
Virtual Control for Fourth-Order Problemsand for Heterogeneous Fourth-OrderSeond-Order CouplingPaola GervasioDepartment of Mathematis, University of Bresia, via Valotti, 9. 25133 Bresia(Italy) gervasio�ing.unibs.itSummary. We onsider both approximation of fourth-order problems derived,e.g., the Kirho� plate model, and heterogeneous oupling between a fourth-orderproblem and a redued seond-order problem, desribing a plate-membrane model.The multidomain virtual ontrol approah is used. This paper is devoted to theanalysis and onstrution of the ost funtional gradient in order to render theminimization proedure e�etive.1 IntrodutionThe multidomain virtual ontrol approah was onsidered in [3℄ ouplingseond-order and �rst-order equations with both overlapping and non-overlappingdeompositions. The idea is to work with Dirihlet onditions on the inter-faes of the deomposition, and the Dirihlet data (the virtual ontrols) aredetermined through the minimization of a suitable ost funtional. The har-aterization of the ost funtional is quite natural for overlapping deompo-sitions, while it is not obvious for the non-overlapping ase. These oneptswere extended in [4℄ to fourth-order problems and to the oupling betweenfourth-order and seond-order ellipti equations, moreover various ost fun-tionals have been proposed for non-overlapping deompositions. Neverthelessin the previous papers the minimization algorithm used did not take advan-tage of the onstrution of the ost funtional gradient in terms of adjointproblems, as is usually done in ontrol theory.This paper is devoted to the onstrution of both adjoint problems andthe ost funtional gradient, for the partiular problem disussed here, inorder to be used within a minimization method. We fous our attention onnon-overlapping deompositions.Lastly, we give numerial results whih demonstrate the e�etiveness of thisminimization proedure versus another optimization algorithm whih doesnot use derivatives.We briey reall the statement of the di�erential problem. We are inter-ested in approximating the solution u of the fourth-order boundary valueproblem: ��2�2u��u+ �u = f in 
 � R2u = �u=�n = 0 on �
 (1)



2 Paola Gervasiowhere � and � are positive onstants.If we onsider the Kirho� plate model (see [5℄) and disretize it in timeby, e.g., a lassi �nite di�erene sheme, at eah time step we obtain aproblem like (1). In this ase u denotes the vertial displaement, while �2represents the modulus of the exural rigidity and is proportional to theYoung modulus of the material. The boundary onditions u = �u=�n = 0orrespond to onsidering a lamped plate.Problem (1), restated in mixed form, formally reads: �nd (u;w) in 
 suhthat ���u+ �u+ ��w = f; ���u+ w = 0 in 
u = �u=�n = 0 on �
: (2)In the lassial notation for Lebesgue and Sobolev spaes, the weak formof (2) reads: given f 2 L2(
), �nd (u;w) 2 H10 (
) �H1(
) suh that( (ru;rz)
 + �(u; z)
 � �(rw;rz)
 = (f; z)
 8z 2 H10 (
)�(ru;rv)
 + (w; v)
 = 0 8v 2 H1(
): (3)We note that the boundary ondition �u=�n = 0 is a natural ondition forthe seond equation of (3). Existene and uniqueness of a solution for problem(3) are proved in [2℄, provided that the omputational domain 
 � R2 is aonvex polygon.Further, we onsider the heterogeneous fourth-order seond-order model:���u1 + �u1 = f in 
1u1 = 0 on �1 (�2�2u2 ��u2 + �u2 = f in 
2u2 = �u2=�n = 0 on �2+transmission onditions on S; (4)where 
1 and 
2 are two disjoint subdomains of 
 suh that 
1 [
2 = 
,S := �
1 \ �
2 is the interfae of the deomposition and, for i = 1; 2,ui := uj
i and �i := �
 \ �
i (see Figure 1). Model (4) ould, for instane,desribe the transversal displaement of a omposite elasti struture whihis made of two di�erent omponents, one (orresponding to 
1) behaving likea membrane, the other (orresponding to 
2) like a bending plate.PSfrag replaements�1 �2
1 
2SnSFig. 1. A partition of 
 in two disjoint subdomains.



Virtual Control for Fourth-Order Problems 32 The multidomain virtual ontrol approahWe onsider a non-ovelapping deomposition of 
 into two disjoint subdo-mains 
1 and 
2 (see Fig. 1). For i = 1; 2, we de�ne Vi = H1�i(
i)�H1(
i),where H1�i(
i) := fv 2 H1(
i) : vj�i = 0g: Moreover we onsider the spaeH1=200 (S) := f' 2 L2(S) : 9v 2 H1(
); vjS = '; vj�
 = 0g, and we set � :=H1=200 (S)�H1=2(S). Lastly, we set ((ui; zi))
i := (rui;rzi)
i + �(ui; zi)
i :The multidomain formulation of (3), based on the use of virtual ontrol,reads as follows: for i = 1; 2, �nd (ui; wi) 2 Vi suh that:((u1; z1))
1 � �(rw1;rz1)
1 = (f; z1)
1 8z1 2 H10 (
1) (5)�(ru1;rv1)
1 + (w1; v1)
1 = ZS �v1 8v1 2 H1(
1) (6)((u2; z2))
2 � �(rw2;rz2)
2 = (f; z2)
2 8z2 2 H10 (
2) (7)�(ru2;rv2)
2 + (w2; v2)
2 = � ZS �v2 8v2 2 H1(
2) (8)u1 = u2 = � on S; (9)where � 2 H1=200 (S) and � 2 H1=2(S) are the virtual ontrols and are deter-mined by solving the minimization probleminf(�;�)2� J1(u1(�; �); w1(�; �); u2(�; �); w2(�; �)): (10)The ost funtional J1 is de�ned asJ1(�; �) = 12 ZS"(w1 � w2)2+���u1�nS � � �w1�nS��� �u2�nS � � �w2�nS��2#ds:The hoie of J1 is justi�ed in [4℄, taking into aount the transmissiononditions for the state equations (5){(9).2.1 The minimization proedureWe solved the minimization problem (10) either by the Bi-CGStab method [9℄on the linear system rJ1 = 0, or by the Broyden-Flether-Goldfarb-Shanno(BFGS) method (a quasi-Newton method with a rank-one update of theHessian; see e.g. [7℄) diretly on (10). In our numerial tests we observed thatthe Bi-CGStab method performs well if the oeÆient � is small (� � 10�2),if not, the aeleration parameter used in the updating step of the solutionmay beome very small (� 10�10) and the onvergene of the method is quiteslow. The use of a preonditioner would be desirable.Both methods require the exat evaluation of the ost funtional gradientrJ1: It is known [6℄ that the gradient of the ost funtional an be expressed



4 Paola Gervasioby means of the solution of adjoint equations. The diÆulty lies in �nding aonvenient haraterization of the adjoint problem. For the sake of larity wearry out the derivation of rJ1 in detail.Without loss of generality, from now on we assume that f � 0 (we re-all that the solution of problem (5){(9) an be written as the sum of twosolutions: the �rst depending only on external fores and non-homogeneousboundary data (if any), and the seond on the interfae data (�; �)).For i = 1; 2, we onsider the state equations8>><>>:��ui + �ui + ��wi = 0 in 
i���ui + wi = 0 in 
iui = �ui=�ni = 0 on �iui = �; ��ui=�nS = � on S; (11)the solution of (11) is denoted by (ui(�; �); wi(�; �)), to emphasize the de-pendene on the data. Aordingly, we introdue the loal Steklov-Poinar�eoperators whih appear in the �rst equation of (11) (see [8℄):Si(�; �) := ��ui�ni (�; �)� ��wi�ni (�; �)� ���S : (12)We denote by [w(�; �)℄ = w1(�; �)jS �w2(�; �)jS the jump of the funtion won the interfae S, and analogous ly[S(�; �)℄ = � �u1�nS (�; �)� � �w1�nS (�; �)� jS �� �u2�nS (�; �) � � �w2�nS (�; �)� jS :We observe that [S(�; �)℄ = S1(�; �) + S2(�; �).By de�nition of the Fr�ehet derivative and by the linearity of the di�er-ential problem,for suitable regular funtions � and  de�ned on S, we anformally write:hrJ1(�; �); (�;  )i = ZS [w(�; �)℄ (w1(�;  )� w2(�;  )) ds+ ZS [S(�; �)℄ (S1(�;  ) + S2(�;  )) ds: (13)In order to express the integrals in (13) diretly as funtions on � and  ,we introdue the adjoint state equations of (11): for i = 1; 2,8>><>>:��pi + �pi � ��qi = 0 in 
i��pi + qi = 0 in 
ipi = �pi=�ni = 0 on �ipi = [S(�; �)℄; ��pi=�nS = [w(�; �)℄ on S: (14)By the duality between (11) and (14) we haverJ1(�; �) = �S�1 (�; �) + S�2 (�; �)(q1 � q2)jS � ; (15)



Virtual Control for Fourth-Order Problems 5where S�i (�; �) := � �pi�ni + � �qi�ni� ���S (for i = 1; 2) are the loal Steklov-Poinar�e operators assoiated to the �rst equation of the dual problem (14).To prove (15) we proeed in a formal manner. We multiply the �rst equa-tion in (14) by ui(�;  ) and the seond by wi(�;  ); for i = 1; 2; we see that0 = Z
i(��pi + �pi � ��qi) ui(�;  )d
 + Z
i(��pi + qi) wi(�;  )d
(by Green's formula)= Z
i(��ui(�;  ) + �ui(�;  )) pid
 � � Z
i �ui(�;  ) qid
+ ZS(pi + �qi) �ui�ni (�;  )ds� ZS � �pi�ni + � �qi�ni�ui(�;  )ds+ Z
i ��wi(�;  ) pid
 + Z
i qi wi(�;  )d
�� ZS �wi�ni (�;  )pids+ � ZS �pi�niwi(�;  )ds(by the �rst two equations in (11) and the interfae onditions in (14))= ZS [S(�; �)℄ �ui�ni (�;  )ds + ZS qi � �ui�ni (�;  )ds� ZS �pi�ni ui(�;  )ds� ZS � �qi�ni ui(�;  )ds� ZS [S(�; �)℄ ��wi�ni (�;  )ds�(�1)i ZS [w(�; �)℄ wi(�;  )ds;and then, by the interfae onditions given in (11), we obtainZS [S(�; �)℄ Si(�;  )ds � (�1)i ZS [w(�; �)℄wi(�;  )ds = ZS S�i (�; �)�ds + (�1)i ZS qi ds:It follows thathrJ1(�; �); (�;  )i = ZS(S�1 (�; �) + S�2 (�; �))�ds � ZS(q1 � q2)jS ds:2.2 Numerial resultsThe evaluation of J1(�; �) in a minimization algorithm (not using rJ1) re-quires the solution of a multidomain problem suh as (11). In both the Bi-CGStab and BFGS algorithms, the evaluation of the ost funtional andthat of its gradient are done at the same time. In partiular, after the eval-uation of rJ1(�; �), the evaluation of J1(�; �) requires minimal additionalomputational e�ort. Eah evaluation of rJ1(�; �) needs the solution of two



6 Paola Gervasiomultidomain problems (that is the solution of (11) and (14)); moreover, ateah iteration of the BFGS method, one evaluation of rJ1 is required, while,at eah iteration of Bi-CGStab, two evalutations of rJ1 are needed.In Table 1 we show the omputational ost, in terms of the Number ofMultidomain Problems (NMP)whih we have to solve during the whole mini-mization algorithm, for a variant of the prinipal axis method (see [1℄), whihdoes not require the evaluation of the gradient, and for both the BFGS and Bi-CGStab methods with exat evaluation of rJ1. We also report the minimumvalue Ĵ1 of J1 attained by the minimization proedure. The approximation oneah 
i was arried out by the onformal spetral element method with inter-polation degree N = 5 on eah element (equal in both x� and y�diretions)and element diameter of the mesh H = 0:5. For all the methods and thevalues of �, the relative error in the H1-norm between the numerial andanalyti solutions is about 6 � 10�10. The advantage of using the exat eval-uation of the ost funtional gradient is evident, and for � � 10�2 the use ofBi-CGStab is preferable.PrAxis method BFGS method Bi-CGStab method� Ĵ1 NMP Ĵ1 NMP Ĵ1 NMP1. 3.2980E-13 15,392 2.1627E-14 476 >12001.E-1 7.3888E-20 5,495 3.4173E-17 372 3.3552E-15 6521.E-2 5.5671E-13 4,968 1.5088E-19 224 2.4491E-16 1601.E-3 8.4217E-21 6,939 2.1297E-21 222 4.9374E-19 156Table 1. Computational ost for Prinipal Axis method without the evaluationof rJ1, BFGS and Bi-CGStab with exat evaluation of rJ1. We solved problem(5){(10) in 
 = (�1; 1)2, with 
1 = (�1; 0) � (�1; 1), 
2 = (0; 1) � (�1; 1) and� = 1. The right hand side f and the boundary data on �
 were onstruted sothat the analyti solution is u(x; y) = (x2 � 1)ey + (y2 � 1)ex.3 The heterogeneous ouplingWe now onsider problem (4). Based on the use of virtual ontrol theory, itan be reformulated as: �nd u1 2 H1�1(
1) and (u2; w2) 2 V2 suh that8>>>><>>>>: ((u1; z1))
1 = (f; z1)
1 8z1 2 H10 (
1)((u2; z2))
2 � �(rw2;rz2)
2 = (f; z2)
2 8z2 2 H10 (
2)�(ru2; v2)
2 + (w2; v2)
2 = ZS �v2 8v2 2 H1(
2)u1 = u2 = � on S; (16)where the virtual ontrols �; � are determined by solving the minimizationproblem



Virtual Control for Fourth-Order Problems 7inf(�;�)2� J2(u1(�); u2(�; �); w2(�; �)) (17)with (see [4℄ for the derivation)J2(�; �) = 12 ZS "� �u1�nS �� �u2�nS � � �w2�nS��2 +�� �u2�nS�2# ds: (18)3.1 The minimization proedureIn order to ompute rJ2(�; �) we follow the ideas of Setion 2.1. The stateequations for the heterogeneous oupling are given as���u1 + �u1 = 0 in 
1u1 = 0 on �1; u1 = � on S (19)in 
1 and by (11) in 
2. The solution of (19) is denoted by u1(�) and theloal Steklov-Poinar�e operator S1 whih is assoiated to (19) is de�ned asS1(�) := (�u1(�)=�n1)jS : Moreover, by noting that � = ���u2=�nS, we anrewrite J2 asJ2(�; �) = 12 ZS (S1(�) + S2(�; �))2 ds+ 12 ZS �2ds;so that to minimize J2 is equivalent to setting � = 0 and minimizing JS(�) =12 ZS (S1(�) + S2(�; 0))2 ds:To ompute J 0S(�) we introdue the dual problem:���p1 + �p1 = 0 in 
1p1 = [S(�; 0)℄ on �1; p1 = 0 on S (20)in 
1 and use the dual problem (14) in 
2, with interfae onditions p2 =[S(�; 0)℄, ��p2=�n2 = 0, where now [S(�; 0)℄ = S1(�) + S2(�; 0).Aordingly, we denote by S�1 (�) the Steklov-Poinar�e operator assoiatedto the dual problem (20): S�1 (�) = (�p1=�n1)jS . By the duality between (11)and (14), (19) and (20), we obtain the following expression for J 0S(�):J 0S(�) = S�1 (�) + S�2 (�; 0): (21)In fat, by proeeding in a formal way as in Setion 2.1, for a suitablefuntion � de�ned on S, we obtain:



8 Paola Gervasio0 = Z
1(��p1 + �p1) u1(�)d
 + Z
2(��p2 + �p2 � ��q2) u2(�; 0)d
+ Z
2(��p2 + q2) w2(�; 0)d
(by Green's formula)= Z
1(��u1(�) + �u1(�)) p1d
 + ZS p1 �u1�n1 (�)ds� ZS �p1�n1 u1(�)ds+ Z
2(��u2(�; 0) + �u2(�; 0)) p2d
 � � Z
2 �u2(�; 0) q2d
+ ZS(p2 + �q2) �u2�n2 (�; 0)ds� ZS � �p2�n2 + � �q2�n2�u2(�; 0)ds+ Z
2 ��w2(�; 0) p2d
 + Z
2 q2 w2(�; 0)d
�� ZS �w2�n2 (�; 0)p2ds+ � ZS �p2�n2w2(�; 0)ds(by the �rst equation in (19) and the �rst and seond equations in (11)and by the boundary onditions on S in (20) and (14))= ZS [S(�; 0)℄��u1�n1 (�) +��u2�n2 (�; 0)� ��w2�n2 (�; 0)�� ds� ZS �p1�n1u1(�) + � ZS q2 �u2�n2 (�; 0)ds� ZS � �p2�n2 + � �q2�n2�u2(�; 0)ds:Then, sine u1(�)jS = u2(�; 0)jS = � and (�u2(�; 0)=�n2)jS = 0 (by (11) and(19)), we see thathrJS(�); �i = ZS [S(�; 0)℄ (S1(�) + S2(�; 0))ds= ZS(S�1 (�) + S�2 (�; 0)) � ds:3.2 Numerial results for the heterogeneous ouplingThe use of a single virtual ontrol �, instead of two, redues the dimensionof the minimization problem. In order to evaluate J 0S(�) we have to solveboth a primal multidomain problem ((19) in 
1 and (11) in 
2) and a dualmultidomain problem ((20) in 
1 and (14) in 
2). As in the homogeneousase we denote by NMP the total number of multidomain problems to besolved during the minimization algorithm.



Virtual Control for Fourth-Order Problems 9In Table 2 we report NMP for the prinipal axis, BFGS and Bi-CGStabmethods. Moreover we show the minimum value ĴS attained by JS for all themethods, while the H1(
)- norm error between the numerial solution andthe global fourth-order solution u(x; y) = (x2 � 1)ey + (y2 � 1)ex is shownone.Also for the heterogeneous oupling the exat evaluation of J 0S(�) sub-stantially improves the eÆieny of the minimization proedure. For the het-erogeneous oupling the BFGS method is more eÆient than Bi-CGStab forall values of the ostant �, above all when � > 10�2.PrAxis method BFGS method Bi-CGStab method� H1 � err ĴS NMP ĴS NMP ĴS NMP1. 1.0866E-1 1.4340E-15 8,636 1.5895E-15 284 6.1703E-15 6561.E-1 1.0100E-2 1.1719E-14 6,223 3.1870E-20 138 1.3818E-15 2961.E-2 1.0316E-3 1.0821E-17 3,442 4.1756E-20 100 4.5086E-15 1121.E-3 1.1834E-5 3.7528E-19 10,336 2.5455E-23 102 6.1636E-16 108Table 2. Heterogeneous oupling. Comparison between Prinipal Axis methodwithout the evaluation of J 0S , BFGS and Bi-CGStab methods with exat evaluationof J 0S , in order to solve problem (16){(18). All data are those spei�ed in the aptionof Table 1.In Table 3 we show NMP for two given values of �, for di�erent positionsof the interfae S of the deomposition. We observe that NMP does notsubstantially depend on the interfae position for both the BFGS and Bi-CGStab methods. � = 1xS BFGS Bi-CGStab-0.5 300 716-0.25 300 6600.0 284 6560.25 308 7080.5 306 516
� = 0:01xS BFGS Bi-CGStab-0.5 104 112-0.25 106 1080.0 100 1120.25 102 1120.5 100 104Table 3. Heterogeneous oupling. xS is the position of the interfae S between 
1and 
2. The Number of Multidomain Problems needed to solve problem (16){(18)with BFGS and Bi-CGStab are shown. Other problem data, not spei�ed here, areequal to those used in Table 1.Lastly, in Figure 2 we show the numerial solution obtained for themembrane-plate heterogeneous oupling (16) with a uniform external loadf � �1, homogeneous boundary data on �
, � = 1, � = 1. The om-



10 Paola Gervasioputational domain is 
 = (�1; 1)2, while 
1 = (�1;�0:25) � (�1; 1) and
2 = (�0:25; 1)� (�1; 1). Convergene to Ĵ2 = 4:3397E � 19 was obtainedby the BFGS method with 298 NMP .
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