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The numerical investigation of a recent family of algebraic fractional-step
methods (the so called Yosida methods) for the solution of the incompressible
time-dependent Navier–Stokes equations is presented. A comparison with the
Karniadakis–Israeli–Orszag method Karniadakis et al. (1991, J. Comput. Phys.
97, 414–443) is carried out. The high accuracy in time of these schemes well
combines with the high accuracy in space of spectral methods.

KEY WORDS: Navier–Stokes equations; algebraic fractional step methods;
spectral methods.

1. INTRODUCTION

The algebraic fractional step methods are based on the decomposi-
tion of the matrix associated with the global discretization (in both
space and time) of the Navier–Stokes equations. This decomposition (or
splitting) could be performed by either a sum of simpler matrices, or a
product of block-triangular matrices, as Perot proposed in [8]. Perot revis-
ited the Chorin-Temam method by noting that, by loosing the bound-
ary conditions, the discretized projection step operator was the product
between a lower block-triangular matrix L and an upper block-triangular
matrix U , so that to do a step of the Chorin-Temam method was equiv-
alent to compute the matrices L and U and to solve two block-triangular
systems. With this approach the boundary conditions were incorporated in
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the discretized operator and all was performed from an algebraic point of
view. This re-interpretation of the Chorin-Temam scheme gave rise to the
investigation of new families of (algebraic) fractional step schemes, which
can have not a differential counterpart but have good accuracy and sta-
bility properties. To set up new methods, the idea is to act on the choice
of the factors L and U of the inexact factorization. The Yosida method,
proposed in [9, 10], is based on such an idea. Two more accurate versions
have been presented in [11] and [3, 4]. These three different forms of the
Yosida scheme (named Yosida, Yosida3 and Yosida4) introduce a splitting
error on the velocity of order 2–4, respectively, with respect to the time
step ∆t , so that we can take advantage of high accuracy in both time and
space if we couple them with spectral methods. Nevertheless, Yosida meth-
ods can be coupled with other approximation methods like finite elements
or finite differences and, as a matter of facts, they have been proposed in
[9, 10] in conjunction with finite elements.

In this paper we compare two schemes of Yosida type with two
schemes belonging to the family of stiffly stable Karniadakis–Israeli–
Orszag (KIO) methods.

2. DEFINITIONS AND SETTINGS

We consider the Navier–Stokes equations for Newtonian incom-
pressible fluids in the primal velocity-pressure formulation. Let �⊂ R

2

be an open bounded domain with a Lipschitz boundary, and T ∈R
+.

Given an external field f ∈ [L2(0, T ,L2(�))]2, a boundary data g ∈
[L2(0, T ,H 1/2(∂�))]2 and an initial datum u0 ∈ [H 1(�)]2 such that ∇ ·u0 =0,
we look for the velocity field u ∈ [L2(0, T ,H 1(�))]2 and the pressure field
p ∈L2(0, T ,L2

0(�)) solutions of

∂u
∂t

−ν∆u + (u ·∇)u +∇p = f, ∇ ·u =0 in �× (0, T ),

u =g, on ∂�× (0, T ),

u =u0, in �×{0},
(1)

where ν = const.>0 is the kinematic viscosity. It is well known that prob-
lem (1) admits a unique solution.
We approximate in time the Navier–Stokes system (1) by a Backward
Differentiation Formula (BDF) of order q (q = 1, 2, 3) and we linearize
the convective term by an extrapolation formula of the same order q.

Given ∆t ∈ (0, T ), we set t0 = 0 and tn = t0 +n∆t with n= 1, . . . ,NT

and NT =
[

T

∆t

]
. Therefore, for any n�n0 =q −1, we look for the solution
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(un+1, pn+1) of the system

β−1

∆t
un+1 −ν∆un+1 + (u∗ ·∇)un+1 +∇pn+1 = f̃n+1, in �,

∇ ·un+1 =0, in �,

un+1 =gn+1, on ∂�,

(2)

where β−1 is the leading coefficient of BDF of order q, u∗ =∑q−1
j=0 αj un−j

(αj are the coefficients of the extrapolation formula of order q) and f̃n+1 =
fn+1 + 1

∆t

∑q−1
j=0 βj un−j (βj are the coefficients of BDF of order q).

For BDF schemes with order greater than 1 we need further initial
data that in our cases will be provided by the exact solution. For gen-
eral cases, initial data could be provided by suitable explicit schemes (e.g.
Runge–Kutta) of the same order of the BDF used.

For the discretization in space, we chose conforming spectral elements
with numerical integration of Gauss–Legendre type.

In order to overcome instabilities due to the mixed formulation of
Navier–Stokes equations we make use of the QN − QN−2 scheme with
staggered grids [1], according to which local polynomials of degree N

in each variable are used to approximate the velocity field and local
polynomials of degree N − 2 in each variable are used to approximate
the pressure. By this choice, the inf-sup condition is satisfied through a
constant which is proportional to N−1/2 [1].

At each time-step tn ∈ (0, T ] we look for the numerical solution
(un+1

H , pn+1
H )∈VH ×QH, where VH := [QH(�)∩H 1

0 (�)
]2

and QH :={qH ∈
L2

0(�) : qH|Tk
∈QN−2(Tk), ∀Tk ∈Th} are the finite dimensional spaces, Th is

a suitable partition of � in Ne quadrilaterals Tk and QH :={vH ∈C0(�) :
vH|Tk

∈QN(Tk), ∀Tk ∈Th}.
We denote by Un ∈R

2Nv the array of the velocity grid function un+1
H

evaluated on the Gauss–Legendre–Lobatto nodes at time tn, and by Pn ∈
R

Np the array of the pressure grid function pn+1
H evaluated on the Gauss–

Legendre nodes at time tn. We reduce the system to the unknowns which
are not associated to Dirichlet boundary conditions and the right hand
side is modified accordingly, taking into account the contributions that
the Dirichlet boundary nodes give to internal nodes. This step generates a
right hand side [Fn+1

1 ,Fn+1
2 ]T that is non zero also in the continuity equa-

tion.
We denote by M the mass matrix, by K the stiffness matrix, by B

(resp. by N(U∗)) the matrix related to the discretization of −∇· (resp. (U∗ ·
∇)·), and we set C = β−1

∆t
M + νK +N(U∗), then the full approximation of
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system (2) reads

CUn+1 +BT Pn+1 =Fn+1
1

BUn+1 =Fn+1
2

or AWn+1 =Fn+1 (3)

with A=
[

C BT

B 0

]
, Wn+1 =

[
Un+1

Pn+1

]
, Fn+1 =

[
Fn+1

1
Fn+1

2

]
.

To solve system (3) one could use a global approach such as a precondi-
tioned Krylov method with either algebraic or differential preconditioners
or again with Schwarz type domain decomposition preconditioners or a
pressure Schur complement approach.

Alternatively, system (3) can be solved by a block LU factorization
with

L=
[

C 0
B −BC−1BT

]
, U =

[
I C−1BT

0 I

]
. (4)

The matrix Σ := −BC−1BT is the so called pressure Schur complement
matrix and to solve system (3) through the block LU factorization (4)
consists in finding the solution of the following subsystems (from now on
we will drop the index n+1 from all the vectors Un+1, Pn+1, Wn+1, Fn+1):

L− step : find Ũ, P̃ :
{

CŨ =F1
ΣP̃=F2 −BŨ,

U − step : find U, P :
{

P= P̃
C(Ũ −U)=BT P,

(5)

It is essential to note that, since a semi-implicit treatment of the convective
term is considered, matrix C is time-dependent and the resolution of the
system involving Σ, either by a direct method or an iterative one, is quite
expensive. The alternative is to replace Σ by a suitable approximation: this
is the idea which the Yosida scheme is based on.

3. THE YOSIDA SCHEME AND ITS IMPROVED VERSIONS

The Yosida scheme is an algebraic fractional-step scheme, it was intro-
duced in [9, 10] and it is characterized by the fact that the exact LU fac-
torization of the matrix A is replaced by an inexact LU factorization. In
other words, the Schur complement Σ is replaced by a suitable matrix S.
Such a scheme differs from the algebraic version of Chorin-Temam scheme
(see [2, 8]) basically for the fact that it is momentum preserving, while the
Chorin-Temam scheme is mass preserving. The Yosida scheme introduces
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a splitting error for the velocity that is O(∆t2) and, if it is coupled with
BDF2 (BDF—Backward Differentiation Formulas—of order 2), the result-
ing approximation scheme is O(∆t2), too. The splitting error on the pres-
sure is O(∆t3/2) [3, 4].

In [4, 11] two more accurate versions of Yosida method are proposed
and analyzed. Such improved Yosida schemes introduce a new matrix Q,
inside the U -step and acting on the pressure, which “fixes” the approxima-
tion of the Schur complement Σ. All is done at the algebraic level, with-
out a compulsory differential interpretation and this feature allows us to
neglect the setting up of boundary conditions for the sub-steps. At each
time step, we look for Ŵn+1 = [Ûn+1, P̂n+1

]T
, approximation of Wn+1 and

solution of ÂŴn+1 = F̂n+1, where Â = L̂Û is the inexact factorization of
A and F̂n+1 is the perturbed right hand side which takes into account the
approximate solutions of previous steps.

The factors L̂ and Û are defined as follows:

L̂=
[

C 0
B −BHBT

]
, Û =

[
I C−1BT

0 Q

]
with H := ∆t

β−1
M−1

and, if Q = I we recover the Yosida scheme, if Q is such that Q−1 =
−S−1D with D =BHCHBT we have the so called Yosida3 scheme, while
if Q is such that Q−1 =−S−1D+ (S−1D)2 +S−1B(HC)2HBT , we have the
so called Yosida4 scheme.

To solve the system ÂŴ= F̂ at a generic time step, means to solve the
following subsystems:

L− step : find Ũ, P̃ :
{

CŨ = F̂1
SP̃= F̂2 −BŨ,

U − step : find Û, P̂ :
{

QP̂= P̃
C(Ũ − Û)=BT P̂,

(6)

where the matrix S :=−BHBT is an approximation of the Schur comple-
ment Σ and it can be interpreted as the Neumann expansion of order zero
of the inverse of Σ.

Under suitable stability conditions on the time-step [3], the scheme
Yosida3 is third-order accurate in time for the velocity and of order 5/2
for the pressure, provided it is associated with a third-order BDF scheme,
while the scheme Yosida4 is fourth-order accurate in time for the veloc-
ity and of order 7/2 for the pressure, provided it is associated with a
fourth-order BDF scheme. The detailed description of the last method,
such as its analysis, is presented in [3, 4].

We note that the schemes Yosida3 and Yosida4 differ from the alge-
braic fractional-step proposed by Couzy [2] for two reasons. The first
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one, as said at the beginning of this section, is that Yosida schemes are
momentum preserving while the schemes proposed by Couzy are based on
the Chorin-Temam method, and therefore they are mass preserving. The
second reason is that Couzy improves the order of the scheme by approx-
imating the matrix C−1 with a Taylor expansion of order 3 (he notes that
the expansion of even order are unstable), while in the Yosida schemes
we don’t change the approximation of C−1 (it is always H ), but we intro-
duce a new matrix Q, acting on the pressure, in order to have ||Σ−SQ||=
O(∆tq), with q =3, 4.

Remark 3.1. Even though the splitting error of Yosida scheme on
the velocity is O(∆t2), it is higher than the error induced by BDF2,
so that, if we want that the splitting error does not prevail over the
BDF-error for ∆t → 0, it is better to join Yosida with BDF1. The same
arguments apply to both Yosida3 and Yosida4: we will join Yosida3 with
BDF2 and Yosida4 with BDF3.

The computational effort required by either Yosida3 or Yosida4 meth-
ods increases mildly with respect to the cost of Yosida. As a matter of
fact, at each time-step we have to solve an additional linear system of type
QP̂= P̃ in comparison with Yosida. In [3] a comparison between the com-
putational cost of Yosida, Yosida3, and Yosida4 is carried out, as well as
a comparison with the computational cost of the unsplit approach.

4. KIO METHOD

In this paper we want to compare Yosida schemes with the stiffly
stable version of the KIO method. For f ≡ 0 in � and (g · n)|∂� = 0 the
scheme reads ([6, Sec. 4.2]):

1. v̂
∆t

=∑q−1
j=0 βj un−j −∑q−1

j=0 αjN(un−j )un−j in �∪ ∂�

2.

⎧
⎨
⎩

∆pn+1 =∇ ·
(

v̂
∆t

)

∂pn+1

∂n
=n · (−ν

∑q−1
j=0 αj∇ × (∇ ×un−j ))

in �

on ∂�
(7)

3.
ˆ̂v

∆t
= v̂

∆t
−∇pn+1 in �∪ ∂�

4.

⎧⎨
⎩

β−1un+1−ˆ̂v
∆t

=ν∆un+1 in �

un+1 =0 on ∂�,

where the coefficients αj and βj have the same meaning given in (2).
Numerical results in (7) show that, if one uses the BDF scheme and the
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extrapolation formula of the same order q, than also KIO method is
accurate up to order q in time, thanks also to the use of the rotational
treatment of the diffusive term to set up the boundary condition on the
pressure.

The scheme (7) can be generalized for any external force field f 
= 0
and any boundary data g : (g ·n)|∂� 
=0 by replacing the first two steps of
(7) with the following ones:

1a.
v̂

∆t
=∑q−1

j=0 βj un−j −∑q−1
j=0 αjN(un−j )un−j + fn+1 in �∪ ∂�

2a.

⎧⎪⎪⎨
⎪⎪⎩

∆pn+1 =∇ ·
(

v̂
∆t

)

∂pn+1

∂n
=n · ( v̂

∆t
−ν

∑q−1
j=0 αj∇ × (∇ ×un−j ))

in �

on ∂�

and by imposing non-homogeneous boundary conditions on un+1 inside
step 4.

Remark 4.1. We note that if we want to approximate the Navier–
Stokes equation by conformal spectral element methods of QN − QN−2
type, with discontinuous pressure, the third step of KIO method has to be
stabilized following the ideas of Houston et al. [5]. On the contrary, being
the Yosida scheme of algebraic type, no trouble, in dealing with discontin-
uous pressure, is present.

5. NUMERICAL RESULTS

We define the errors between the exact solution of Navier–Stokes equa-
tions and the numerical one (obtained by either Yosida or KIO method) as

Eu =
(

∆t

NT∑
n=0

‖u(tn)−un
H‖2

H 1(�)

)1/2

, Ep =
(

∆t

NT∑
n=0

‖p(tn)−pn
H‖2

L2(�)

)1/2

.

Test case #1. First of all we consider a test case with computational
domain �= (−0.5,0.5)2 and t ∈ (0, T )= (0,1), f ≡0 in �× (0, T ) and u ·n=
0 on ∂�× (0, T ). A solution that satisfies these properties is the so-called
Kim and Moin solution [7]:

u(x, y, t) = e(−2α2π2tν)[− cos(απx) sin(απy), sin(απx) cos(απy)]T ,

p(x, y, t) = −1
4

[cos(2απx)+ cos(2απy)]e(−4α2π2tν) (8)
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Fig. 1. The errors Eu, Ep for the test case #1.

with α ∈ R
+. We have chosen α = 1 and ν = 10−2. By taking the period

of the solution as reference length, it follows that the Reynolds number is
Re=200. In Fig. 1 we show the errors Eu, Ep versus the time step ∆t for
a space discretization with Ne =1 and N =16, while in Fig. 2 we show the
behavior of ‖u(tn)−un

H‖H 1(�), of ‖p(tn)−pn
H‖L2(�) and of ‖∇ ·un

H‖L∞(�)

versus time. We note that KIO methods perform better than Yosida when
we use BDF2, or when we use BDF3 with not too small time-step.

Test case #2. We consider now the computational domain �= (−1,1)2

and t ∈ (0, T )= (0,1), with the right hand side f and the boundary data such
that the exact solution of Navier–Stokes equations is

u(x, y, t) = [sin(x) sin(y + t), cos(x) cos(y + t)]T ,

p(x, y, t) = cos(x) sin(y + t). (9)
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Fig. 2. Evolution in time of the H 1(�)−norm error for the velocity (top), L2(�)−norm
error for the pressure (middle) and of the L∞(�)−norm of the divergence of the velocity
(bottom) for test case #1 and BDF3 with ∆t =10−3.
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Fig. 3. The errors Eu, Ep for the test case #2.

We note that here f 
≡0 and (u ·n)|∂� 
≡0. In Fig. 3 we show the errors
Eu, Ep versus the time step ∆t for a space discretization with Ne = 1 and
N = 16 and viscosity ν = 10−5. By taking the period of the solution as ref-
erence length, it follows that the Reynolds number is Re  60,000. If we
compare the errors Eu, Ep we can conclude that Yosida and KIO methods
behave in a similar manner. Nevertheless, if we consider long-time compu-
tations, we observe that Yosida schemes seem more stable than KIO. In
Figure 4 we show the behavior of ‖u(tn)− un

H‖H 1(�), of ‖p(tn)−pn
H‖L2(�)
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and of ‖∇ · un
H‖L∞(�) versus time t ∈ (0,10) and we note that the norm

‖∇ ·un
H‖L∞(�) for the KIO solution shows sensible growth. It is well known

that KIO is a mass preserving method, nevertheless the magnitude of the
boundary divergence flux is controlled directly by the time-step (see [12])
and, for long-time computation, an accumulation of errors could occur as
Fig. 4 shows. The numerical results refer to BDF3, but the same conclusions
are obtained with BDF2, too.

Finally, in Fig. 5 we show the error field for the pressure on the
test solution (9) with viscosity ν = 10−2, for both BDF3+Yosida4 and
BDF3+KIO. We see that no boundary layers on the pressure are present
for both schemes. Note that we have produced the results for a “large”
value of the viscosity in order to remove the suspicion that when the vis-
cosity is too small possible boundary layers on the pressure could be hid-
den from the small value of the viscosity itself. In view of Remark 4.1 we
have no results for Kio method for spectral elements discretization.
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