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Summary. We consider both approximation of fourth-order problems derived,
e.g., the Kirchoff plate model, and heterogeneous coupling between a fourth-order
problem and a reduced second-order problem, describing a plate-membrane model.
The multidomain virtual control approach is used. This paper is devoted to the
analysis and construction of the cost functional gradient in order to render the
minimization procedure effective.

1 Introduction

The multidomain virtual control approach was considered in [3] coupling
second-order and first-order equations with both overlapping and non-overlapping
decompositions. The idea is to work with Dirichlet conditions on the inter-
faces of the decomposition, and the Dirichlet data (the virtual controls) are
determined through the minimization of a suitable cost functional. The char-
acterization of the cost functional is quite natural for overlapping decompo-
sitions, while it is not obvious for the non-overlapping case. These concepts
were extended in [4] to fourth-order problems and to the coupling between
fourth-order and second-order elliptic equations, moreover various cost func-
tionals have been proposed for non-overlapping decompositions. Nevertheless
in the previous papers the minimization algorithm used did not take advan-
tage of the construction of the cost functional gradient in terms of adjoint
problems, as is usually done in control theory.

This paper is devoted to the construction of both adjoint problems and
the cost functional gradient, for the particular problem discussed here, in
order to be used within a minimization method. We focus our attention on
non-overlapping decompositions.

Lastly, we give numerical results which demonstrate the effectiveness of this
minimization procedure versus another optimization algorithm which does
not use derivatives.

We briefly recall the statement of the differential problem. We are inter-
ested in approximating the solution w of the fourth-order boundary value
problem:

o?A%u— Au+ou=f in2CR® 1)
u=0u/on =0 on 01?2
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where o and a are positive constants.

If we consider the Kirchoff plate model (see [5]) and discretize it in time
by, e.g., a classic finite difference scheme, at each time step we obtain a
problem like (1). In this case u denotes the vertical displacement, while o2
represents the modulus of the flexural rigidity and is proportional to the
Young modulus of the material. The boundary conditions u = du/dn = 0
correspond to considering a clamped plate.

Problem (1), restated in mixed form, formally reads: find (u,w) in (2 such
that

—Au+au+ocAw=f, —cAu+w=0 in 2 2)
u=0u/On=0 on 0f2.

In the classical notation for Lebesgue and Sobolev spaces, the weak form

of (2) reads: given f € L?(£2), find (u,w) € H}(2) x H*(£2) such that

(Vu,V2)o + a(u,z)o —o(Vw,V2)g = (f,2)e  Vz € H} () 3)
o(Vu,Vu)g + (w,v)o =0 Vv € HY(02).

We note that the boundary condition du/0n = 0 is a natural condition for
the second equation of (3). Existence and uniqueness of a solution for problem
(3) are proved in [2], provided that the computational domain 2 C R? is a
convex polygon.

Further, we consider the heterogeneous fourth-order second-order model:

—Aui+au; =f in () 02 A%uy — Aug + aua = f in (%
u; =0 on I uz = Ouz/On =10 on Iy, (4)
+transmission conditions on S,

where 2, and (2, are two disjoint subdomains of {2 such that 2, U 2, = 2,
S := 021 N 012y is the interface of the decomposition and, for i = 1,2,
ui == ujp, and I := 02N 012; (see Figure 1). Model (4) could, for instance,
describe the transversal displacement of a composite elastic structure which
is made of two different components, one (corresponding to 2;) behaving like
a membrane, the other (corresponding to (2;) like a bending plate.

Fl Ql S 02 F2

ns

Fig. 1. A partition of {2 in two disjoint subdomains.
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2 The multidomain virtual control approach

We consider a non-ovelapping decomposition of (2 into two disjoint subdo-
mains (2; and (2, (see Fig. 1). For i = 1,2, we define V; = H}. (12;) x H'(£2;),
where H}. (2;) := {v € H'(£2;) : v, = 0}. Moreover we consider the space
HY?(S) = {p € L*(S) : Fv e H' (1), v)s = ¢, Vjp = 0}, and we set A :=
Hé({z(S) x H'2(S). Lastly, we set ((us, 2:)) o, = (Vui, V2i) o, + alui, 2i) ;.

The multidomain formulation of (3), based on the use of virtual control,
reads as follows: for i = 1,2, find (u;, w;) € V; such that:

((u1,21))0, —o(Vw1,Vz1)o, = V2 € Hy(f) (5)
o(Vuy,Vur)o, + (w1,v1)0 //wl Yo, € HY(12,) (6)
((u2,22)) 2, — 0(Vwz, V)@, = (f,22) 2, Vzs € Hy(22)  (7)
(T, Vos) o, + (w2, 05) 0, = —/S,WQ Vos € HY () (8)
Uy =uz = A on S, 9)

where A € H&éQ (S) and p € HY/?(S) are the virtual controls and are deter-
mined by solving the minimization problem

inf i (ur (A, p), wi (A, ), w2 (A, 1), w2 (A, p)- (10)
(A p)ea

The cost functional J; is defined as

1 8u1 (311)1 611,2 8w2 2
Ji(A\p) =< — wy)? — 00— || == 00— ds.
1) =5 /Sl(wl w2) +<<8n5 08n5> <8ns “ons)) |
The choice of J; is justified in [4], taking into account the transmission
conditions for the state equations (5)—(9).

2.1 The minimization procedure

We solved the minimization problem (10) either by the Bi-CGStab method [9]
on the linear system V.J; = 0, or by the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) method (a quasi-Newton method with a rank-one update of the
Hessian; see e.g. [7]) directly on (10). In our numerical tests we observed that
the Bi-CGStab method performs well if the coefficient ¢ is small (¢ < 1072),
if not, the acceleration parameter used in the updating step of the solution
may become very small (< 1071%) and the convergence of the method is quite
slow. The use of a preconditioner would be desirable.

Both methods require the exact evaluation of the cost functional gradient
VJi. It is known [6] that the gradient of the cost functional can be expressed
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by means of the solution of adjoint equations. The difficulty lies in finding a
convenient characterization of the adjoint problem. For the sake of clarity we
carry out the derivation of V.J; in detail.

Without loss of generality, from now on we assume that f = 0 (we re-
call that the solution of problem (5)-(9) can be written as the sum of two
solutions: the first depending only on external forces and non-homogeneous
boundary data (if any), and the second on the interface data (A, w)).

For i = 1,2, we consider the state equations

—Au; + au; + cAw; =0 in (2;
—0Au; +w; =0 in (2
u; = Ou;/On; =0 on [;
u; =\, 00u;/Ong =p on S;

(11)

the solution of (11) is denoted by (u;(A, 1), w;(\, p)), to emphasize the de-
pendence on the data. Accordingly, we introduce the local Steklov-Poincaré
operators which appear in the first equation of (11) (see [8]):

Oui
8ni

Ows

S0 p) = ( (o) -~ o <A,u>) B (12)

We denote by [w(, u)] = wi(A, pw)js —w2(A, w)|s the jump of the function w
on the interface S, and analogous ly

(SO )] = (g—jj;u,u) - agT“’;(A,u)) s — (g%;w - o%"i(x,u)) s

We observe that [S(A, u)] = S1(\, 1) + S2(A, p).

By definition of the Fréchet derivative and by the linearity of the differ-
ential problem,for suitable regular functions n and ¢ defined on S, we can
formally write:

(VJL (A, @), (0,9)) = /[w(A,u)] (w1(n,9) — w2(n,v)) ds
(13)
+ /:[S(A,u)] (S1(m, %) + Sa2(n, ) ds.

In order to express the integrals in (13) directly as functions on 7 and 1,
we introduce the adjoint state equations of (11): for ¢ = 1,2,

—Ap;+ap; —oAg; =0 in (2;
cAp; +q; =0 in 2;
pi = Op;i/On; =0 on I (14)
pi =[S\ p)], 00pi/dns =[w(X,p)]  onS.
By the duality between (11) and (14) we have
le()\’u) — 81 (A,H) +82 (A:N) , (15)

(1 — @2)|s
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Op; aq;

where §7 (A, p) = (81? + aaZ’.
(3 (3

Poincaré operators associated to the first equation of the dual problem (14).
To prove (15) we proceed in a formal manner. We multiply the first equa-
tion in (14) by u;(n,v) and the second by w;(n,); for i = 1,2, we see that

> ‘S (for ¢ = 1,2) are the local Steklov-

0= / (—Ap: + api — 0 Aqy) wi(n, $)d2 + / (0 2p: + ;) wiln, ¥)d2
(9]

f 2;

(by Green’s formula)

- / (=D, ) + aws(n, ) pid? — o / Aui(n, ) q:d®
2; 2;

. \ Qui _ Opi . 9¢i)
# [ on) Gnnas— [ (G2 4038 ) win v

+/!2,- o Aw;(n,v) pid9+/ qi wi(n,P)ds?

£2;

ow; Op;
- — i ; d
U/S on, U1 VIpids + U/S o, Wil ¥)ds
(by the first two equations in (11) and the interface conditions in (14))

- st} gw os+ [ oo — [ un s
- [o5 wtnwds— [10p) 0%(n,¢)d8
~(-1) /S w0 )] i, ¥)ds,

and then, by the interface conditions given in (11), we obtain

/S SO\ 0] Si(n,)ds — (~1) /5 A, )i (1, ) ds = /S S\ pds + (1)’ /S githds.
It follows that

(VI (), (0, 0)) = [5 (700 ) + S5 (A, ) s — /S (41 — @2)ys0ds.

2.2 Numerical results

The evaluation of J; (A, 1) in a minimization algorithm (not using V.Jp) re-
quires the solution of a multidomain problem such as (11). In both the Bi-
CGStab and BFGS algorithms, the evaluation of the cost functional and
that of its gradient are done at the same time. In particular, after the eval-
uation of VJi (A, i), the evaluation of J; (A, u) requires minimal additional
computational effort. Each evaluation of V.Ji(\, u) needs the solution of two
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multidomain problems (that is the solution of (11) and (14)); moreover, at
each iteration of the BFGS method, one evaluation of V.J; is required, while,
at each iteration of Bi-CGStab, two evalutations of V.J; are needed.

In Table 1 we show the computational cost, in terms of the Number of
Multidomain Problems (NMP )which we have to solve during the whole mini-
mization algorithm, for a variant of the principal axis method (see [1]), which
does not require the evaluation of the gradient, and for both the BFGS and Bi-
CGStab methods with exact evaluation of V.J;. We also report the minimum
value J; of J; attained by the minimization procedure. The approximation on
each (2; was carried out by the conformal spectral element method with inter-
polation degree N =5 on each element (equal in both z— and y—directions)
and element diameter of the mesh H = 0.5. For all the methods and the
values of o, the relative error in the H!'-norm between the numerical and
analytic solutions is about 6 - 1071°, The advantage of using the exact eval-
uation of the cost functional gradient is evident, and for o < 1072 the use of
Bi-CGStab is preferable.

PrAxis method BFGS method [Bi-CGStab method
o J1 NMP J1 NMP J1 NMP
1. 3.2980E-13|15,392|2.1627E-14 476 >1200
1.E-1|7.3888E-20| 5,495|3.4173E-17| 372|3.3552E-15 652
1.E-2|5.5671E-13| 4,968|1.5088E-19 224(2.4491E-16 160
1.E-3|8.4217E-21| 6,939|2.1297E-21 222|4.9374E-19 156

Table 1. Computational cost for Principal Axis method without the evaluation
of VJi, BFGS and Bi-CGStab with exact evaluation of V.J;. We solved problem
(5)-(10) in 2 = (—1,1)?, with £, = (—1,0) x (=1,1), 22 = (0,1) x (=1,1) and
« = 1. The right hand side f and the boundary data on 02 were counstructed so
that the analytic solution is u(x,y) = (¢® — 1)e¥ + (y*> — 1)e®.

3 The heterogeneous coupling

We now consider problem (4). Based on the use of virtual control theory, it
can be reformulated as: find u; € HIlH (£21) and (u2,ws) € Vo such that

((u1,21))2, = (f,21) Vz1 € H ()
((u2,22)) 25 — 0(Vw2, V) o, = (f,22) 2, V22 € Hg(122)

16
oc(Vua,v2) 0, + (w2, v2)0, = /;wg Yoy € HY(25) (16)
U = Uz = A on S,

where the virtual controls A, u are determined by solving the minimization
problem
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inf Ja(u1(A), u2 (A, ), w2 (A, 1)) (17)
(A u)eA

with (see [4] for the derivation)
B\ )_1/ du_ (Duz _ Gwa\\T ( Owa\T o
2 )= 2 S 8n5 6n5 8n5 8n5 ’
3.1 The minimization procedure

In order to compute VJ2 (A, u) we follow the ideas of Section 2.1. The state
equations for the heterogeneous coupling are given as

{ —Au; +au; =0 in 21 (19)

u; =0 on I, U = A on S

in (; and by (11) in 2. The solution of (19) is denoted by w;(\) and the
local Steklov-Poincaré operator S; which is associated to (19) is defined as
S1(A) := (Qui(X)/0n1)|s. Moreover, by noting that u = —o0uz/0ng, we can
rewrite Jy as

B0u) = 3 [ S0+ 8000 s+ 5 [ s

so that to minimize J, is equivalent to setting 4 = 0 and minimizing Jg(\) =

1 2
/5(51(/\)+82(/\,0)) ds.

2
To compute Jg(A) we introduce the dual problem:
—Apl + ap; = 0in 91 (20)
p=[S(X0)]  onli, pr=0onS

in {2, and use the dual problem (14) in (2, with interface conditions py =
[S(A,0)], 00p2/0ns = 0, where now [S(A,0)] = S1(A) + Sa2(A, 0).

Accordingly, we denote by S5 ()A) the Steklov-Poincaré operator associated
to the dual problem (20): S§(\) = (Op1/0n1)|s. By the duality between (11)
and (14), (19) and (20), we obtain the following expression for Jg(A):

Js(A) = ST(A) + 85 (A, 0). (21)

In fact, by proceeding in a formal way as in Section 2.1, for a suitable
function 7 defined on S, we obtain:
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0= / (= Apy + apy) w (m)d2 + / (= Aps + aps — 0 Ags) us(57,0)d2
91 92

+/ (0 Apa + g2) wa(n,0)d2
£22

(by Green’s formula)

— /Ql(—Aul(n) + aui (n)) p1d9+/5p1

(s — | 2P uy(m)ds

8u1
- Uy
S 8n1

8n1

+ / (= Aus(,0) + aus(7,0)) ped? — o | Aus(,0) g2d®
.QQ 92

8u2 apz aql
+/5(p2 + 0q2) s (n,0)ds /S <8n2 +08n2> uz(n,0)ds

+ / o Aws(1,0) pad? + / @2 wa(,0)d02
.QQ 92

Ows Ops
— — d ——w d
U/S 6”2 (7770)192 s+o g 6”2 wl(nao) 8

(by the first equation in (19) and the first and second equations in (11)
and by the boundary conditions on S in (20) and (14))

=[50, (220 + (22.,0) - 0222.(5,0)) ) as
; ny s s

6}71 aUQ ap2 aq2
— ; a—nlul(n) + U/SQQa—m(TI,O)dS — /S <8—nz + O'a—nz> U,Q(’I],O)ds_

Then, since u;(n)|s = u2(n,0)|s = n and (Quz(n,0)/0n2)|s =0 (by (11) and
(19)), we see that

(Vs (A1) = /S IS0 (S1(n) + S (,0))ds

= [ St + 55000 s

3.2 Numerical results for the heterogeneous coupling

The use of a single virtual control A, instead of two, reduces the dimension
of the minimization problem. In order to evaluate Jg(A) we have to solve
both a primal multidomain problem ((19) in 2, and (11) in 2;) and a dual
multidomain problem ((20) in £2; and (14) in (2). As in the homogeneous
case we denote by NM P the total number of multidomain problems to be
solved during the minimization algorithm.
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In Table 2 we report N M P for the principal axis, BFGS and Bi-CGStab
methods. Moreover we show the minimum value Jg attained by Jg for all the
methods, while the H!(£2)- norm error between the numerical solution and
the global fourth-order solution u(z,y) = (22 — 1)e¥ + (y* — 1)e® is shown
once.

Also for the heterogeneous coupling the exact evaluation of Jg(A) sub-
stantially improves the efficiency of the minimization procedure. For the het-
erogeneous coupling the BFGS method is more efficient than Bi-CGStab for
all values of the costant o, above all when o > 1072,

PrAxis method BFGS method [Bi-CGStab method
o H' —err Js NMP Js NMP Js NMP
1. 1.0866E-1|1.4340E-15| 8,636|1.5895E-15| 284(6.1703E-15 656
1.E-1|1.0100E-2|{1.1719E-14| 6,223|3.1870E-20 138|1.3818E-15 296
1.E-2|1.0316E-3|1.0821E-17| 3,442|4.1756E-20 100|4.5086E-15 112
1.E-3|1.1834E-5(3.7528E-19(10,336{2.5455E-23| 102|6.1636E-16 108

Table 2. Heterogeneous coupling. Comparison between Principal Axis method
without the evaluation of Jg, BFGS and Bi-CGStab methods with exact evaluation
of Jg, in order to solve problem (16)—(18). All data are those specified in the caption
of Table 1.

In Table 3 we show VM P for two given values of ¢, for different positions
of the interface S of the decomposition. We observe that NM P does not
substantially depend on the interface position for both the BFGS and Bi-
CGStab methods.

o=1 o= 0.01
rs |BFGS|Bi-CGStab rs |BFGS|Bi-CGStab
-0.5 300 716 -0.5 | 104 112
-0.25( 300 660 -0.25 106 108
0.0 284 656 0.0 100 112
0.25 308 708 0.25 | 102 112
0.5 306 516 0.5 100 104

Table 3. Heterogeneous coupling. xs is the position of the interface S between (2,
and {2;. The Number of Multidomain Problems needed to solve problem (16)-(18)
with BFGS and Bi-CGStab are shown. Other problem data, not specified here, are
equal to those used in Table 1.

Lastly, in Figure 2 we show the numerical solution obtained for the
membrane-plate heterogeneous coupling (16) with a uniform external load
f = —1, homogeneous boundary data on 02, ¢ = 1, « = 1. The com-
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putational domain is 2 = (—1,1)?, while £, = (=1,-0.25) x (=1,1) and
25, = (-0.25,1) x (—1,1). Convergence to Jo = 4.3397E — 19 was obtained
by the BFGS method with 298 N M P.

Fig. 2. Solution for the heterogeneous problem (16) in 2 = (—1,1)* with 2, =
(—=1,-0.25) x (—=1,1) and £25 = (—0.25,1) x (—1,1), with a uniform external load

f = —1, homogeneous boundary data on 002, c =1, a = 1.
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