approximate with respect to
the space variables. In order to fulfill the inf–sup condition for the discretized problem, we use the PN � PN�2

scheme with staggered grids [1], according to which local polynomials of degree N in each space variable are
used to approximate the velocity field and local polynomials of degree N � 2 in each space variable are used to
approximate the pressure. By this choice, the inf–sup condition is satisfied with a constant which depends on
the parameter N [2].

We introduce a conformal, regular and quasi-uniform (see, e.g. [22]) partition Th of X in Ne quadrilaterals
Tk such that
X ¼
[Ne

k¼1

T k; ð5Þ
with
h ¼ max
T k2Th

hk; hk ¼ diamðT kÞ; k ¼ 1; . . . ;Ne. ð6Þ
Let PN ðT kÞ be the set of algebraic polynomials, defined on Tk, of degree less than or equal to N in each
direction, and set
PHðXÞ ¼ fvH 2 C0ðXÞ : vN ;k :¼ vHjT k 2 PN ðT kÞ; 8T k 2 Thg. ð7Þ
The subscript H represents the discretization level and it stands for the couple (h,N). The definition (7) states
that the space PHðXÞ is the space of global continuous functions on X, which are polynomials of degree N,
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with respect to each space variable, on every quadrilateral of the mesh. The functions uH; vH; . . . will denote
generic elements of the space PHðXÞ. Given uH; vH 2 PHðXÞ, we set
ðuH; vHÞH;X ¼
XNe

k¼1

ðuN ;k; vN ;kÞN ;T k
; ð8Þ
where ð�; �ÞN ;T k
denotes the discrete inner product inL2(Tk), based on theGauss–Lobatto–Legendre (GLL) quad-

rature formulas [4]. In each element Tk of the partition, we define a local GLL grid of (N + 1)2 points and a local
Gauss–Legendre (GL) grid of (N � 1)2 points. The last grid is staggered with respect to the former one and it is
internal to Tk. Therefore, we denote by Nv (resp. Np) the total number of GLL (resp. GL) grid points in X.

We define the finite-dimensional spectral element spaces:
VH ¼ PHðXÞ½ �2; V0
H ¼ PHðXÞ \ H 1

0ðXÞ
� �2

;

QH ¼ fqH 2 L2ðXÞ : qN ;k :¼ qHjT k
2 PN�2ðT kÞ; 8T k 2 Thg;

ð9Þ
so that the finite-dimensional counterpart of (2) reads: for n P n0, given u�H 2 VH, look for the solution
ðunþ1

H ; pnþ1
H Þ 2 VH � QH, with: unþ1

H ðxÞ ¼ gnþ1ðxÞ for any x of the GLL mesh which belongs to oX, pnþ1
H known

in one point of the GL mesh, such that

a
Dt ðu

nþ1
H ; vHÞH;X þ mðrunþ1

H ;rvHÞH;X þ ððu�H � rÞunþ1
H ; vHÞH;X

�ðpnþ1
H ;r � vHÞH;X ¼ ð~fnþ1

; vHÞH;X 8vH 2 V0
H;

ðr � unþ1
H ; qHÞH;X ¼ 0 8qH 2 QH.

8>><>>: ð10Þ
We denote by Un 2 R2Nv the array of the velocity grid function evaluated on the GLL mesh at time tn, and by
Pn 2 RNp the array of the pressure grid function evaluated on the GL mesh at time tn.

Denoting by M the mass matrix, K the stiffness matrix, and B (resp. N(U*)) the matrix related to the dis-
cretization of �$Æ (resp. of the convective term), we rewrite system (10) as
a
Dt MUnþ1 þ mKUnþ1 þ NðU�ÞUnþ1 þ BTPnþ1 ¼ eFnþ1

1 ;

BUnþ1 ¼ 0;

(
ð11Þ
where eFnþ1

1 is the array generated by the term ð~fnþ1
; vHÞH;X.

We set C ¼ a
Dt M þ mK þ NðU�Þ. The right-hand side is modified accordingly, taking into account the con-

tributions that the boundary nodes give to internal nodes. This step generates a right-hand side ½Fnþ1
1 ;Fnþ1

2 �t
that is non-zero also for the second equation of (11).

At each time level, the system has the following matrix form:
CUnþ1 þ BTPnþ1 ¼ Fnþ1
1 ; ð12Þ

BUnþ1 ¼ Fnþ1
2 ð13Þ
or
AWnþ1 ¼ Fnþ1; ð14Þ

with
A ¼ C BT

B 0

" #
; Wnþ1 ¼ Unþ1

Pnþ1

" #
; Fnþ1 ¼ Fnþ1

1

Fnþ1
2

" #
.

From now on, for the sake of simplicity, we will drop the index n + 1 from all the vectors.
To solve system (14), one could use a global approach such as a preconditioned Krylov method with either

algebraic or differential preconditioners or again with Schwarz type domain decomposition preconditioners
[26] or a pressure Schur complement approach [9].

Alternatively, system (14) can be solved by a block LU factorization with
L ¼
C 0

B �BC�1BT

� �
; U ¼ I C�1BT

0 I

" #
. ð15Þ
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The matrix
R :¼ �BC�1BT ð16Þ
is the so called pressure Schur complement matrix.
Solving system (14) through the block LU factorization (15) consists in finding the solution of the following

subsystems:
L-step: find eU; eP :
C eU ¼ F1;

ReP ¼ F2 � BeU;

(

U -step: find U; P :
P ¼ eP;
CðeU �UÞ ¼ BTP.

( ð17Þ
This is sometimes called the pressure matrix method (see, e.g. [31]). It is worthwhile noting that, when a semi-
implicit treatment of the convective term is considered, matrix C is time-dependent and the construction of
matrix R at each time step is quite expensive. An effective way for reducing computational costs is to suitably
approximate R: this is the basic idea underlying to the Yosida scheme (and to the algebraic reformulation of
the Chorin–Temam method proposed by Perot, see [27,30]) that we are going to introduce.

3. The Yosida scheme

The Yosida scheme is characterized by replacing the factors L and U of A, given in (15) with an inexact LU

factorization of the form bA ¼ bLU , where
bL ¼
C 0

B �BHBT

� �
and H :¼ Dt

a
M�1. ð18Þ
At each time-step, system (14) is replaced by
bAcW ¼ bF with cW ¼
bUbP

" #
; ð19Þ
where bF is the right-hand side which takes into account the approximate solutions of previous steps. Matrix
S :¼ �BHBT ð20Þ

is an approximation of the Schur complement R and it can be obtained by a zero-order truncation of the Neu-
mann expansion of C�1 in R (see [6,40,41]).

The computational convenience in solving (19) at a generic time-step, relies to the fact that we have actually
to solve the following (smaller) subsystems:
bL-step: find eU; eP :
C eU ¼ bF1;

SeP ¼ bF2 � BeU;

(

U -step: find bU; bP :
bP ¼ eP;
CðeU � bUÞ ¼ BTbP.

( ð21Þ
Remark 3.1 (Computational cost of Yosida scheme). At each time-step, we have to solve two linear systems
whose matrix is C and we can make use of preconditioned Krylov methods (such as Bi-CGStab or GMRES)
with incomplete LU preconditioner [34] or finite-element preconditioner [7,32], or again Schwarz domain
decomposition methods. Moreover, we have to solve a linear system whose matrix is S = �BHBT. If the inf–

sup condition is satisfied, then the matrix B is a full-rank matrix and S is symmetric, negative definite. Then,
for 2D implementations, we can resort to a Cholesky factorization obtained by a suitable QR splitting of
H1/2BT (see [41]), while for 3D implementations we can refer to either preconditioned conjugate gradient
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algorithm or multigrid scheme (see [40]). Observe that S can be factorized once at all at the beginning of the
time loop since it is time-independent.

The computational convenience with respect to the pressure matrix method is evident by the fact that
the matrix S is considerably easier to solve than R, especially when M is a diagonal matrix (as it is in
spectral methods with numerical integration). Moreover, the two steps (21) have to be solved once at each
time level, while other iterative schemes, such as the Uzawa one, require the iterative solution of systems
in C and in the pressure mass matrix. On the other hand, while both pressure matrix and Uzawa method
compute the solution of the unsplit discretized problem, Yosida method computes an approximate solution
affected by the splitting error. When the time discretization is obtained with a first-order scheme, it has
been proved in [29] that the first-order accuracy is maintained by the split solution. For higher order time
discretizations, we need to resort to more accurate splitting schemes such as the ones that we are going to
consider in the next sections.

3.1. Numerical results

In this section, we illustrate the performances of the Yosida scheme (21) coupled with a spectral element
space discretization and we do a comparison with a classical unsplit method, namely a Bi-CGStab solver
on system (14), preconditioned with an incomplete LU factorization. The comparison will be done from both
accuracy and computational points of view. Since systems (14) and (17) are equivalent, the unsplit approach
will be referred to also with the term exact LU factorization in contrast with the Yosida method that will be
named inexact LU factorization.

Following the same notation of Section 2, we denote by ðûnH; p̂nHÞ 2 VH � QH the numerical solution at
time tn obtained by the Yosida scheme. We define the velocity and pressure errors in L2(H1)- and L2(L2)-dis-
crete norms, respectively:
Eu :¼ Dt
XNT

n¼0

kuðtnÞ � wn
Hk2H1ðXÞ

 !1=2

; Ep :¼ Dt
XNT

n¼0

kpðtnÞ � qnHk2L2ðXÞ

 !1=2

; ð22Þ
where either wn
H ¼ ûnH; qnH ¼ p̂nH when we use the Yosida method or wn

H ¼ unH, qnH ¼ pnH when we use the un-
split approach.

Here and in the sequel we will consider two different test cases with a given exact solution. As a first test
case, we consider the computational domain X = (�1,1)2 and t 2 [0,1], while the forcing term, the boundary
conditions and the initial conditions are set in such a way that the exact solution is
uðx; y; tÞ ¼ ½sinðxÞ sinðy þ tÞ; cosðxÞ cosðy þ tÞ�T;
pðx; y; tÞ ¼ cosðxÞ sinðy þ tÞ.

ð23Þ
On the same computational domain, we will consider a second test solution where the dependence with re-
spect to the space and time variables is factorized, that is:
uðx; y; tÞ ¼ ½eðxþyÞ;�eðxþyÞ�T sinð2ptÞ;
pðx; y; tÞ ¼ �ðx2 þ y2Þ sinð2ptÞ.

ð24Þ
For BDF schemes with order greater than 1, we need further initial data that in our cases will be provided
by the exact solution. For general cases, initial data could be provided by suitable explicit schemes (e.g.,
Runge–Kutta) of the same order of the BDF used.

Accuracy. In Figs. 1 and 2, we report the errors (22) for both velocity and pressure for different values of the
time-step Dt. The curves marked with BDF1, BDF2 and BDF3 refer to the solution of system (14) obtained
with first-, second- and third-order BDF scheme (respectively), by solving the linear system by a global pre-
conditioned Bi-CGStab.

The curves marked with BDF1 + Yosida, BDF2 + Yosida and BDF3 + Yosida refer to the solution of sys-
tem (14) obtained with first-, second- and third-order (respectively) BDF scheme and the Yosida method
(21).
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Fig. 1. The errors (22) for the exact solution (23). m = 10�3, N = 16 and Ne = 1.
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First of all, we compare the convergence lines of BDF1 and BDF1 + Yosida and we note that for Dt 6 10�3

the two errors coincide. This means that for small time-steps (i.e., Dt 6 10�3) the Yosida method introduces an
error (the so-called splitting error) that is o(Dt) for both velocity and pressure. The splitting error affects the
computations with a BDF2 time discretization on the pressure: the comparison of BDF2 and BDF2 + Yosida
curves shows that the velocity error of the Yosida scheme is higher than in the unsplit solution, even if the
accuracy is still of second order. The pressure is more affected by the splitting error and, in particular, a
BDF2 time discretization coupled to the Yosida scheme exhibits an order of accuracy equal to 3/2. This
can be theoretically justified (see Remark 4.1). Finally, we note that we do not gain any advantage from using
the Yosida scheme joined with BDF3.

In conclusion, we can write the global velocity error in time as the sum of two errors, the first one due to the
BDFp scheme and the second one due to the Yosida scheme:
errðDtÞ ¼ cBDFpDtp þ cYosDt2; ð25Þ

where cBDFp and cYos are two positive constants independent of Dt. When p = 1, the Yosida scheme introduces
a splitting error that is smaller than the BDF1 error. When p = 2, the Yosida scheme introduces a splitting
error of the same order of BDF2, so that BDF2 + Yosida is second-order accurate, even if the error of
BDF2 + Yosida is considerably greater than the error of the pure BDF2.
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If we want to use an algebraic fractional-step method with a BDF scheme of order p P 2 and, at the same
time, we want to preserve the accuracy obtained with the pure BDFp scheme, we have to introduce more accu-
rate inexact LU factorizations which produce smaller splitting errors. Two different more accurate inexact LU
factorizations will be described in the next section.

Remark 3.2. In the context of differential splitting schemes such as the Chorin–Temam projection method
(see, e.g. [19,28,33]), an important issue is the prescription of boundary conditions of the different problem
solved by the scheme. An accurate selection of boundary conditions is required for avoiding numerical
boundary layers in the pressure error.

The present algebraic splitting scheme seems not to suffer from this problem. In Fig. 3, we actually show the
pressure error at T = 1 for the solution (23) andwe can see that no boundary layers occur either if the uniqueness
of the pressure is forced by fixing the pressure in one point of the computational domain (on the left) or by setting
a null-average condition on the pressure (on the right).

Another relevant point concerning the accuracy of the scheme refers to the mass conservation equation. As
we have already pointed out, the consistency error of the Yosida splitting affects only the continuity equation.
We investigate the time dependency of this error, that means that we consider the behavior of the divergence
of the velocity in time. In Fig. 4, we show the behavior of kr � ûnHkL1ðXÞ, versus time, for three different values
of the time-step (on the left for the test case featuring the exact solution (23) and in the middle for (24)). On the
right of Fig. 4, the norm kr � ûHkL1ðL1ðXÞÞ versus the time-step Dt is plotted. We observe that the behavior of
kr � ûnHkL1ðXÞ depends on the considered test problem, and in particular on how the velocity field depends on
the time.

The picture on the right highlights that the norm kr � ûHkL1ðL1ðXÞÞ 6 cDt2, which confirms the theoretical
results of [29] and similar results in the context of finite elements discretization.

Computational cost. In Tables 1–3, the CPU-time (in seconds), needed to execute 100 time-steps, is shown
for both unsplit approach (marked with BDF1 and BDF2) and inexact LU factorization (marked with
BDF1 + Yosida and BDF2 + Yosida). The squared computational domain is subdivided into Ne = ne · ne
equal squared elements and N denotes the polynomial degree in each direction, on each element. With one
spectral element and a high polynomial degree N, the Yosida scheme is about ten times faster than the unsplit
solver, in the other cases it is even more convenient in terms of CPU times. All programs were run on an Intel
Pentium 4 processor with a frequency of 2.8 GHz under an IEEE754 standard mode operation.
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Table 1
CPUtime (s) for 100 time-steps, Dt = 10�4, m = 10�5, Ne = 1

N = 16 N = 24

BDF1 33.03 374.81
BDF1 + Yosida 3.61 46.97
BDF2 29.34 323.03
BDF2 + Yosida 3.91 46.26

Table 2
CPUtime (s) for 100 time-steps, Dt = 10�4, m = 10�5, N = 6

Ne = 16 Ne = 36 Ne = 64 Ne = 100

BDF1 18.42 55.21 107.47 181.16
BDF1 + Yosida 1.41 3.68 7.77 14.31
BDF2 29.79 61.60 135.10 241.10
BDF2 + Yosida 1.31 3.58 7.53 13.91

Table 3
CPUtime (s) for 100 time-steps, Dt = 10�4, m = 10�5, Ne = 4

N = 4 N = 6 N = 8 N = 10

BDF1 2.24 7.18 8.65 21.90
BDF1 + Yosida 0.07 0.27 0.79 1.89
BDF2 2.32 7.56 10.25 22.85
BDF2 + Yosida 0.08 0.27 0.74 1.80
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the behavior of kr � ûHkL1ðL1ðXÞÞ versus the time-step (right). The discretization parameters are N = 16 and Ne = 1, m = 10�5.
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4. Improved Yosida methods: pressure correction strategy

We begin by noting that at each time-step, the final pressure bP of the Yosida scheme coincides with the
pressure computed at the bL-step, that is bP ¼ eP, and it induces a difference in the treatment of velocity and
pressure deteriorating the accuracy of the scheme (see [39,35]). In [35], a strategy for improving the accuracy
by performing a correction step for the pressure is proposed. This corresponds to modify matrix U in (15) with
a new matrix bU featuring a matrix Q. More precisely, we define:
bU ¼ I C�1BT

0 Q

" #
; ð26Þ
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so that the matrix approximating A is
bA ¼ bL bU ¼ C BT

B �Rþ SQ

" #
. ð27Þ
Therefore, system (21) is replaced by
bL-step: find eU; eP :
C eU ¼ bF1;

SeP ¼ bF2 � BeU;

(

bU -step: find bU; bP :
QbP ¼ eP;
CðeU � bUÞ ¼ BTbP.

( ð28Þ
A first possible choice for Q is given in [35], in this section we will reconsider this choice of Q and the numerical
results will show that the resulting scheme (which will be named improved Yosida of order three, briefly Yos-

ida3) is third-order accurate in time for the velocity and of order 5/2 for the pressure, provided it is associated
to a third-order BDF scheme. Moreover, we will introduce a new choice of Q for which the resulting scheme
(named improved Yosida of order four, briefly Yosida4) is fourth-order accurate in time for the velocity and of
order 7/2 for the pressure, provided it is associated to a fourth-order BDF scheme.

Observe that if we choose Q = I, we recover the Yosida scheme described in the previous section.
In general, matrix Q is chosen in such a way that
kR� SQk 6 cDtp with p P 3; ð29Þ
and where iÆi is the 2-matrix norm.
Setting D = BHCHBT, if we choose
Q�1 ¼ I � S�1 bD ¼ �S�1BHCHBT ¼ �S�1D ð30Þ
we obtain the Yosida3 scheme introduced in [35].

Remark 4.1. It is worthwhile pointing out that the idea of introducing a pressure correction step has been
introduced at first in the framework of differential splitting (projection) schemes (see [14,39]). In this context, it
has been recently analyzed by Guermond and Shen (see e.g. [20,18,17] for an overview). We would like to
stress the fact that the loss of 1/2 in the order of accuracy for the pressure, that we observe in our numerical
experiments, is theoretically justified by the fact that the operator SQ � R, acting on the pressure and
introduced in (27) even for Q = I, has a coercivity constant which depends on Dt in a linear way [12]. This fact
has been verified also at the differential level, as it results by the rigorous analysis (limited to the order 2 for the
velocity and 1/2 for the pressure) carried out in [20] (Theorem 4.1).

Yosida4 scheme. Let us now introduce a new possible definition of Q.
We set
L ¼ �H�1 þ C;

W 1 ¼ �BHLHBT;

W 2 ¼ BðHLÞ2HBT
under the assumption that q(S�1(W1 + W2)) < 1 (q(Æ) denotes the spectral radius of a matrix) we can exploit
the Neumann expansion of C�1, so that
R ¼ �BðI þ HLÞ�1HBT ¼ S � W 1 � W 2 þ Dt4Z; ð31Þ
where Z denotes a generic matrix of the same order of Q independent of Dt. By their definition, if c denotes a
positive constant, it holds that iW1i [ cDt2 and iW2i [ cDt3. A natural candidate for yielding with SQ a
fourth-order approximation of R is to set therefore
Q ¼ I � S�1 W 1 þ W 2ð Þ. ð32Þ
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This is again an unfeasible solution from the computational viewpoint. However, we could try to find a suit-
able approximation of Q�1 starting from (32). Exploiting again the Neumann expansion, we have
Q�1 ¼ I þ S�1 W 1 þ W 2ð Þ þ S�1 W 1 þ W 2ð Þ
� �2 þ S�1 W 1 þ W 2ð Þ

� �3 þ � � �
and, if we consider the time dependence of each factor on Dt, we can rewrite
Q�1 ¼ I þ S�1 W 1 þ W 2ð Þ þ S�1W 1S
�1W 1 þ Dt3Z. ð33Þ
Now, by setting again D = BHCHBT, we have
W 1 ¼ D� S
and neglecting the terms that behave like Dt3 we obtain
Q�1 ¼ �S�1Dþ ðS�1DÞ2 þ S�1BðHCÞ2HBT. ð34Þ
By using this matrix in (28), we obtain the Yosida4 method.

Proposition 4.1. If Q is defined as in (34) and q(S�1(W1 + W2)) < 1, there exists a positive constant c

independent of Dt such that
kR� SQk 6 cDt4.
Proof. Let us compute SQ explicitly. We have:
R� SQ ¼ Dt4Z;
where again, Z denotes a generic matrix independent of Dt. By comparing this expression with the Neumann
expansion (31), the thesis holds. h

Since in the Yosida pressure corrected schemes, it holds BU = (R � SQ)P, the immediate corollary of the
previous proposition is that the discrete divergence of the velocity field computed by the Yosida4 scheme be-
haves like Dt4 when Dt vanishes.

This will be verified by numerical experiments.
A detailed analysis of both accuracy and stability of the Yosida4 method is carried out in [12].

Remark 4.2. The computational effort required by either Yosida3 or Yosida4 methods increases mildly with
respect to the cost of the Yosida method. As a matter of fact, at each time-step of Yosida3 (or Yosida4) we
have to solve an additional linear system of type QbP ¼ eP. This means to solve the system
SbP ¼ �DeP ð35Þ
in the Yosida3 scheme, and to do the following steps:
compute PD ¼ �DeP
solve SPS ¼ PD

solve SbP ¼ �PD � DPS þ BðHCÞ2HBTeP

in the Yosida4 scheme.

We remind that (see Remark 3.1), matrix S can be factorized before the time loop and then, in order to
implement Yosida3, only two triangular systems have to be solved more, as well as to compute the matrix–
vector product DeP. Otherwise, to implement Yosida4, four triangular systems have to be solved more, as well
as to compute two matrix–vector products involving matrix D.

In summary, the computation of both bU and bP through the improved Yosida schemes can be done with the
following algorithm:
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Algorithm 4.1 (A step of the improved Yosida algorithm). For two given vectors F1 and F2
Fig. 5
BDF4
ðiÞ solve C eU ¼ F1

solve SeP ¼ F2 � BeU
compute PD ¼ �DeP
solve SbP ¼ PD

ðiiÞ compute PD ¼ �PD � DbP þ BðHCÞ2HBTeP
solve SbP ¼ PD

ðiiiÞ solve CðeU � bUÞ ¼ BTbP.

Observe that, when the implementation of the scheme is considered, the Yosida3 scheme is immediately

obtained by dropping step (ii). This could be of some interest in devising a general purpose code featuring
different schemes.
4.1. Numerical results

In this section, we present numerical results about the schemes Yosida3 and Yosida4 on the test cases given
by the exact solutions (23) and (24).

Accuracy. In Fig. 5, we report the errors (22) versus the time-step Dt. We have chosen the fourth-order
BDF4 scheme for the temporal approximation and the fourth-order extrapolation formula for the non-linear
term since our aim is to capture the splitting error introduced by the inexact LU factorizations. The Yosida
scheme introduces an error on the velocity of order two with respect to the time-step (confirming the numerical
results reported in Section 3), Yosida3 an error of order three and Yosida4 an error of order four. The errors
on the pressure are scaled of half order with respect to the errors on the velocity.

In Fig. 6, the errors (22) for the exact solution (24) are shown for the schemes BDF3 + Yosida3,
BDF3 + Yosida4, BDF3 and BDF4 versus the time-step, with viscosity m = 10�5.

The error on the velocity is third-order accurate with respect to Dt for both BDF3 and BDF3 + Yosida3,
while it is fourth-order accurate for BDF4. The order of accuracy on the pressure is three for BDF3, four
for BDF4 and 5/2 for BDF3 + Yosida3.

In Fig. 7, the errors (22) are shown for the schemes BDF2 + Yosida, BDF3 + Yosida3, BDF4 + Yosida4

versus the time-step. A discretization in Ne = 10 · 10 equal spectral elements is considered with N = 6.
10
–3

10
–2

10
–1

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

∆ t

E
u

2

3 4

BDF4+Yosida
BDF4+Yosida3
BDF4+Yosida4
BDF4

10
–3

10
–2

10
–1

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

∆ t

E
p

1.5

2.5

3.5
4

BDF4+Yosida
BDF4+Yosida3
BDF4+Yosida4
BDF4

. Errors (22) for the test case (23) with BDF4 (unsplit approach), BDF4 + Yosida, and the improved Yosida schemes
+ Yosida3, BDF4 + Yosida4. The viscosity is m = 10�5, the space discretization corresponds to Ne = 1 and N = 16.



10
–4

10
–3

10
–2

10
–1

10
–8

10
–6

10
–4

10
–2

10
0

10
2

∆ t

E
u

2

3

4

BDF2+Yosida
BDF3+Yosida3
BDF4+Yosida4

10
–4

10
–3

10
–2

10
–1

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

∆ t

E
p

1.5

2.5

3.5

BDF2+Yosida
BDF3+Yosida3
BDF4+Yosida4

Fig. 7. Errors (22) at T = 1 on the test case (24) with BDF2 + Yosida, BDF3 + Yosida3 and BDF4 + Yosida4. The viscosity is m = 10�1.
Ne = 10 · 10 equal spectral elements are considered with N = 6.

10
–4

10
–3

10
–2

10
–1

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

∆ t

E
u

3 4

BDF3+Yosida3
BDF3+Yosida4
BDF3
BDF4

10
–4

10
–3

10
–2

10
–1

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

10
0

10
2

∆ t

E
p

2.5 3 4

BDF3+Yosida3
BDF3+Yosida4
BDF3
BDF4

Fig. 6. Errors (22) for the exact solution (23) with BDF3 + Yosida3, BDF3 + Yosida4, BDF3 and BDF4. The viscosity is m = 10�5. Spectral
elements with N = 16 and Ne = 1 are considered.

P. Gervasio et al. / Journal of Computational Physics 214 (2006) 347–365 359
When Dt is small enough, the schemes BDF2 + Yosida, BDF3 + Yosida3 and BDF4 + Yosida4 are of sec-
ond-, third- and fourth-order accurate in time, respectively.

In Fig. 8, we report the error field p̂H � p at T = 1 for both BDF3 + Yosida3 and BDF4 + Yosida4 when the
viscosity is m = 10�5. We observe that no boundary layers on the pressure are introduced by the improved
Yosida schemes. In [33], Rannacher supposed that the boundary layer on the pressure error produced by
the Chorin–Temam differential fractional-step scheme is of the same order of

ffiffiffiffiffiffiffi
mDt

p
. We have carried out a

simulation with viscosity m = 10�1 and, as we can see in Fig. 9, also in this case the BDF4 + Yosida4 produces
an error on the pressure without boundary layers. Analogous results have been obtained with both
BDF2 + Yosida and BDF3 + Yosida3 schemes.

It is worthwhile to note that, when PN � PN�2 spectral elements are considered, the nodes of the Gauss–
Legendre grid, on which the discrete pressure is defined, are internal to the domain X and the pressure is dis-
continuous on the interfaces between two adjacent elements.

In Fig. 10(left), we show the behavior of kr � ûnHkL1ðXÞ, versus the time t for three different values of the
time-step for the Yosida3 scheme; the picture in the middle shows the behavior of the same norm for the Yos-
ida4 scheme and, finally, the picture on the right shows the behavior of the norm kr � ûHkL1ðL1ðXÞÞ versus the
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Fig. 8. The error field p̂H � p for the test case featuring the solution (23) at T = 1 for BDF3 + Yosida3 (top) and BDF4 + Yosida4
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solution is obtained by fixing the pressure in one node of the mesh, on the right the numerical solution is obtained by fixing the average of
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time-step Dt. The oscillations in the case of Yosida4 (middle) are possible due to instability reasons. The pic-
ture on the right highlights that the norm kr � ûHkL1ðL1ðXÞÞ 6 cDt3 for Yosida3 and kr � ûHkL1ðL1ðXÞÞ 6 cDt4

for Yosida4.
Stability. We present now some numerical simulations aiming at investigating the stability properties of

the Yosida4 scheme. In Fig. 7, we observe that BDF4 +Yosida4 requires a stability condition on the time-
step more restrictive of those of both BDF2 + Yosida and BDF3 + Yosida3. Surely, BDF4 has a stability
region smaller than both BDF2 and BDF3, but also the inexact LU factorization introduces a more restric-
tive stability condition on the time-step. Moreover, also the extrapolation formula can induce a stability
restriction [35,12]. In order to highlight the stability bound required by the inexact LU factorizations, we
consider the time-dependent Stokes problem and the scheme BDF2, which is unconditionally stable. Then,
we compare BDF2 + Yosida, BDF2 + Yosida3 and BDF2 + Yosida4 and in Fig. 11 we show the errors (22)
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Fig. 10. The behavior of kr � ûnHkL1ðXÞ versus time for the exact solution (24) (on the left for Yosida3 and at middle for Yosida4) and the
behavior of kr � ûHkL1ðL1ðXÞÞ versus the time-step (right). The discretization parameters are N = 16 and Ne = 1, m = 10�5.
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for the exact solution (24) on the time interval (0,T) = (0,100). We observe that, when the viscosity is
m = 10�1 (first column), both Yosida3 and Yosida4 needs a stability bound, which depends mildly on the
spectral elements size H. Otherwise, when the viscosity is smaller (second and third columns), both Yosida
and its variants require the same stability condition (Dt < 0.5), independently of both the mesh size and the
Yosida scheme.

Computational cost. In Table 4–6, the CPU-time (in seconds) needed to execute 100 time-steps for
BDF2 + Yosida, BDF3 + Yosida3 and BDF4 + Yosida4 are shown. These results show that, when the number
of elements is small, the computational cost of both Yosida3 and Yosida4 is comparable with that of Yosida,
whereas, when the number of elements Ne increases, we have that CPUtimeBDF3 + Yosida3 � 1.5CPU-
timeBDF2 + Yosida and CPUtimeBDF4 + Yosida4 � 2CPUtimeBDF2 + Yosida.



Fig. 11. The error Eu defined in (22) on the exact solution (24) for the generalized Stokes problem and the schemes BDF2 + Yosida,
BDF2 + Yosida3 and BDF2 + Yosida4. The viscosity is m = 10�1 on the left, m = 10�3 in the middle and m = 10�5 on the right. Ne = ne · ne
equal spectral elements are considered with N = 6; ne = 4 at top, ne = 6 in the second line, ne = 8 in the third line and ne = 10 in the last
line.

Table 4
CPUtime (s) for 100 time-steps, Dt = 10�4, m = 10�5, Ne = 1

N = 16 N = 24

BDF2 + Yosida 3.91 46.26
BDF3 + Yosida3 3.89 46.65
BDF4 + Yosida4 3.80 47.32
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Table 6
CPUtime (s) for 100 time-steps, Dt = 10�4, m = 10�5, Ne = 4

N = 4 N = 6 N = 8 N = 10

BDF2 + Yosida 0.08 0.27 0.74 1.80
BDF3 + Yosida3 0.07 0.28 0.86 1.94
BDF4 + Yosida4 0.07 0.31 0.88 2.11

Table 5
CPUtime (s) for 100 time-steps, Dt = 10�4, m = 10�5, N = 6

Ne = 16 Ne = 36 Ne = 64 Ne = 100

BDF2 + Yosida 1.31 3.58 7.53 13.91
BDF3 + Yosida3 1.52 4.12 9.32 18.19
BDF4 + Yosida4 1.67 4.73 11.23 22.60
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5. Conclusions

We have considered the algebraic fractional-step Yosida scheme and two improved reformulations (Yos-
ida3 and Yosida4) for the numerical solution of incompressible Navier–Stokes equations coupled to the spec-
tral elements discretization. Yosida and Yosida3 have been previously introduced and experimented in the
context of finite elements discretization. Yosida4 has been proposed in this paper for the first time.

Numerical results show that the high accuracy in time of the above schemes combines quite well with the
high accuracy of spectral methods. The pressure corrected Yosida schemes exhibit significant accuracy
improvements with respect to the original one. Moreover, as for others algebraic fractional-step schemes,
the pressure solution is not affected by error boundary layers. As it has been already pointed out in [35]
for the finite element discretization, stability could be a problem, since stability bounds of the time discretiza-
tion scheme can be reduced by the splitting.

A thorough theoretical analysis of the properties of these schemes is therefore in order, as well as an exten-
sive numerical comparison of these methods with others based on the classical projection-splitting approach,
featuring the same accuracy. On one hand, algebraic splitting methods like the one presented here are feasible
and versatile in managing Navier–Stokes problem with any kind of boundary conditions, since the splitting is
obtained by simply manipulating matrices incorporating the original boundary conditions. Differential split-
ting schemes require a specific care in the boundary treatment (see [3]) in order to keep high accuracy. On the
other hand, accuracy of projections schemes can be proved more rigorously, highlighting the specific assump-
tions that ensure high order. At the moment, it seems therefore not possible establishing which approach is
better, in particular in devising high order schemes (see [11]).
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