
Virtual Control for Fourth-Order Problemsand for Heterogeneous Fourth-OrderSe
ond-Order CouplingPaola GervasioDepartment of Mathemati
s, University of Bres
ia, via Valotti, 9. 25133 Bres
ia(Italy) gervasio�ing.unibs.itSummary. We 
onsider both approximation of fourth-order problems derived,e.g., the Kir
ho� plate model, and heterogeneous 
oupling between a fourth-orderproblem and a redu
ed se
ond-order problem, des
ribing a plate-membrane model.The multidomain virtual 
ontrol approa
h is used. This paper is devoted to theanalysis and 
onstru
tion of the 
ost fun
tional gradient in order to render theminimization pro
edure e�e
tive.1 Introdu
tionThe multidomain virtual 
ontrol approa
h was 
onsidered in [3℄ 
ouplingse
ond-order and �rst-order equations with both overlapping and non-overlappingde
ompositions. The idea is to work with Diri
hlet 
onditions on the inter-fa
es of the de
omposition, and the Diri
hlet data (the virtual 
ontrols) aredetermined through the minimization of a suitable 
ost fun
tional. The 
har-a
terization of the 
ost fun
tional is quite natural for overlapping de
ompo-sitions, while it is not obvious for the non-overlapping 
ase. These 
on
eptswere extended in [4℄ to fourth-order problems and to the 
oupling betweenfourth-order and se
ond-order ellipti
 equations, moreover various 
ost fun
-tionals have been proposed for non-overlapping de
ompositions. Neverthelessin the previous papers the minimization algorithm used did not take advan-tage of the 
onstru
tion of the 
ost fun
tional gradient in terms of adjointproblems, as is usually done in 
ontrol theory.This paper is devoted to the 
onstru
tion of both adjoint problems andthe 
ost fun
tional gradient, for the parti
ular problem dis
ussed here, inorder to be used within a minimization method. We fo
us our attention onnon-overlapping de
ompositions.Lastly, we give numeri
al results whi
h demonstrate the e�e
tiveness of thisminimization pro
edure versus another optimization algorithm whi
h doesnot use derivatives.We brie
y re
all the statement of the di�erential problem. We are inter-ested in approximating the solution u of the fourth-order boundary valueproblem: ��2�2u��u+ �u = f in 
 � R2u = �u=�n = 0 on �
 (1)



2 Paola Gervasiowhere � and � are positive 
onstants.If we 
onsider the Kir
ho� plate model (see [5℄) and dis
retize it in timeby, e.g., a 
lassi
 �nite di�eren
e s
heme, at ea
h time step we obtain aproblem like (1). In this 
ase u denotes the verti
al displa
ement, while �2represents the modulus of the 
exural rigidity and is proportional to theYoung modulus of the material. The boundary 
onditions u = �u=�n = 0
orrespond to 
onsidering a 
lamped plate.Problem (1), restated in mixed form, formally reads: �nd (u;w) in 
 su
hthat ���u+ �u+ ��w = f; ���u+ w = 0 in 
u = �u=�n = 0 on �
: (2)In the 
lassi
al notation for Lebesgue and Sobolev spa
es, the weak formof (2) reads: given f 2 L2(
), �nd (u;w) 2 H10 (
) �H1(
) su
h that( (ru;rz)
 + �(u; z)
 � �(rw;rz)
 = (f; z)
 8z 2 H10 (
)�(ru;rv)
 + (w; v)
 = 0 8v 2 H1(
): (3)We note that the boundary 
ondition �u=�n = 0 is a natural 
ondition forthe se
ond equation of (3). Existen
e and uniqueness of a solution for problem(3) are proved in [2℄, provided that the 
omputational domain 
 � R2 is a
onvex polygon.Further, we 
onsider the heterogeneous fourth-order se
ond-order model:���u1 + �u1 = f in 
1u1 = 0 on �1 (�2�2u2 ��u2 + �u2 = f in 
2u2 = �u2=�n = 0 on �2+transmission 
onditions on S; (4)where 
1 and 
2 are two disjoint subdomains of 
 su
h that 
1 [
2 = 
,S := �
1 \ �
2 is the interfa
e of the de
omposition and, for i = 1; 2,ui := uj
i and �i := �
 \ �
i (see Figure 1). Model (4) 
ould, for instan
e,des
ribe the transversal displa
ement of a 
omposite elasti
 stru
ture whi
his made of two di�erent 
omponents, one (
orresponding to 
1) behaving likea membrane, the other (
orresponding to 
2) like a bending plate.PSfrag repla
ements�1 �2
1 
2SnSFig. 1. A partition of 
 in two disjoint subdomains.



Virtual Control for Fourth-Order Problems 32 The multidomain virtual 
ontrol approa
hWe 
onsider a non-ovelapping de
omposition of 
 into two disjoint subdo-mains 
1 and 
2 (see Fig. 1). For i = 1; 2, we de�ne Vi = H1�i(
i)�H1(
i),where H1�i(
i) := fv 2 H1(
i) : vj�i = 0g: Moreover we 
onsider the spa
eH1=200 (S) := f' 2 L2(S) : 9v 2 H1(
); vjS = '; vj�
 = 0g, and we set � :=H1=200 (S)�H1=2(S). Lastly, we set ((ui; zi))
i := (rui;rzi)
i + �(ui; zi)
i :The multidomain formulation of (3), based on the use of virtual 
ontrol,reads as follows: for i = 1; 2, �nd (ui; wi) 2 Vi su
h that:((u1; z1))
1 � �(rw1;rz1)
1 = (f; z1)
1 8z1 2 H10 (
1) (5)�(ru1;rv1)
1 + (w1; v1)
1 = ZS �v1 8v1 2 H1(
1) (6)((u2; z2))
2 � �(rw2;rz2)
2 = (f; z2)
2 8z2 2 H10 (
2) (7)�(ru2;rv2)
2 + (w2; v2)
2 = � ZS �v2 8v2 2 H1(
2) (8)u1 = u2 = � on S; (9)where � 2 H1=200 (S) and � 2 H1=2(S) are the virtual 
ontrols and are deter-mined by solving the minimization probleminf(�;�)2� J1(u1(�; �); w1(�; �); u2(�; �); w2(�; �)): (10)The 
ost fun
tional J1 is de�ned asJ1(�; �) = 12 ZS"(w1 � w2)2+���u1�nS � � �w1�nS��� �u2�nS � � �w2�nS��2#ds:The 
hoi
e of J1 is justi�ed in [4℄, taking into a

ount the transmission
onditions for the state equations (5){(9).2.1 The minimization pro
edureWe solved the minimization problem (10) either by the Bi-CGStab method [9℄on the linear system rJ1 = 0, or by the Broyden-Flet
her-Goldfarb-Shanno(BFGS) method (a quasi-Newton method with a rank-one update of theHessian; see e.g. [7℄) dire
tly on (10). In our numeri
al tests we observed thatthe Bi-CGStab method performs well if the 
oeÆ
ient � is small (� � 10�2),if not, the a

eleration parameter used in the updating step of the solutionmay be
ome very small (� 10�10) and the 
onvergen
e of the method is quiteslow. The use of a pre
onditioner would be desirable.Both methods require the exa
t evaluation of the 
ost fun
tional gradientrJ1: It is known [6℄ that the gradient of the 
ost fun
tional 
an be expressed



4 Paola Gervasioby means of the solution of adjoint equations. The diÆ
ulty lies in �nding a
onvenient 
hara
terization of the adjoint problem. For the sake of 
larity we
arry out the derivation of rJ1 in detail.Without loss of generality, from now on we assume that f � 0 (we re-
all that the solution of problem (5){(9) 
an be written as the sum of twosolutions: the �rst depending only on external for
es and non-homogeneousboundary data (if any), and the se
ond on the interfa
e data (�; �)).For i = 1; 2, we 
onsider the state equations8>><>>:��ui + �ui + ��wi = 0 in 
i���ui + wi = 0 in 
iui = �ui=�ni = 0 on �iui = �; ��ui=�nS = � on S; (11)the solution of (11) is denoted by (ui(�; �); wi(�; �)), to emphasize the de-penden
e on the data. A

ordingly, we introdu
e the lo
al Steklov-Poin
ar�eoperators whi
h appear in the �rst equation of (11) (see [8℄):Si(�; �) := ��ui�ni (�; �)� ��wi�ni (�; �)� ���S : (12)We denote by [w(�; �)℄ = w1(�; �)jS �w2(�; �)jS the jump of the fun
tion won the interfa
e S, and analogous ly[S(�; �)℄ = � �u1�nS (�; �)� � �w1�nS (�; �)� jS �� �u2�nS (�; �) � � �w2�nS (�; �)� jS :We observe that [S(�; �)℄ = S1(�; �) + S2(�; �).By de�nition of the Fr�e
het derivative and by the linearity of the di�er-ential problem,for suitable regular fun
tions � and  de�ned on S, we 
anformally write:hrJ1(�; �); (�;  )i = ZS [w(�; �)℄ (w1(�;  )� w2(�;  )) ds+ ZS [S(�; �)℄ (S1(�;  ) + S2(�;  )) ds: (13)In order to express the integrals in (13) dire
tly as fun
tions on � and  ,we introdu
e the adjoint state equations of (11): for i = 1; 2,8>><>>:��pi + �pi � ��qi = 0 in 
i��pi + qi = 0 in 
ipi = �pi=�ni = 0 on �ipi = [S(�; �)℄; ��pi=�nS = [w(�; �)℄ on S: (14)By the duality between (11) and (14) we haverJ1(�; �) = �S�1 (�; �) + S�2 (�; �)(q1 � q2)jS � ; (15)



Virtual Control for Fourth-Order Problems 5where S�i (�; �) := � �pi�ni + � �qi�ni� ���S (for i = 1; 2) are the lo
al Steklov-Poin
ar�e operators asso
iated to the �rst equation of the dual problem (14).To prove (15) we pro
eed in a formal manner. We multiply the �rst equa-tion in (14) by ui(�;  ) and the se
ond by wi(�;  ); for i = 1; 2; we see that0 = Z
i(��pi + �pi � ��qi) ui(�;  )d
 + Z
i(��pi + qi) wi(�;  )d
(by Green's formula)= Z
i(��ui(�;  ) + �ui(�;  )) pid
 � � Z
i �ui(�;  ) qid
+ ZS(pi + �qi) �ui�ni (�;  )ds� ZS � �pi�ni + � �qi�ni�ui(�;  )ds+ Z
i ��wi(�;  ) pid
 + Z
i qi wi(�;  )d
�� ZS �wi�ni (�;  )pids+ � ZS �pi�niwi(�;  )ds(by the �rst two equations in (11) and the interfa
e 
onditions in (14))= ZS [S(�; �)℄ �ui�ni (�;  )ds + ZS qi � �ui�ni (�;  )ds� ZS �pi�ni ui(�;  )ds� ZS � �qi�ni ui(�;  )ds� ZS [S(�; �)℄ ��wi�ni (�;  )ds�(�1)i ZS [w(�; �)℄ wi(�;  )ds;and then, by the interfa
e 
onditions given in (11), we obtainZS [S(�; �)℄ Si(�;  )ds � (�1)i ZS [w(�; �)℄wi(�;  )ds = ZS S�i (�; �)�ds + (�1)i ZS qi ds:It follows thathrJ1(�; �); (�;  )i = ZS(S�1 (�; �) + S�2 (�; �))�ds � ZS(q1 � q2)jS ds:2.2 Numeri
al resultsThe evaluation of J1(�; �) in a minimization algorithm (not using rJ1) re-quires the solution of a multidomain problem su
h as (11). In both the Bi-CGStab and BFGS algorithms, the evaluation of the 
ost fun
tional andthat of its gradient are done at the same time. In parti
ular, after the eval-uation of rJ1(�; �), the evaluation of J1(�; �) requires minimal additional
omputational e�ort. Ea
h evaluation of rJ1(�; �) needs the solution of two



6 Paola Gervasiomultidomain problems (that is the solution of (11) and (14)); moreover, atea
h iteration of the BFGS method, one evaluation of rJ1 is required, while,at ea
h iteration of Bi-CGStab, two evalutations of rJ1 are needed.In Table 1 we show the 
omputational 
ost, in terms of the Number ofMultidomain Problems (NMP)whi
h we have to solve during the whole mini-mization algorithm, for a variant of the prin
ipal axis method (see [1℄), whi
hdoes not require the evaluation of the gradient, and for both the BFGS and Bi-CGStab methods with exa
t evaluation of rJ1. We also report the minimumvalue Ĵ1 of J1 attained by the minimization pro
edure. The approximation onea
h 
i was 
arried out by the 
onformal spe
tral element method with inter-polation degree N = 5 on ea
h element (equal in both x� and y�dire
tions)and element diameter of the mesh H = 0:5. For all the methods and thevalues of �, the relative error in the H1-norm between the numeri
al andanalyti
 solutions is about 6 � 10�10. The advantage of using the exa
t eval-uation of the 
ost fun
tional gradient is evident, and for � � 10�2 the use ofBi-CGStab is preferable.PrAxis method BFGS method Bi-CGStab method� Ĵ1 NMP Ĵ1 NMP Ĵ1 NMP1. 3.2980E-13 15,392 2.1627E-14 476 >12001.E-1 7.3888E-20 5,495 3.4173E-17 372 3.3552E-15 6521.E-2 5.5671E-13 4,968 1.5088E-19 224 2.4491E-16 1601.E-3 8.4217E-21 6,939 2.1297E-21 222 4.9374E-19 156Table 1. Computational 
ost for Prin
ipal Axis method without the evaluationof rJ1, BFGS and Bi-CGStab with exa
t evaluation of rJ1. We solved problem(5){(10) in 
 = (�1; 1)2, with 
1 = (�1; 0) � (�1; 1), 
2 = (0; 1) � (�1; 1) and� = 1. The right hand side f and the boundary data on �
 were 
onstru
ted sothat the analyti
 solution is u(x; y) = (x2 � 1)ey + (y2 � 1)ex.3 The heterogeneous 
ouplingWe now 
onsider problem (4). Based on the use of virtual 
ontrol theory, it
an be reformulated as: �nd u1 2 H1�1(
1) and (u2; w2) 2 V2 su
h that8>>>><>>>>: ((u1; z1))
1 = (f; z1)
1 8z1 2 H10 (
1)((u2; z2))
2 � �(rw2;rz2)
2 = (f; z2)
2 8z2 2 H10 (
2)�(ru2; v2)
2 + (w2; v2)
2 = ZS �v2 8v2 2 H1(
2)u1 = u2 = � on S; (16)where the virtual 
ontrols �; � are determined by solving the minimizationproblem



Virtual Control for Fourth-Order Problems 7inf(�;�)2� J2(u1(�); u2(�; �); w2(�; �)) (17)with (see [4℄ for the derivation)J2(�; �) = 12 ZS "� �u1�nS �� �u2�nS � � �w2�nS��2 +�� �u2�nS�2# ds: (18)3.1 The minimization pro
edureIn order to 
ompute rJ2(�; �) we follow the ideas of Se
tion 2.1. The stateequations for the heterogeneous 
oupling are given as���u1 + �u1 = 0 in 
1u1 = 0 on �1; u1 = � on S (19)in 
1 and by (11) in 
2. The solution of (19) is denoted by u1(�) and thelo
al Steklov-Poin
ar�e operator S1 whi
h is asso
iated to (19) is de�ned asS1(�) := (�u1(�)=�n1)jS : Moreover, by noting that � = ���u2=�nS, we 
anrewrite J2 asJ2(�; �) = 12 ZS (S1(�) + S2(�; �))2 ds+ 12 ZS �2ds;so that to minimize J2 is equivalent to setting � = 0 and minimizing JS(�) =12 ZS (S1(�) + S2(�; 0))2 ds:To 
ompute J 0S(�) we introdu
e the dual problem:���p1 + �p1 = 0 in 
1p1 = [S(�; 0)℄ on �1; p1 = 0 on S (20)in 
1 and use the dual problem (14) in 
2, with interfa
e 
onditions p2 =[S(�; 0)℄, ��p2=�n2 = 0, where now [S(�; 0)℄ = S1(�) + S2(�; 0).A

ordingly, we denote by S�1 (�) the Steklov-Poin
ar�e operator asso
iatedto the dual problem (20): S�1 (�) = (�p1=�n1)jS . By the duality between (11)and (14), (19) and (20), we obtain the following expression for J 0S(�):J 0S(�) = S�1 (�) + S�2 (�; 0): (21)In fa
t, by pro
eeding in a formal way as in Se
tion 2.1, for a suitablefun
tion � de�ned on S, we obtain:



8 Paola Gervasio0 = Z
1(��p1 + �p1) u1(�)d
 + Z
2(��p2 + �p2 � ��q2) u2(�; 0)d
+ Z
2(��p2 + q2) w2(�; 0)d
(by Green's formula)= Z
1(��u1(�) + �u1(�)) p1d
 + ZS p1 �u1�n1 (�)ds� ZS �p1�n1 u1(�)ds+ Z
2(��u2(�; 0) + �u2(�; 0)) p2d
 � � Z
2 �u2(�; 0) q2d
+ ZS(p2 + �q2) �u2�n2 (�; 0)ds� ZS � �p2�n2 + � �q2�n2�u2(�; 0)ds+ Z
2 ��w2(�; 0) p2d
 + Z
2 q2 w2(�; 0)d
�� ZS �w2�n2 (�; 0)p2ds+ � ZS �p2�n2w2(�; 0)ds(by the �rst equation in (19) and the �rst and se
ond equations in (11)and by the boundary 
onditions on S in (20) and (14))= ZS [S(�; 0)℄��u1�n1 (�) +��u2�n2 (�; 0)� ��w2�n2 (�; 0)�� ds� ZS �p1�n1u1(�) + � ZS q2 �u2�n2 (�; 0)ds� ZS � �p2�n2 + � �q2�n2�u2(�; 0)ds:Then, sin
e u1(�)jS = u2(�; 0)jS = � and (�u2(�; 0)=�n2)jS = 0 (by (11) and(19)), we see thathrJS(�); �i = ZS [S(�; 0)℄ (S1(�) + S2(�; 0))ds= ZS(S�1 (�) + S�2 (�; 0)) � ds:3.2 Numeri
al results for the heterogeneous 
ouplingThe use of a single virtual 
ontrol �, instead of two, redu
es the dimensionof the minimization problem. In order to evaluate J 0S(�) we have to solveboth a primal multidomain problem ((19) in 
1 and (11) in 
2) and a dualmultidomain problem ((20) in 
1 and (14) in 
2). As in the homogeneous
ase we denote by NMP the total number of multidomain problems to besolved during the minimization algorithm.



Virtual Control for Fourth-Order Problems 9In Table 2 we report NMP for the prin
ipal axis, BFGS and Bi-CGStabmethods. Moreover we show the minimum value ĴS attained by JS for all themethods, while the H1(
)- norm error between the numeri
al solution andthe global fourth-order solution u(x; y) = (x2 � 1)ey + (y2 � 1)ex is shownon
e.Also for the heterogeneous 
oupling the exa
t evaluation of J 0S(�) sub-stantially improves the eÆ
ien
y of the minimization pro
edure. For the het-erogeneous 
oupling the BFGS method is more eÆ
ient than Bi-CGStab forall values of the 
ostant �, above all when � > 10�2.PrAxis method BFGS method Bi-CGStab method� H1 � err ĴS NMP ĴS NMP ĴS NMP1. 1.0866E-1 1.4340E-15 8,636 1.5895E-15 284 6.1703E-15 6561.E-1 1.0100E-2 1.1719E-14 6,223 3.1870E-20 138 1.3818E-15 2961.E-2 1.0316E-3 1.0821E-17 3,442 4.1756E-20 100 4.5086E-15 1121.E-3 1.1834E-5 3.7528E-19 10,336 2.5455E-23 102 6.1636E-16 108Table 2. Heterogeneous 
oupling. Comparison between Prin
ipal Axis methodwithout the evaluation of J 0S , BFGS and Bi-CGStab methods with exa
t evaluationof J 0S , in order to solve problem (16){(18). All data are those spe
i�ed in the 
aptionof Table 1.In Table 3 we show NMP for two given values of �, for di�erent positionsof the interfa
e S of the de
omposition. We observe that NMP does notsubstantially depend on the interfa
e position for both the BFGS and Bi-CGStab methods. � = 1xS BFGS Bi-CGStab-0.5 300 716-0.25 300 6600.0 284 6560.25 308 7080.5 306 516
� = 0:01xS BFGS Bi-CGStab-0.5 104 112-0.25 106 1080.0 100 1120.25 102 1120.5 100 104Table 3. Heterogeneous 
oupling. xS is the position of the interfa
e S between 
1and 
2. The Number of Multidomain Problems needed to solve problem (16){(18)with BFGS and Bi-CGStab are shown. Other problem data, not spe
i�ed here, areequal to those used in Table 1.Lastly, in Figure 2 we show the numeri
al solution obtained for themembrane-plate heterogeneous 
oupling (16) with a uniform external loadf � �1, homogeneous boundary data on �
, � = 1, � = 1. The 
om-



10 Paola Gervasioputational domain is 
 = (�1; 1)2, while 
1 = (�1;�0:25) � (�1; 1) and
2 = (�0:25; 1)� (�1; 1). Convergen
e to Ĵ2 = 4:3397E � 19 was obtainedby the BFGS method with 298 NMP .
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