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24 Domain decomposition and virtual control for fourth
order problems

P. Gervasid, J.-L. Liong, A. Quarteroni

I ntroduction

In this paper we consider domain decomposition strategigetirth order operators featuring
a dominant second order component. More specifically, garenpen and bounded domain
Q ¢ R? with continuous and Lipschitz bounda®?, the fourth order problem we consider
reads:

1)

o2 A%y — Au=f in Q
u=g, n-Vu=h onoQ

wheres = const. and the functiong, g andh are assigned with sufficient regularity, while
n is the unit outward normal vector @if? .

We will partition 2 into several subdomains (overlapping or not) and considtardnt
ways to formulate (1) at the subdomain level. In particukar are looking for suitable control
problems, the control variables being faced on the subdoimétrfaces. Furthermore, we
address the so-called heterogeneous case, i.e. a sitimtwmich the coefficient is set
to zero on a subregion d?. Our control approach is then devised in order to handle the
coupling between the original fourth order problem and #eosid order one that is obtained
when droppingr out. A similar heterogeneous coupling has been previousiystigated for
a second-order advection diffusion problem with dominaivieztion (see [GLQOO]).

An outline of the paper is as follows. First the overlappirgdmposition and the hetero-
geneous coupling are considered: a natural choice for thefanctional is introduced and
it has been proved that its minimization leads to a uniquetisi for the coupled problem.
After, the non overlapping decomposition is taken into art@nd both homogeneous and
heterogeneous coupling are considered. Numerical reatdtshown for both overlapping
and non-overlapping decompositions.

The overlapping situation

For the sake of exposition we consider the case of deconimasiy two subdomain@; and
Q-, which satisfy

Q=0UQ, 9N #0, T =00
We definel’; = 0, nTandS; = 09Q; \ Ty, fori = 1,2. ThenT' =Ty UT,. Further we
define the differential operators
Li:=—-A, Ly:=02A%2—-A.
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Figure 1: An overlapping decomposition @fin two subdomains.

The heterogeneous coupling by means of virtual controliisfdated as follows:

Liuy = f in 0 Lous = f in 05
up =g onT’ Uy = g, n-Vuy =h onls (2)
U = A\ on.s; U = /\27 ns - Vuy = M2 ON Sy

whered); = S; UT;, fori = 1,2 (see Figure 1) and, is the unit outward normal vector on
Ss.

The functions\;, s andus are thevirtual controls They are chosen in such a way that
uy andus “adjust” in the best possible way on the overlapn Q. To this aim we introduce
the cost functional

1
J(/\1=/\27,U2) = 5/0 o (Ul (/\1) - UQ(/\27,U2))2 ds?,
1M82s

and consider the minimization problem:

\ i)I‘lf J(A1, Az, pi2). 3)
1,A2,M2

This problem has a unique solution. Indeed, let us rewrigestilutionsu; andus of (2)
as

0
uy = uy + v, ugzug—l—v27

whereu! depends on the dathandg, S depends orf, g andh, v; depends om\;, v,
depends o\, andu., and satisfy:

Liwd=f inQ, uf=9g onTy, u)=0 onS,

Livi =0 in Q], v =0 OnF1, v = N\ OnS]7 (4)
and
Loud=f inQy, ui=yg, n-Vud=nh onls,
ud=0, ny-Vu)=0 onSs, (5)
Lavy =0 in QQ, vy =0, n-Vu, =0 0nF27
Uy = Ay Ny - Vg = J7p) on.Ss.
Then

1
J(A1, Az, p2) = 5@(/\1 s Az, p2) + L(A1, Az, p2),
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where the quadratic functiondl is given by

Q(A1, A2, p2) = / (v1 — v2)? dY,

SN2

while £ is an affine functional. Consequently, if the functionsandu, are smooth enough,
one can define a semi-norm

1AL, A2, o I = (Q(AL, Ao, p2)) V2, (6)

on the space of A1, Ao, p2}.

Actually, this is anorm Indeed ifQ (A1, A2, p2) = 0, thenv; = vy = vin Q1 N Qy. ¢From

(4) we know thatAv = 0in Q; N Oy, andv = 0onX = (2 N Q) N IN. Moreover, from

(5) we obtain thah - Vo = 0 on ¥ too. Thus by the continuation theorem it follows that

v =0inQ; N Q. ThenA; = Ay = uo = 0 which leads to the conclusion that (6) is a norm.
Therefore, if all data are smooth enoudtt, .J (A1, A2, o) admits a solution in the space

of {\1, A2, uo } obtained by completion for the norm (6).

Numerical resultsfor the overlapping heterogeneous decomposition

In order to approximate the fourth order problem by Galerkiethod with Lagrangian poly-
nomials, we consider a mixed formulation of problem (1). Hue sake of simplicity we
consider homogeneous boundary data, thgtis 0 andh = 0. The mixed formulation we
have adopted reads as follows. Giver L*(Q), find (u,w) € V := HJ(Q) x H'(Q) :

(7)

(Vu,Vz2)g —o(Vw,Vz)g = (f,2)a Vz € HQ)
o(Vu, Vo)g + (w,v)q =0 Yo € HY(Q),

where(-, -)o denotes thd., inner product ir.

Remark 1 Let us set
A(u, w; z,v) = (Vu,Vz)g — o(Vw, Vz)q + 0(Vu, Vo)q + (w,v)q.
A is continuous over the spadé and is positive over the spadé:(Q) x L?(Q2). In fact
Alu, wyu,w) = ||Vull7 ) + [lw]l72 ). Then, if the solution of (7) exists, it is unique. On
the other hand, the weak form of problem (1) reads: finel H3(Q) such that:
o2 (Au, Av)g + (Vu, Vo)g = (f,v)q Vv € HZ(Q).

Existence and uniquenesswofollows by Lax-Milgram Lemma. Moreover,c H*(Q) (if
is regular enough) and the couple, w = o Au) is a solution to problem (7).

_Inorder to formulate the mixed heterogeneous problem weeefi
V2 = H& (Qz) X H] (Qg), W] = H& (Q] ), V2 = Hfl‘z (Qz) X H] (Qg), W] = Hlll(Q]) where
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Hp () = {v e H' () : v, = 0}. Then we solve the minimization problem (3) where
up € Wi, (us2,w) € V5 are the solutions to the following problem

(Vuz,Vz)q, — 0(Vws,Vz)a, = (f,2)q, Vz€ H}(Q2)

0(Vuz, Vo)q, + (wa,v)q, =0 / pavds Vo € HY(Q9) @®
/s 8
(VU],VZ)Q1 = (f:Z)Q1 Vz e H(}(Q])

U = A\ OnS], Uy = Ao ONSy

The minimization problem (3) is solved by the BFGS Quasi-Mewmethod with a mixed
guadratic and cubic line search procedure ([JS96]), whideuae a Galerkin approximation
by conformal spectral elements to solve the associatedqiro(B).

We have considered the following domain and its decompmositi

Q= (1,12 0 =(-1,.5) x (=1,1), Q3 = (0,1) x (=1,1).

The right-hand side and the boundary data are chosen shi&aalytical solution is(z,y) =
(z? — 1)e¥ + (y* — 1)e”.

In Q; we have consideredl x 2 equal spectral elements, while i, 2 x 2 equal spectral
elements. If not otherwise specified, the polynomial degeessbeen sev = 4.

In order to assess numerically the above theory, we congli@éeiollowing error terms, that
we show in Table 1. The minimum value attained by the funeial( A, Ao, u2): J: the
maximum interface errors and t&?-norm errors fori = 1, 2:

. ||“i - “’NHH?(Q,-)

[|wg —ul| .
s8i = |lur —uallpe(s;y, E(u)i= Wi:?’) E(un)i =

9)
llunllm2(a:)
whereu is the analytical solution of the global fourth-order pretol (1),u; are the numerical
solutions of the virtual control problem (3) andy is the spectral element solution of the
discretized global fourth order problem (1).

o | s E | J | E)i | E)s | E(un)i | E(un)s

1| 1.90e-1| 9.92e-2| 6.58e-4 | 1.95 | 2.02 | 1.96 2.02
1072 | 3.64e-4| 2.97e-3| 1.47e-7 | 1.04e-3| 3.08e-2| 2.74e-4 | 3.08e-2
10-* | 1.28e-6| 1.23e-6| 6.36e-14 1.02e-3| 6.96e-4| 3.33e-6 | 3.62e-6
1076 | 1.25e-6| 1.13e-6| 6.18e-14| 1.02e-3| 6.96e-4| 3.33e-6 | 1.06e-6

Table 1: Numerical results for the heterogeneous coupliitig @verlap.

We note that the minimum value attained by the functiohatends to zero when the
coefficiento tends to zero, as well as the jumps of the solution acrossntieefaces. The
H?—norm errors are bounded from below by the discretizationrewhich depends on the
spectral polynomial degre¥.

The non overlapping situation

We consider now a decomposition by two disjoint subdom&inand2, and a unique inter-
faceS = 90, N 9Q,. Again,T'; = 9Q; N 0N fori = 1,2 (see Figure 2).
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Fl FQ

Figure 2: A partition of2 in two disjoint subdomains.

The homogeneous couplirfgr the fourth order problem (1) would read as follows: we
look for A\, u on S which solve the minimization problem

inf (1 (A, 1), w2 (A, ) (10)
whereu, andu, satisfy:

Loui = f in 0, Lous = f in 0y
u =g, n-Vuy =h onl; us = ¢, n-Vus =h onl, (12)
up = A, ng-Vu; =pu onsS Uy = A, ng-Vuy, =pu ons,
andng is the unit normal vector of directed from; to Q5.
The most natural choice of the cost functional is

Bow = [ o —w+ (5— - 5—) (12)

ans ans

A A Aus \ >
+(Au1—Au2)2—|—<a w9 uz> ]ds

8ng 8ng
where bothu; andu, depend on the virtual controdsandu andd/dngs stands fomg - V.

Remark 2 The choice of the functional, is justified by the fact that the global solution of
problem (7), which annihilates the right hand side of (18)doked for inH} (Q2) x H* ().

Another possible choice for the cost functional is obtaibgdooking at the mixed for-
mulation of problem (11) that we are going to introduce. Foe 1,2 we defineV; =
Hg () x H'(Q;) andV; = Hyp (Q;) x H'(Q;). The mixed approach for the homogeneous
coupled problem (11) reads: fifd;, w;) € V; fori = 1,2 such that:

(Vur, Var)a, — o(Vwr, Var)a, = (f, 21)0, Vo € HI(Q))  (13)
o(Vuq,Vui)a, + (wr1,v)a, = U/q/w] Yo, € H'Y(Qy) (14)
(Vuz, Vaz)a, — 0(Vwa, Vao)a, = (f, 22)a, Vzy € Hg(2)  (15)
o(Vuy, Vur)a, + (w2, v2)q, = —U/Suv2 Yoy € H'(Qy) (16)

U] = Uy = A on S, (17)
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and the virtual controla andu are determined by the minimization problem (10).
The choice of the functional is made based on the followingeobation. Taking: andv €
C§°(Q) in (7) we obtain by integration by parts

—Au+ocAw=f z—a.e.inQ (18)
—cAu+w=0 =z —a.e.inf. (29)

To be more general, let us assume thabakes two different values; in Q; andos in Q.
Then lety € H,/?(S) and denote bys; an extension of in €; such thaty; € H (1),
@ir; = 0, @55 = @, i = 1,2. Then, taking

_ ()51 in 0
= ()52 in QQ

in (7) and using (18) we deduce that

aU] 6’(1)] au2 8w2 1/2
a._ a - —_— — 09— = H X
/S <8”S 7! 5”5) v /s (577,5 72 3ns> P =0 Vo & Hop'(S) (20)

Proceeding in a similar way in the second equation of (73, tilie using (19), we obtain that

Ouy Ous 1/2
1 a2 = H ) 21
[ (g mg)o=0 voe ) @1)
This latter condition is implicitly guaranteed by havingoslen the same multiplier in (14)
and (16). On the other hand, since problem (13)-(17) gueeanheither the continuity of
w across the interface nor the transmission condition (2@)]awok for these properties by
choosing the following cost functional

1 Oun ow, Ous ows \ \ >
Jo (N = — wsy)? — o) =2 2
o= [ [(wl wn)? + ((am "ans> (ans ”ans)> ]
In Table 2 we show the numerical results obtained by the maation of functional/;, versus
the coefficientr. The quantities ., s., andsgq,, stand for the maximum norm of the jumps
of du/dng, w anddw/Ongs on S, respectively, whileJ; is the minimum value achieved by
the cost functionall;. Moreoveré(u); and&(uy); (for i = 1,2) are the errors defined in

(9). The jump ofu on S is not reported since it is always of the same order of the iinach
precision.

ol s | sw | Saw | | S | E)s | Eun | E(un)e
1. | 3.71e-5| 2.85e-5| 4.73e-4| 5.88e-08| 9.80e-4| 6.97e-4| 6.21e-6| 3.80e-6
1072 | 9.81e-7| 2.72e-5| 1.54e-5| 2.22e-10| 9.79e-4| 6.96e-4| 1.55e-7| 1.20e-7
10~4 | 2.03e-8| 5.12e-7| 2.26e-6| 1.01e-12| 9.79e-4| 6.96e-4| 1.20e-6 | 8.44e-7
10-% | 8.00e-5| 1.47e-7| 2.26e-8| 3.41e-09| 9.79e-4| 6.96e-4| 1.17e-6 | 8.23e-7

Table 2: Numerical results for the homogeneous couplingavit overlap. Minimization of
the functional/;.
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o | Sau Sw Sduw Jo | E)i | E)s | E(un)i | E(un)s
1. | 2.15e-5| 2.83e-5| 2.10e-4| 1.20e-08| 9.79e-4| 6.96e-4| 2.49e-6 | 2.47e-6
1072 | 3.31e-6| 3.98e-6| 2.07e-4| 7.51e-12| 9.79e-4| 6.96e-4| 1.31e-6| 9.18e-7
107* | 4.62e-6| 5.32e-6| 2.23e-6| 1.12e-11| 9.79e-4| 6.96e-4| 1.07e-6 | 7.49e-7
1076 | 8.00e-5| 2.92e-7| 2.27e-8| 3.41e-09| 9.79e-4| 6.96e-4| 1.18e-6 | 8.27e-7

Table 3: Numerical results for the homogeneous couplingavit overlap. Minimization of
the functionalls.

o | saw | 56 | J5 | E()i | E)s | Elun) | E(un)s
1. [ 828 | 2.47e-4| 1.76e-02| 1.82 | 1.78e-1| 1.82 1.78e-1
10-2 | 1.50e-1| 8.62e-5| 5.89e-05| 1.13e-3| 3.08e-2| 5.63e-4 | 3.08e-2
10-* | 1.60e-5| 3.08e-7| 6.83e-09| 9.79e-4| 6.96e-4| 1.13e-6 | 3.41e-6
1076 | 2.68e-7| 2.69e-7| 7.05e-13| 9.79e-4| 6.96e-4| 1.19e-6 | 8.31e-7

Table 4: Numerical results for the heterogeneous coupliitigout overlap. Minimization of
the functionalJs.

Remark 3 When the functional; is replaced by a simpler functional in which the terms
depending om; are dropped, similar results to those of Table 2 are obtained

In Table 3 we show the numerical results obtained by the mdtion of functionals.

Theheterogeneous couplirigr non overlapping situations reads as (8), where we use the
virtual controlsu instead ofu,; and a single control instead of\; and)\, and then we solve
the minimization problem (10). In this case we choose thiefdhg cost functional:

1 8”] 8uQ 611)2 2 8uQ 2
J3(A, ) = E/S [ <6Tq " Bns +067,5> + <087q> ]ds.
Note that through the minimization of; we are enforcing the fulfilment of the matching
conditions (20) and (21) where, this time, we have taken- 0.

In Table 4 we show the numerical results obtained by the mgdtion of functionalJs
on the heterogeneous coupling without overlap. In paricule defines, = ||0u/dns —
Oug [Ons + aOws [Ons|| o= (s)-

As for the overlapping case, we note that the minimum valtgretd by the functional;
tends to zero when the coefficientends to zero, as well as the jump of the normal derivative
of u across the interfac§. Again, the H2—norm errors are bounded from below by the
discretization error, which depends on the spectral patyiabdegreeV.
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