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1 Introduction

The INTERNODES (INTERpolation for NOnconforming DEcompositionS)
method is an interpolation based approach to solve partial differential equations
on non-conforming discretizations [5, 9]. It is an alternative to projection-based
methods like mortar [1], or other interpolation-based method like GFEM/XFEM
[10]. Differently than in mortar methods, no cross-mass matrix involving basis
functions living on different grids of the interface are required by INTERNODES
to build the intergrid operators. Instead, two separate interface mass matrices
(separately on either interface) are used. The substantial difference between
GFEM/XFEM methods and INTERNODES consists in the fact that the former
ones use a partition of unity to enrich the finite element space, while the latter does
not add any shape function to those of the local finite element subspaces.

In this paper we apply the INTERNODES method to different problems such as
the Fluid Structure Interaction problem and the Stokes-Darcy coupled problem that
models the filtration of fluids in porous media. Our results highlight the flexibility
of the method as well as its optimal rate of convergence. Before addressing the two
specific problems above, we introduce an abstract formulation for heterogeneous
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problems. This will also be useful to state the definition of the interface matching
operators that will stand at the base of the INTERNODES method.

Let Ω ⊂ Rd , with d = 2, 3, be an open domain with Lipschitz boundary ∂Ω ,
Ω1 and Ω2 be two non-overlapping subdomains with Lipschitz boundary such that
Ω = Ω1 ∪ Ω2, and Γ = ∂Ω1 ∩ ∂Ω2 be their common interface.

Given a function f defined in Ω , we look for u1 in Ω1 and u2 in Ω2 such that

Lk(uk) = f in Ωk, k = 1, 2, (1)
Φ2(u2) = Φ1(u1) on Γ (Dirichlet-like condition), (2)
Ψ1(u1) + Ψ2(u2) = 0 on Γ (Neumann-like condition), (3)
boundary conditions on ∂Ω, (4)

where L1 and L2 are two differential operators (that may also coincide) while, for
k = 1, 2, Φk and Ψk are suitable boundary operators restricted to the interface
Γ , that depend upon the nature of the differential operators L1 and L2. More
specifically, Neumann conditions refer here to natural conditions that are enforced
weakly, whereas Dirichlet conditions identify those essential conditions that are
enforced directly in the solution subspaces, via the suitable choice of trial functions
(see, e.g., [13]). Typically for second order differential operators there is one
Dirichlet-like condition and one Neumann-like condition, however more general
situations are admissible.

Problem (1)–(4) provides an abstract setting for several kinds of differential
problems; here we present two instances of (1)–(4) which the INTERNODES
method is applied to.

2 Fluid Structure Interaction Problem

When modeling the coupling between fluids and solids, the viscous incompressible
Navier-Stokes equations are typically written in ALE (Arbitrarian Lagrangian
Eulerian) coordinates in the fluid domain, whereas an elasticity model (either linear
or nonlinear, depending on the type of structure) is solved in a reference frame; a
third field, the so-called geometry problem, allows to determine the displacement of
the fluid domain which defines, in turn, the ALE map, see, e.g., [4, 8, 15].

Let �Ωs and �Ωf be two non-overlapping reference configurations for the structure
and fluid domains, respectively, and �Γ = ∂ �Ωs∩∂ �Ωf be the fluid-structure reference
interface. We assume that the boundaries ∂ �Ωk, for k = s, f are Lipschitz continuous
and that (∂ �Ωk \ �Γ ) is the union of two nonoverlapping subsets ∂ �ΩN

k and ∂ �ΩD
k on

which Neumann and Dirichlet boundary conditions will be imposed, respectively.
Then, for any t ∈ (0, T ) let Ωs,t and Ωf,t be the computational structure and fluid
domains, respectively, such that Ωs,0 = �Ωs , Ωf,0 = �Ωf and Ω t = Ωs,t ∪ Ωf,t .
The current configurations Ωs,t and Ωf,t are defined as Ωk,t = {x = Dk,t (�x) =
�x + �dk(�x, t), ∀�x ∈ �Ωk}, with k = s, f , where �ds and �df are the displacements
induced by the dynamics (see Fig. 1).
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Fig. 1 At left: the ALE frame of reference. At right: the computational domains for the FSI
problem: the fluid domain Ωf,t and the structure domain Ωs,t . Γt = ∂Ωf,t ∩ ∂Ωs,t

We introduce the following entities:

– the outward unit normal vectors nk to ∂Ωk,t (current configuration) and �nk to
∂ �Ωk (reference configuration),

– the Arbitrary-Lagrangian-Eulerian (ALE) velocity w = ∂�df

∂t
|�x,

– the deformation gradient tensor for both structure (k = s) and fluid (k = f )

Fk = ∂x
∂�x = I + ∂�dk

∂�x for any�x ∈ �Ωk ,
– the fluid velocity uf and the fluid pressure pf , the dynamic viscosity of the fluid

μ, the fluid density ρf ,
– the Cauchy stress tensor for the fluid σ f = σ f (uf , pf ) = −pf I + μ(∇uf +

(∇uf )T ), and �σ f such that �σ f�nf = det (Ff )F−T
f σ f nf ◦ Df,t ,

– the Cauchy stress tensor σ s = σ s(�ds ) and the first Piola-Kirchhoff tensor �σ s =
�σ s (�ds ) = det (Fs )σ s(�ds )F−T

s for the structure, the structure density ρs .

Then, for any t ∈ (0, T ) the structure and fluid displacements (�ds and �df ) and
the fluid velocity and pressures (uf and pf ) are the solution of the FSI system:

structure problem (in reference configuration)

ρs
∂2�ds

∂ t2
− ∇ · �σ s = 0 in �Ωs , (5)

fluid problem (in current configuration)

ρf

∂uf

∂ t

###
�x

+ ρf ((uf − w) · ∇)uf − ∇ · σ f = 0, in Ωf,t , (6)

∇ · uf = 0 in Ωf,t , (7)

geometry problem (in reference configuration)

−!�df = 0 in �Ωf , (8)

interface conditions (at interface in reference configuration)

�σ s�ns + �σ f�nf = 0 (dynamic) on �Γ , (9)

uf ◦ Df,t = ∂�ds

∂ t
(kinematic) on �Γ , (10)

�df = �ds (adherence) on �Γ , (11)
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completed with: the Dirichlet boundary conditions uf = gD
f on Γ D

f,t and �df = gD
g

on �Γ 0
f ⊂ ∂ �Ωf , �ds = gD

s on �Γ D
s , the Neumann conditions σ f nf,t = gN

f on Γ N
f,t ,

�σ s�ns = gN
s on �Γ N

s , and the initial conditions uf = u0 in Ωf,0, �ds = �d0,
∂�ds

∂t
= �d1

in Ωs,0.

System (5)–(11) can be recast in the form (1)–(4) by associating the structure
problem with L1(u1) (now representing nonlinear operators, the choices of u1

and u2 are obvious), the fluid problem and the geometric problem with L2(u2),
both the adherence and the kinematic interface conditions are interpreted as Φ-
like conditions (they involve the traces of the unknowns functions on �Γ ), whereas
the dynamic interface condition is interpreted as a Ψ -like condition (as it involves
normal stresses on �Γ ).

3 Fluids Filtration in Porous Media (Stokes-Darcy Coupling)

Flow processes in a free-fluid region adjacent to a porous medium occur in many
relevant applications. Under the (realistic) assumption that the Reynolds number in
the porous domain is small, the Navier-Stokes equations could be therein up-scaled
to a macroscopic level and replaced by the Darcy law.

Consider the case of a tangential flow of a fluid over a porous bed. This situation
is known in literature also as near parallel flows [12], i.e. flows for which the
pressure gradient is not normal to the interface and the Darcy velocity inside the
porous domain is much smaller than the velocity in the fluid domain. The most
widely used approach to couple the free fluid regime with the porous-medium one
consists of:

– the introduction of an artificial sharp interface Γ between the Stokes (or fluid)
domain Ωs and the Darcy (or porous) domain Ωd ;

– the imposition of the mass conservation, the balance of normal forces and the
Beavers-Joseph-Saffman (BJS) experimental law on Γ [6], see Fig. 2.

solid wall

medium
porous

Fig. 2 A typical setting of the Stokes-Darcy coupled problem for a fluid over a porous bed
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To write down the associated mathematical model, we introduce the following
entities:

– the outward unit normal vectors nk to ∂Ωk,
– the dynamic viscosity μ, the density ρ, the velocity us and the pressure ps of the

fluid in Ωs ,
– the Cauchy stress tensor for the fluid σ s = σ s(us , ps) = −psI + μ(∇us +

(∇us)
T ),

– the Darcy velocity ud and the intrinsic average pressure pd in the porous domain,
the intrinsic permeability κ = κ(x) (for any x ∈ Ωd ) of the porous media,

– two given body forces fs and fd ,
– the normal unit vector nΓ to Γ directed from Ωs to Ωd (then nΓ = ns = −nd

on Γ ) and an orthonormal system of tangent vectors τ j , with j = 1, . . . , d − 1
on Γ .

The coupled problem that we consider reads:

Stokes problem (fluid domain)

−∇ · σ s = fs , ∇ · us = 0 in Ωs , (12)

Darcy problem (porous domain)

ud = − κ

μ
(∇pd − fd), ∇ · ud = 0 in Ωd , (13)

interface conditions (sharp interface)

us · ns + ud · nd = 0 (mass conservation) on Γ, (14)

(σ sns) · ns + pd = 0 (balance of normal forces) on Γ, (15)

(σ sns) · τ j + αμ�
τ j

T κτ j

us · τ j = 0, j = 1, . . . , d − 1, (BJS condition) on Γ, (16)

where α is a suitable parameter depending on the porous media. Indeed, the BJS
condition is not a coupling condition, as it only involves quantities from one side.

The system (12)–(16) is completed with suitable boundary conditions that read
(as usual, D stands for Dirichlet and N for Neumann): us = gD

s on ∂ΩD
s , σsns = 0

on ∂ΩN
s , pd = 0 on ∂ΩD

d , ud · nd = gN
d on ∂ΩN

d , where we assume that ∂ΩN
k and

∂ΩD
k are non-intersecting subsets of ∂Ωk \ Γ such that ∂ΩN

k ∪ ∂ΩD
k = ∂Ωk \ Γ .

The coupled system (12)–(16) can be recast in the form (1)–(4) by associating the
Stokes problem with L2(u2) and the Darcy problem with L1(u1). When considering
the weak (variational) formulation of the coupled problem (12)–(16), the interface
coupling conditions (14) and (15) can be treated in different ways depending on the
specific variational form used. In the form used in Sect. 6, the balance of normal
forces (15) plays the role of a Φ-like condition (2), while the mass conservation
condition (14) will be treated as a Ψ -like condition (3). In specific circumstances,
however, for instance when the interface Γ is parallel to one of the cartesian
coordinates, condition (14) can be easily enforced as a Dirichlet condition (thus
under the form (2)) on the space of trial functions and condition (15) as a Neumann
(natural) condition, e.g., like (3).
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4 Intergrid Operators for Non-conforming Discretization

We consider two a-priori independent families of triangulations T1,h1 in Ω1 and
T2,h2 in Ω2, respectively. The meshes in Ω1 and in Ω2 can be non-conforming
on Γ and characterized by different mesh-sizes h1 and h2. Moreover, different
polynomial degrees p1 and p2 can be used to define the finite element spaces. Inside
each subdomain Ωk we assume that the triangulations Tk,hk are affine, regular and
quasi-uniform [14, Ch.3].

Then, for k = 1, 2, let Xk,hk = {v ∈ C0(Ωk) : v|T ∈ Ppk
, ∀T ∈ Tk,hk }

be the usual Lagrangian finite element spaces associated with Tk,hh , while Yk,hk =
{λ = v|Γ , v ∈ Xk,hk } are the spaces of traces on Γ of functions in Xk,hk , whose
dimension is nk .

We denote by Γ1 and Γ2 the internal boundaries of Ω1 and Ω2, respectively,
induced by the triangulations T1,h1 and T2,h2 . If Γ is a straight segment, then Γ1 =
Γ2 = Γ , otherwise Γ1 and Γ2 may not coincide (see Fig. 3).

For k = 1, 2, let {x(Γk)
1 , . . . , x(Γk)

nk
} ∈ Γ k be the nodes induced by the mesh Tk,hk .

We introduce two independent operators that exchange information between the
two independent grids on the interface Γ : Π12 : Y2,h2 → Y1,h1 and Π21 : Y1,h1 →
Y2,h2 .

If Γ1 = Γ2, Π12 and Π21 are the classical Lagrange interpolation operators
defined by the relations:

(Π12μ2,h2)(x
(Γ1)
i ) = μ2,h2(x

(Γ1)
i ), i = 1, . . . , n1, ∀μ2,h2 ∈ Y2,h2, (17)

(Π21μ1,h1)(x
(Γ2)
i ) = μ1,h1(x

(Γ2)
i ), i = 1, . . . , n2, ∀μ1,h1 ∈ Y1,h1 . (18)

If, instead, Γ1 and Γ2 are geometrically non-conforming, we define Π12 and
Π21 as the Rescaled Localized Radial Basis Function (RL-RBF) interpolation
operators introduced in formula (3.1) of [3]. In both cases, the (rectangular) matrices
associated with Π12 and Π21 are, respectively, R12 ∈ Rn1×n2 and R21 ∈ Rn2×n1 and
they are defined by:

(R12)ij = (Π12μ
(2)
j )(x(Γ1)

i ) i = 1, . . . , n1, j = 1, . . . , n2,

(R21)ij = (Π21μ
(1)
j )(x(Γ2)

i ) i = 1, . . . , n2, j = 1, . . . , n1,
(19)

Fig. 3 Γ1 and Γ2 induced by the triangulations T1,h1 and T2,h2 , when d = 2
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where {μ(k)
i } are the Lagrange basis functions of Yk,hk , for k = 1, 2 and i =

1, . . . , nk .
In the special conforming case for which Γ1 = Γ2, h1 = h2 and p1 = p2, the

interpolation operators Π12 and Π21 are the identity operator and R12 = R21 = I

(the identity matrix of size n1 = n2). Finally, let MΓk such that

(MΓk )ij = (μ
(k)
j ,μ

(k)
i )L2(Γk)

, k = 1, 2, (20)

be the interface mass matrices. To assemble both the interface mass matrices and
the interpolation matrices, for both the Lagrange and the RL-RBF approaches, the
only information that are needed are the coordinates of the interface nodes.

Let �, k ∈ {1, 2}. If μ(k) ∈ [Yk,hk ]d with d = 2, 3; by writing Π�kμ
(k)

we mean that the interpolation operator Π�k is applied to each component of
the vector-value function μ(k). Finally, MΓk = diag(MΓk , . . . ,MΓk ) and R�k =
diag(R�k, . . . , R�k) are block diagonal matrices with d blocks.

5 INTERNODES Applied to the FSI System

We define the functional spaces:

Vf,t = [H 1(Ωf,t )]d , Qf,t = L2(Ωf,t ), VD
f,t = {v ∈ Vf,t : v = 0 on ∂ΩD

f,t },
V0

f,t = {v ∈ Vf,t : v = 0 on ∂ΩD
f,t ∪ Γt }, Vs = [H 1( �Ωs )]d ,

VD
s = {v ∈ Vs : v = 0 on ∂ �ΩD

s }, V0
s = {v ∈ Vs : v = 0 on ∂ �ΩD

s ∪ �Γ },
Vg = [H 1( �Ωf )]d , VD

g = {v ∈ Vg : v = 0 on ∂ �Ω0
f }, �Λ = [H 1/2

00 (�Γ )]d ,

(21)

and the lifting operators Rs : �Λ → �VD

s s.t. (Rs
�λ)|�Γ = �λ, Rf,t : �Λ → VD

f,t s.t.

(Rf,t
�λ)|Γt = �λ ◦ D−1

f,t .
Let us discretize the time derivatives by standard finite difference schemes (e.g.

a backward differentiation formula to approximate the first order derivative and
the Newmark method to approximate the second one). The weak semi-discrete
(continuous in space) counterpart of the FSI system (5)–(11) reads: for any time
level tn, with n ≥ 1, find un

f ∈ Vf,tn , pn
f ∈ Qf,tn , �dn

f ∈ Vg and �dn

s ∈ Vs satisfying

the Dirichlet boundary conditions un
f = gD

f (tn) on Γ D
f,tn and �dn

f = gD
g (tn) on

�Γ 0
f ⊂ ∂ �Ωf , �dn

s = gD
s (tn) on �Γ D

s and the initial conditions u0
f = u0 in Ωf,0,

�d0
s = �d0, and ∂�ds

∂t
|t=0 = �d1 in Ωs,0, such that:

As (�dn

s ,�vs ) = F n
s (�vs ) ∀�vs ∈ V0

s , (22)

Af (un
f ,�dn

f ; vf ) + Bf (vf , pn
f ) = F n

f (vf ) ∀vf ∈ V0
f,tn, (23)

Bf (un
f , q) = 0 ∀q ∈ Qf,tn, (24)
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G (�dn

f ,�vg) = 0 ∀�vg ∈ VD
g , (25)

As (�dn

s ,Rs�μ) + Af (un
f ,�dn

f ; Rf�μ) + Bf (Rf �μ, pn
f ) (26)

= F n
s (Rs�μ) + F n

f (Rf �μ) ∀�μ ∈ �Λ,

un
f ◦ Df,tn = a3�dn

s +�bn−1
3 , �dn

f = �dn

s on �Γ , (27)

where

As(�ds ,�vs) = �
�Ωs

(ρsa1�ds ·�vs + �σ s : ∇x̂�vs) d �Ω,

F n
s (�vs) = �

∂ �ΩN
s

gn
s,N ·�vsd�γ + �

�Ωs
bn−1

1 d �Ω,

G (�df ,�vg) = �
�Ωf

∇x̂�df : ∇x̂�vg dΩ,

Af (uf ,�df ; vf ) = �
Ωf,t

ρf (a2uf + ((uf − w) · ∇)uf ) · vf dΩ

+ �
Ωf,t

μ(∇uf + (∇uf )T ) : ∇vf ) dΩ,

Bf (uf , qf ) = �
Ωf,t

(∇ · uf )q dΩ,

F n
f (vf ) = �

∂ΩN
f,t

gn
f,N · vf dγ + �

Ωf,t
bn−1

2 · vf dΩ,

with a1, a2, a3 suitable real values and bn−1
1 , bn−1

2 , and bn−1
3 (depending on the

solution at the previous time levels) suitable vector functions arising from the finite
difference discretization of the time derivatives.

Equation (26) is the weak counterpart of the dynamic interface condition (9).
We consider now independent finite element space discretizations (as described

in Sect. 4) in �Ωf and �Ωs (a suitable inf-sup stable couple of finite elements will
be considered in the fluid domain) that may induce two different discrete interfaces
�Γf = Tf,hf ∩ �Γ and �Γs = Ts,hs ∩ �Γ in the case that �Γ is curved as in Fig. 3,
right. Then we use the subindices hk , for k = s, f , to characterize the subspaces
of the functional spaces (21) as well as the discrete counterpart of each variable
appearing in the system (22)–(27). From now on, in �dn

s,hs
, un

f,hf
, �dn

f,hf
, and pn

f,hf
,

the super-index n will be omitted for sake of notations.
In order to apply the INTERNODES method to the discrete counterpart of (22)–

(27), we define the scalar quantities:

rs,i = As(�ds,hs ,Rs�μ(s)
i ) − F n

s (Rs�μ(s)
i ), i = 1, . . . , d · ns,

rf,i = Af (uf,hf ,�df,hf ; Rf �μ(f )
i ) + Bf (Rf �μ(f )

i , pf,hf )

−F n
f (Rf �μ(f )

i ), i = 1, . . . , d · nf

(28)

(where {�μ(k)
i }d ·nk

i=1 are the Lagrange basis functions of [Yk,hk ]d ) and

zk,j =
d ·nk�

i=1

(M−1
�Γk

)jirk,i , k = s, f, j = 1, . . . , d · nk, (29)
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and the functions rk,hk =
d ·nk�

j=1

zk,j�μ(k)
j ,which are the so called discrete residuals and

are the discrete counterpart of �σ k�nk.

The INTERNODES method applied to system (9)–(11) at any tn reads:

As(�ds,hs ,�vs,hs ) = F n
s (�vs,hs ) ∀�vs,hs ∈ V0

s,hs
, (30)

Af (uf,hf
,�df,hf

; vf,hf
) + Bf (vf,hf

, pf,hf
) = F n

f (vf,hf
) ∀vf,hf

∈ V0
f,hf ,tn ,(31)

Bf (uf,hf
, qf,hf

) = 0 ∀qf,hf
∈ Qf,hf ,tn ,(32)

G (�df,hf
,�vg,hg ) = 0 ∀�vg,hg ∈ VD

g,hg
, (33)

rs,hs + Πsf rf,hf
= 0 (dynamic) on �Γs , (34)

uf,hf
◦ Df,tn = Πf s(a3�ds,hs +�bn−1

3 ) (kynematic) on �Γf , (35)
�df,hf

= Πf s
�ds,hs (adherence) on �Γf . (36)

The conditions (34)–(36) are the INTERNODES counterpart of the interface
condition (9)–(11), obtained by applying the intergrid operators Π12 and Π21

defined in Sect. 4. More precisely, if we make the associations s ↔ 1 and f ↔ 2,
the operator Πf s(= Π21) is used to interpolate on �Γf each component of the

discrete traces �ds,hs and (the discretization of) ∂�ds,hs

∂t
|tn that are known on �Γs , while

Πsf (= Π12) is used to interpolate on �Γs each component of the discrete counterpart
of the normal stress �σ f�nf that is known on �Γf .

By construction, rk,hk ∈ Yk = [Yk,hk ]d , for k = s, f , and then rf,hf has the
sufficient regularity to be interpolated.

Remark 1 The scalar values (28), typically computed as algebraic residuals at
the interface of the finite element system, are not the coefficients of the function
rk,hk w.r.t. the Lagrange expansion {�μ(k)

j }, rather the coefficients of rk,hk w.r.t. the

canonical basis {�ψ(k)

i }d ·nk

i=1 of Y�
k,hk

. The latter is the dual to {�μ(k)
j }, that is it satisfies

the relations (�ψ (k)

i ,�μ(k)
j )L2(�Γk)

= δij , for i, j = 1, d ·. . . , nk, with δij the Kronecker

delta. It can proved (see [2]) that �ψ (k)

i = �d ·nk

j=1(M
−1
Γk

)ji�μ(k)
j , i.e., the interface mass

matrix MΓk and its inverse play the role of transfer matrices from the Lagrange basis
to the dual one and viceversa, respectively.

Denoting by rf , rs , uf , ds , df , bn−1
3 , and df the arrays whose entries are

the Lagrangian degrees of freedom of rf,hf , rs,hs , uf,hf , �ds,hs , �df,hf , and bn−1
3 ,

respectively, the algebraic form of the INTERNODES conditions (34)–(36) reads:

M−1
Γs

rs + Rsf M−1
Γf

rf = 0, (37)

uf = Rf s(a3ds + bn−1
3 ), (38)

df = Rf sds . (39)

Notice that (37) can be equivalently written as rs + MΓs Rsf M−1
Γf

rf = 0.
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The INTERNODES method has been successfully applied to the FSI system in
[4, 8].

6 INTERNODES Applied to the Stokes-Darcy System

We define the functional spaces:

Vs = [H 1(Ωs )]d , VD
s = {v ∈ Vs : v = 0 on ∂ΩD

s }, (40)
Vd = {v ∈ [L2(Ωd )]d : ∇ · v ∈ L2(Ωd )}, VN

d = {v ∈ Vd : v · n = 0 on ∂ΩN
d },

Qs = L2(Ωs ), Qd = L2(Ωd ), Λ = H
1/2
00 (Γ ).

Then we consider the following weak form of the Stokes-Darcy coupled problem
(12)–(16) [11]: find us ∈ Vs , ps ∈ Qs , ud ∈ Vd , pd ∈ Qd , and λ ∈ Λ with us = gD

s

on ∂ΩD
s , ud · nd = gN

d on ∂ΩN
d such that:

2μ

�

Ωs

D(us) : D(vs ) dΩ −
�

Ωs

ps∇ · vs dΩ +
�

Γ

λvs · ns dΓ (41)

+
d−1�

j=1

�

Γ

αj (us · τ j )(vs · τ j ) dΓ =
�

Ωs

fs · vs dΩ ∀vs ∈ VD
s ,

�

Ωs

qs∇ · us dΩ = 0 ∀qs ∈ Qs,

μ

�

Ωd

(κ−1ud) · vd dΩ −
�

Ωd

pd∇ · vd dΩ +
�

Γ

λvd · nd dΓ (42)

=
�

Ωd

fd · vd dΩ ∀vd ∈ VN
d ,

�

Ωd

qd∇ · ud dΩ = 0 ∀qd ∈ Qd,
�

Γ

us · nsη +
�

Γ

ud · ndη = 0 ∀η ∈ Λ, (43)

where D(v) = (∇v + (∇v)T )/2, while αj = αμ/
�

τT
j κτ j .

The Lagrange multiplier λ ∈ Λ is in fact λ = pd = −(σsns) · ns on Γ .

We discretize both Stokes problem (12) and Darcy problem (13) by inf-sup stable
(or stabilized) couples of finite elements (see, e.g., [7]). Independent finite element
space discretizations (as described in Sect. 4) are considered in Ωs and Ωd that may
induce two different discrete interfaces Γs = Ts,hs ∩ Γ and Γd = Td,hd ∩ Γ in
the case that Γ is curved as in Fig. 3, right. Then we use the subindices hk , for
k = s, d , to characterize the subspaces of the functional spaces (40) as well as
the discrete counterpart of each variable appearing in the system (41)–(43). For
k = s, d , Λk,hk = Λ ∩ Yk,hk .
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In order to apply the INTERNODES method to the discrete counterpart of (41)–
(43), we define the scalar quantities:

rk,i =
�

Γ

(uk,hk · nk)μ
(k)
i , i = 1, . . . , nk, k = s, d, (44)

(where {μ(k)
i }nk

i=1 are the Lagrange basis functions of Yk,hk ) and

zk,j =
nk�

i=1

(M−1
Γk

)jirk,i , j = 1, . . . , nk, k = s, d, (45)

and the discrete functions (belonging to Yk,hk )

wk,hk =
nk�

j=1

zk,jμ
(k)
j . (46)

The INTERNODES form of problem (41)–(43) reads: find us,hs ∈ Vs,hs , ps,hs ∈
Qs,hs , ud,hd ∈ Vd,hd , pd,hd ∈ Qd,hd , λs,hs ∈ Λs,hs and λd,hd ∈ Λd,hd (satisfying
the given boundary conditions) such that:

2μ

�

Ωs

D(us,hs ) : D(vs,hs ) dΩ −
�

Ωs

ps,hs ∇ · vs,hs dΩ +
�

Γ

λs,hs vs,hs · ns dΓ (47)

+
d−1�

j=1

�

Γ

αj (us,hs · τ j )(vs,hs · τ j ) dΓ =
�

Ωs

fs · vs,hs dΩ ∀vs,hs ∈ VD
s,hs

,

�

Ωs

qs,hs ∇ · us,hs dΩ = 0 ∀qs,hs ∈ Qs,hs ,

μ

�

Ωd

(κ−1ud,hd
) · vd,hd

dΩ −
�

Ωd

pd,hd
∇ · vd,hd

dΩ (48)

+
�

Γ

λd,hd
vd,hd

· nd dΓ =
�

Ωd

fd · vd,hd
dΩ ∀vd,hd

∈ VN
d,hd

,
�

Ωd

qd,hd
∇ · ud,hd

dΩ = 0 ∀qd,hd
∈ Qd,hd

,

Πdsws,hs + wd,hd
= 0 on Γd , (49)

λs,hs = Πsdλd,hd
on Γs . (50)

The conditions (49)–(50) are the INTERNODES counterpart of the interface
condition (14)–(15), obtained by applying the intergrid operators Π12 and Π21

defined in Sect. 4. More precisely, if we make the associations d ↔ 1 and s ↔ 2, the
operator Πsd(= Π21) is used to interpolate on Γs the discrete trace of pd,hd that is
known on Γd , while Πds(= Π12) is used to interpolate on Γd the weak counterpart
of us,hs · ns that is known on Γs .
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Denoting by ws , wd , ts , and td , the arrays whose entries are the Lagrangian
degrees of freedom of ws,hs , wd,hd , λs,hs , and λd,hd respectively, the algebraic form
of the INTERNODES conditions (49)–(50) reads:

RdsM
−1
Γs

ws + M−1
Γd

wd = 0, ts = Rsd td . (51)

We test the accuracy of INTERNODES by solving problem (12)–(16) with:
Ωs = (0, 1) × (1, 2), Ωd = (0, 1) × (0, 1), μ = 1, κ = 10−2, κ =
κI , boundary data and fs = fd are such that the exact solution is us =
κ[− sin(π

2 x) cos(π
2 y) − y + 1, cos(π

2 x) sin(π
2 y) − 1 + x], ps = 1 − x, ud =

κ[sin(π
2 x) cos(π

2 y) + y, cos(π
2 x) sin(π

2 y) − 1 + x], pd = 2
π

cos(π
2 x) sin(π

2 y) −
y(x−1). The approximation in each subdomain is performed with stabilized hp-fem
on quadrilaterals ([7]). The errors es = 
us −us,hs
H 1(Ωs )

+
ps −ps,hs
L2(Ωs )
and

ed = 
ud −ud,hd 
L2(Ωd)+
pd −pd,hd 
H 1(Ωd ) are shown in Fig. 4, versus either the
mesh sizes hs , hd and the polynomial degrees ps and pd , they decay exponentially
w.r.t. the polynomial degrees (Fig. 4, at left) and with order q = ps = pd w.r.t. the
mesh sizes (Fig. 4, at center and at right).

In Fig. 5 we show the INTERNODES solution computed for the cross-flow

membrane filtration test case with non-flat interface Γ . The setting of the problem
is given in Sect. 5.3 of [7]. We have considered either a cubic spline interface (Fig. 5
at the left) and a piece-wise interface (Fig. 5 at the right). Quadrilaterals hp-fem are
used for the discretization in either Ωs and Ωd . The solution at left is obtained with
hs = 3/8, hd = 1/2, and ps = pd = 4, that at right with hs = hd = 3/8, ps = 4
and pd = 3. RL-RBF interpolation is used to build the intergrid operators (17) when
Γ is curved, and Lagrange interpolation when Γ is piece-wise linear.

Numerical results show that INTERNODES keeps the optimal accuracy of the
local discretizations and that it is a versatile method to deal with non-conforming
interfaces.

Fig. 4 Errors es (red) and ed (blue) for the Stoked-Darcy problem (12)–(16) solved on non-
conforming meshes by the INTERNODES method



INTERNODES for Heterogeneous Couplings 71

Fig. 5 INTERNODES solution of the Stokes-Darcy coupling. The velocity field us is red in Ωs

and black in Ωd , the underground colored scalar field is the hydrodynamic pressure. Γ is curved
at left and piece-wise linear at right
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