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Abstract Mathematical models of complex physical problems can be based on
heterogeneous differential equations, i.e. on boundary-value problems of different
kind in different subregions of the computational domain. In this presentation we
will introduce a few representative examples, we will illustrate the way the coupling
conditions between the different models can be devised, then we will address several
solution algorithms and discuss their properties of convergence as well as their
robustness with respect to the variation of the physical parameters that characterize
the submodels.

1 Introduction and Motivation

For the description and simulation of complex physical phenomena, combination
of hierarchical mathematical models can be set up with the aim of reducing the
computational complexity. This gives rise to a system of heterogeneous problems,
where different kind of differential problems are set up in subdomains (either
disjoint or overlapping) of the original computational domain. When facing this
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kind of coupled problems, two natural issues arise. The former is concerned with the
way interface coupling conditions can be devised, the latter with the construction
of suitable solution algorithms that can take advantage of the intrinsic splitting
nature of the problem at hand. This work will focus on both issues, in the context
of heterogeneous boundary-value problems that can be used for fluid dynamics
applications.

The outline of this presentation is as follows. After giving the motivation for
this investigation, we will present two different approaches for the derivation and
analysis of the interface coupling conditions: the one based on the variational
formulation, the other on virtual controls. For the former we will consider at first
advection–diffusion problems. After carrying out their variational analysis we pro-
pose domain decomposition algorithms for their solution, in particular those based
on Dirichlet–Neumann, adaptive Robin–Neumann, or Steklov–Poincaré iterations.
Then, we will focus on Navier–Stokes/Darcy or Stokes/potential coupled problem
presenting their asymptotic analysis together with possible solution techniques.

For the virtual control approach, we will study the case of non-overlapping
subdomains for advection–diffusion problems considering in particular possible
techniques to solve the optimality system and we will present some numerical
results. Then, we will consider the case of domain decomposition with overlap,
namely Schwarz methods with Dirichlet/Robin interface conditions. We will investi-
gate the virtual control approach with overlap for the advection–diffusion equations
including the case of three virtual controls and we will present some numerical
results. Finally, we will illustrate this framework for the case of the Stokes–Darcy
coupled problem, and for the coupling of incompressible flows.

In order to motivate our investigation, we begin to analyze the advection–
diffusion problem.

Let us consider a bounded domain ˝ � Rd (d D 1; 2; 3) with Lipschitz
boundary and the advection–diffusion equation

�
Au � div.��ru C bu/C b0u D f in ˝
u D g on @˝;

(1)

where � > 0 is a characteristic parameter of the problem, b D b.x/ a d -dimensional
vector valued function, b0 D b0.x/ and f D f .x/ scalar functions, all assigned
in ˝ , while g D g.x/ is assigned on @˝ .

The characteristic parameter � can either represent the thermal diffusivity in heat
transfer problems, or the inverse of the Reynolds number in incompressible fluid-
dynamics, or another suitable parameter.

Denoting by

Peg.x/ D jb.x/j
2�

(2)

the global Péclet number, we call (1) an advection-dominated problem when
Peg.x/ � 1.
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Ω

Au = div(−ν∇u + bu) + b0u = f

layer

Fig. 1 A simple
computational domain and
the localization of the
boundary layer

We are interested in treating advection dominated problems with boundary layers
(see, e.g., Fig. 1), that arise when boundary data are incompatible with the limit
(as � ! 0) of the advection–diffusion equation. As an example, let us consider the
one-dimensional advection–diffusion equation

( ��u00.x/C bu0.x/ D 0; 0 < x < 1;

u.0/ D 0; u.1/ D 1;
(3)

with � > 0 and b > 0. Problem (3) can be solved exactly and its solution reads

u.x/ D ebx=� � 1

eb=� � 1 :

Such solution exhibits a boundary layer of width O.�=b/ near to x D 1 when the
ratio �=b is small enough, that is when

Peg.x/ � 1: (4)

In Fig. 2 we show the one-dimensional solution u.x/ of (3) for two different
values of the Péclet number: Peg.x/ D 0:5 at left and Peg.x/ D 100 at right. Only
in the latter case a boundary layer occurs.

When (4) holds, the diffusive term is relevant only in a small part of the domain
near to the boundary layer, while it can formally be neglected in the rest of the
domain, where the advection phenomenon prevails.

The idea is then: to split the domain in two non-overlapping subdomains˝1 and
˝2 where we denote by � D @˝1 \ @˝2 the interface between subdomains, and
then to solve a reduced problem as follows (see Fig. 3):

8<
:
A1u1 � div.bu1/C b0u1 D f in ˝1

A2u2 � div.��ru2 C bu2/C b0u2 D f in ˝2

Boundary conditions on @˝:
(5)

The main question that follows is: how to couple the subproblems?
To answer this question one should:
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Fig. 2 The exact solution of problem (3). The solution at right exhibits a boundary layer in x D 1
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Fig. 3 The reduced problem on the computational domain ˝ � R2

1. Find interface conditions on � so that the new reduced problem is well posed
and its solution is “close to” the original one; then

2. Set up efficient solution algorithms to solve the reduced problem.

By a singular perturbation analysis, Gastaldi et al. [30] proposed the following
set of interface conditions:

8̂
<
:̂

u1 D u2 on � in

b � n� u1 C �
@u2
@n�

� b � n� u2 D 0 on �;
(6)

where n� is the normal versor to � oriented from ˝1 to ˝2 and � in D fx 2 � W
b.x/ � n� .x/ < 0g is the inflow interface for˝1.

The coupled formulation (5) and (6) allows the independent solution of a
sequence of hyperbolic problems in ˝1 and elliptic problems in ˝2, in the
framework of iterative processes between subdomains. The different possible
treatments of the interface relations is what distinguishes one iterative method from
another. In this respect, a very natural approach is defined as follows. Given a
suitable initial guess �.0/ on� in and a suitable relaxation parameter# > 0, it iterates
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between˝1 and˝2 until convergence as follows: for k � 0 do

Solve

8̂
<̂
ˆ̂:
A1u

.kC1/
1 D f in ˝1

u.kC1/
1 D g on .@˝1 n � /in

u.kC1/
1 D �.k/ on � in;

Solve

8̂
ˆ̂̂<
ˆ̂̂̂
:

A2u
.kC1/
2 D f in ˝2

u.kC1/
2 D g on @˝2 n �

�� @u.kC1/
2

@n�
C b � n� u.kC1/

2 D b � n� u.kC1/
1 on �;

Compute �.kC1/ D .1 � #/�.k/ C #u.kC1/
2 j� in :

(7)

The coupled advection/advection–diffusion problem has been studied in [30]
and alternative interface conditions have been proposed in [21, 23, 24]. In [26] the
problem has been solved in the context of virtual control approach. We refer to
Sects. 2.2, 2.3, 3.1 for a more detailed analysis and solution of this problem.

Another problem which deserves our attention is the generalized Stokes equation
(see [51, Sect. 8.2.1]).

Let us refer to an idealised geometrical situation as depicted in Fig. 4, left.
The bounded domain ˝ � Rd , d D 2; 3, is external to a body whose boundary

is �b and we set �1 WD @˝ n �b. The problem we are considering reads: find the
vector field u and the scalar field p such that

8̂̂
<
ˆ̂:
˛u � ��u C rp D f; divu D 0 in ˝

u D 0 on �b

Bu D '1 on �1;
(8)

where f and '1 are given functions,B denotes the boundary operator on �1, while
˛ � 0 is a given parameter. To take ˛ D 0 corresponds to solve the Stokes problem.
Nevertheless, this problem may arise in the process of solving the full Navier–Stokes

Ω

Γ

G∞ G∞

Gb Gb

W1 W2

Fig. 4 The geometrical configuration for an external problem (left) and a possible non overlapping
decomposition of the computational domain (right)
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equations, when the discretisation of the time derivative is performed by means of a
scheme that is explicit in the non-linear convective term. In this case, the parameter
˛ > 0 represents the inverse of the time-step and the function f, in fact, depends on
the solution at the previous step, i.e. f D f.u.n//.

The boundary conditions on �1 have to be prescribed in a suitable way for
assuring well-posedness. In this respect, on a portion � in1 of �1 an onset flow
u D uin1 is given. However, assigning conditions on the outflow section � out1 may
not be simple. It is also clear that all interesting flow features occur in the vicinity
of the body due to the role of viscosity in this area.

For this reason, Schenk and Hebeker [56] have proposed the replacement of
problem (8) with a reduced one far from the obstacle.

The computational domain ˝ is partitioned into a subdomain ˝2, next to the
body, and a far field subdomain ˝1; the interface between ˝1 and ˝2 is denoted
by � , n� is the unit normal vector on � directed from ˝1 to ˝2, and n the unit
outward normal vector on @˝ . The global Stokes equation (8) is replaced with the
following coupled problem, where the viscosity � is set to 0 in ˝1:

8̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂:

˛u1 C rp1 D f; divu1 D 0 in ˝1

u1 D uin1 on � in1
p1 D 0 on � out1

˛u2 � ��u2 C rp2 D f; divu2 D 0 in ˝2

u2 D 0 on �b;

(9)

or equivalently, by applying the divergence operator to (9)1:

8̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:

�p1 D divf in ˝1

@p1

@n
D .f � ˛uin1/ � n on � in1

p1 D 0 on � out1

˛u2 � ��u2 C rp2 D f; divu2 D 0 in ˝2

u2 D 0 on �b:

(10)

Either problem (9) and (10) are incomplete, because the matching conditions that
have to be fulfilled on � are missing.

In [56] these conditions are recovered through a singular perturbation analysis
similar to that carried out for the advection–diffusion problem in [30] and they read:

8<
:
@p1

@n�
D .f � ˛u2/ � n� on �

p1n� D ��.n� � r/u2 C p2n� on �:
(11)
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Fig. 5 The domain
decomposition configuration
for an internal problem

The coupled problem (10) and (11) can be used also for the simulation of the fluid
motion inside a bounded domain, as depicted in Fig. 5. In this case the domain ˝1,
in which the reduced problem is solved, is non-connected and separates the interior
domain from both inflow and outflow interfaces.

We observe that the system (10) and (11) models two possible different coupled
problems. The first one, when ˛ D 0, is a Stokes/potential coupling, the vector field
f is independent of the velocity u and the pressure p1 is indipendent of the solution
.u2; p2/. Such coupling can be used to model external flows.

The second one, when ˛ > 0, corresponds to the single step of a time-
dependent Navier–Stokes/potential coupling where, as said above, the vector field
f depends on the solution at the previous step. This is the case of the simulation
of either the flow inside a channel (or the blood flow in the carotid) or a far field
condition.

As in the case of the advection–diffusion problem, the interface conditions (11)
could be used to set-up an iterative algorithm by subdomains as follows.

Assume thatb�.0/ is given and satisfies
Z
�

b�.0/ � n� D 0; for any k � 0 solve

8̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:

�p
.kC1/
1 D divf in ˝1

@p
.kC1/
1

@n
D .f � ˛uin1/ � n on � in1

p
.kC1/
1 D 0 on � out1
@p

.kC1/
1

@n�
D .f � ˛b�.k// � n� on �;

(12)

then solve
8̂̂
<̂
ˆ̂̂:

˛u.kC1/
2 � ��u.kC1/

2 C rp.kC1/
2 D f; divu.kC1/

2 D 0 in ˝2

u.kC1/
2 D 0 on �b

�.n� � r/u.kC1/
2 � p.kC1/

2 n� D �p.kC1/
1 n� on �

(13)
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and finally set

b�.kC1/ D .1 � #/b�.k/ C #u.kC1/
2j� ; (14)

where # > 0 is a relaxation parameter.
Since divu.kC1/

2 D 0 in ˝2, the trace u.kC1/
2j� satisfies

Z
�

u.kC1/
2j� � n� D 0;

whence
Z
�

b�.k/ � n� D 0 for each k � 0.

The analysis of the coupled problem (10) and (11) and the proof of convergence
of the above iterative process (12)–(14) are reported in [56]. The analysis can be
performed also by writing the problem in terms of the associated Steklov–Poincaré
operators, and then proving convergence by applying an abstract result (see [51,
Thm 4.2.2]).

Finally, we introduce a coupled free/porous-media flow problem.
The computational domain is a region naturally split into two parts: one occupied

by the fluid, the other by the porous media. More precisely, let ˝ � Rd (d D 2; 3)
be a bounded domain, partitioned into two non intersecting subdomains˝f and˝p

separated by an interface � , i.e. N̋ D N̋
f [ N̋

p ,˝f \˝p D ; and N̋
f \ N̋

p D �

(Fig. 6). We suppose the boundaries @˝f and @˝p to be Lipschitz continuous. From
the physical point of view, � is a surface separating the domain˝f filled by a fluid,
from a domain ˝p formed by a porous medium. We assume that ˝f has a fixed
surface, i.e., we neglect here the case of free-surface flows. The fluid in ˝f can
filtrate through the adjacent porous medium.

The Navier–Stokes equations describe the motion of the fluid in ˝f : 8t > 0,

�
@tuf � div T.uf ; pf /C .uf � r/uf D f in ˝f

div uf D 0 in ˝f ;
(15)

nf

np

Γ

W f

Wp
Gp

Gf
in

Gp
b

Gp

Gf

Gf

Fig. 6 Representation of a
2D section of a possible
computational domain for the
Stokes/Darcy coupling
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where T.uf ; pf / D �.ruf C rT uf /� pf I is the Cauchy stress tensor, I being the
identity tensor. � > 0 is the kinematic viscosity of the fluid, f a given volumetric
force, while uf and pf are the fluid velocity and pressure, respectively.

The filtration of an incompressible fluid through porous media is often described
by Darcy’s law. The latter provides the simplest linear relation between velocity
and pressure in porous media under the physically reasonable assumption that fluid
flows are usually very slow and all the inertial (non-linear) terms may be neglected.
Darcy’s law introduces a fictitious flow velocity, the Darcy velocity or specific
discharge q through a given cross section of the porous medium, rather than the
true velocity up with respect to the porous matrix:

up D q
n
; (16)

with n being the volumetric porosity, defined as the ratio between the volume of
void space and the total volume of the porous medium.

To introduce Darcy’s law, we define a scalar quantity ' called piezometric head
which essentially represents the fluid pressure in ˝p:

' D z C pp

g
; (17)

where z is the elevation from a reference level, accounting for the potential energy
per unit weight of fluid, pp is the ratio between the fluid pressure in ˝p and its
viscosity �f , and g is the gravity acceleration.

Then, Darcy’s law can be written as

q D �Kr'; (18)

whereK is a symmetric positive definite diagonal tensorK D .Kij /i;jD1;:::;d ,Kij 2
L1.˝p/,Kij > 0,Kij D Kji , called hydraulic conductivity tensor, which depends
on the properties of the fluid as well as on the characteristics of the porous medium.
Let us denote K D K=n.

In conclusion, the motion of an incompressible fluid through a saturated porous
medium is described by the following equations:

�
up D �Kr' in ˝p

div up D 0 in ˝p:
(19)

Finally, to represent the filtration of the free fluid through the porous medium,
we have to introduce suitable coupling conditions between the Navier–Stokes and
Darcy equations across the common interface � . In particular we consider the
following three conditions.

1. Continuity of the normal component of the velocity:

uf � n D up � n; (20)
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where we have indicated n D nf D �np on � . This condition is a consequence
of the incompressibility of the fluid.

2. Continuity of the normal stresses across � (see, e.g., [36]):

� n � T.uf ; pf / � n D g': (21)

Remark that pressures may be discontinuous across the interface.
3. Finally, in order to have a completely determined flow in the free-fluid region,

we have to specify a further condition on the tangential component of the fluid
velocity at the interface. An experimental condition was obtained by Beavers
and Joseph stating that the slip velocity at the interface differs from the seepage
velocity in the porous domain and it is proportional to the shear rate on � [5]:

�˛BJp
K
.uf � up/� � .T.uf ; pf / � n/� D 0: (22)

By .v/� we indicate the tangential component to the interface of v:

.v/� D v � .v � n/n: (23)

Since the seepage velocity up is far smaller than the fluid slip velocity uf at
the interface, Saffman proposed to use the following simplified condition (the
so-called Beavers–Joseph–Saffman condition) [53]:

�˛BJp
K
.uf /� � .T.uf ; pf / � n/� D 0: (24)

This condition was later derived mathematically by means of homogenization by
Jäger and Mikelić [36–38].

The three coupling conditions described in this section have been extensively
studied and analysed also in [17, 19, 46, 49, 52].

In conclusion, the coupled Navier–Stokes/Darcy model reads

8̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:

@tuf � div T.uf ; pf /C .uf � r/uf D f in ˝f

div uf D 0 in ˝f

up D �Kr' in ˝p

div up D 0 in ˝p

uf � n D up � n on �

�n � T.uf ; pf / � n D g' on �
�˛BJp

K
.uf /� � .T.uf ; pf / � n/� D 0 on �:

(25)

Using Darcy’s law we can rewrite the system (19) as an elliptic equation for the
scalar unknown ':
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� r � .Kr'/ D 0 in ˝p: (26)

In this case, the differential formulation of the coupled Navier–Stokes/Darcy
problem becomes

8̂<
:̂
@tuf � div T.uf ; pf /C .uf � r/uf D f in ˝f

div uf D 0 in ˝f

�div .Kr'/ D 0 in ˝p;

(27)

with the interface conditions on � :
8̂
ˆ̂̂<
ˆ̂̂̂
:

uf � n D �K
@'

@n

�n � T.uf ; pf / � n D g'
�˛BJp

K
.uf /� � .T.uf ; pf / � n/� D 0:

(28)

We refer to Sects. 2.6, 2.7, 3.4 for a more exhaustive analysis of the Stokes/Darcy
coupling.

2 Variational Formulation Approach

The reduced problems presented above will be analysed in this Section in a
variational setting, in order to deduce suitable interface conditions which can be
rigorously justified. Moreover, different iterative algorithms to solve the reduced
problems will be presented.

2.1 The Advection–Diffusion Problem

We consider an open bounded domain˝ � Rd (d D 2; 3) with Lipschitz boundary
@˝ , and we split it into two open subsets˝1 and˝2 such that

˝ D ˝1 [˝2; ˝1 \˝2 D ;: (29)

Then, we denote by

� D @˝1 \ @˝2 (30)

the interface between the subdomains (see Fig. 3) and we assume that � is of class

C1;1;
ı
� will denote the interior of � .

Given two scalar functions f and b0 defined in ˝ , a positive function � defined

in ˝2 [ ı
� , a d -dimensional vector valued function b defined in ˝ satisfying the
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following inequalities:

9�0 2 R W �.x/ � �0 > 0 8x 2 ˝2 [ ı
� ;

9�0 2 R W b0.x/C 1

2
divb.x/ � �0 > 0 8x 2 ˝;

(31)

we are interested in finding two functions u1 and u2 (defined in ˝1 and ˝2,
respectively) such that u1 statisfies the advection–reaction equation

A1u1 � div.bu1/C b0u1 D f in ˝1; (32)

while u2 satisfies the advection–diffusion–reaction equation

A2u2 � �div.�ru2/C div.bu2/C b0u2 D f in ˝2: (33)

For each subdomain, we distinguish between the external (or physical) boundary
@˝ \ @˝k D @˝k n � (for k D 1; 2) and the internal one, i.e. the interface � .

Moreover, for any non-empty subset S � @˝1, we define

The inflow part of S W S in D fx 2 S W b.x/ � n.x/ < 0g; (34)

where n.x/ is the outward unit normal vector on S ,

The outflow part of S W Sout D fx 2 S W b.x/ � n.x/ � 0g: (35)

Boundary conditions for problem (32) must be assigned on @˝ in
1 .

For a given suitable function g defined on @˝ , we denote by g1 and g2 the
restriction of g to .@˝1 n � /in and @˝2 n � , respectively, and we set the following
Dirichlet boundary conditions on the external boundaries:

u1 D g1 on .@˝1 n � /in;
u2 D g2 on @˝2 n �:

(36)

Finally, let us denote by n� the normal versor to � oriented from˝1 to ˝2, so that
n� .x/ D n1.x/ D �n2.x/, 8x 2 � .

2.2 Variational Analysis for the Advection–Diffusion Equation

The basic steps of the analysis carried out in [30] are summarized here.

1. Given a positive function � in ˝ , we denote by P˝.�/ the advection–diffusion
problem (1) in ˝ . For any " > 0, we introduce a smooth function �" defined in
˝2, which is a regularization of � according with continuity to " on � . Then, ��

"

is the globally defined viscosity defined as (see Fig. 7)
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Fig. 7 The viscosity ��

" for the regularized problem. �"j˝2 ! � when ." ! 0/

��
" D

�
" in ˝1

�" in ˝2 :

We denote by P˝.�
�
" / � ŒP˝1."/=P˝2.�"/	 the following advection–

diffusion problem:

8̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:

�"�u1;" C div.bu1;"/C b0u1;" D f in ˝1

div.��"ru2;" C bu2;"/C b0u2;" D f in ˝2

"
@u1;"
@n�

� b � n� u1;" D �"
@u2;"
@n�

� b � n� u2;" on �

u1;" D u2;" on �

u D g on @˝:

(37)

2. For any " > 0, let V˝."/ be the variational formulation associated to P˝."/.
Solving V˝."/ means to look for the solution u" 2 V of

a".u";w"/ D F.w"/; 8w" 2 V: (38)

If we take g � 0, this means to set V D H1
0 .˝/ and to solve

a".u";w"/ D
Z
˝

Œ."ru" � bu"/ � rw" C b0u"w"	 dx; F .w"/ D
Z
˝

f w"dx

(39)

for any w" 2 V .
Otherwise, if g ¤ 0 the formulation is the same, however the right hand side

has to be modified as follows:

Fg.w"/ D F.w"/� a".Rg;w"/;

where Rg is a suitable lifting of the boundary data g, so that the final solution
reads u" CRg (see [50]).
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3. By asymptotic analysis on V˝1."/, recover the reduced problem P˝1.0/, so that

P˝.�
�
" / ! ŒP˝1.0/=P˝2.�/	 when " ! 0 :

The new coupled problem ŒP˝1.0/=P˝2.�/	 inherits from the limit process a
proper set of interface conditions.

According to the analysis performed in [30], u1;" converges weakly in L2.˝1/

and u2;" converges weakly in H1.˝2/ when " ! 0, moreover the limit .u1; u2/ 2
L2.˝1/ 	H1.˝2/ satisfies the following reduced coupled problem:

8̂̂
ˆ̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂:

div.bu1/C b0u1 D f in ˝1

div.��ru2 C bu2/C b0u2 D f in ˝2

�b � n� u1 D �
@u2
@n�

� b � n� u2 on �

u1 D u2 on � in

u1 D g1 on .@˝1 n � /in
u2 D g2 on @˝2 n �:

(40)

The interface conditions (40)3;4 express the continuity of the flux across the
whole interface � and the continuity of the solution across the inflow interface � in,
respectively. No continuity condition is imposed on � out, as a matter of fact, u1 and
u2 exhibit a jump across � out which is proportional to �j� .

Note that the interface conditions (40)3;4 can be equivalently expressed as

u1 D u2 on � in;

b � n� u1 C �
@u2
@n�

� b � n� u2 D 0 on � out

�
@u2
@n�

D 0 on � in:

(41)

In order to proceed with the analysis of the coupled problem, we introduce
the following notations. Let A be an open bounded subset in Rd , with Lipschitz
continuous boundary. For any open subset � � @A, we define the weightedL2-space

L2b.� / D f' W � ! R W
p

jb � n� j' 2 L2.� /g; (42)

and the trace space

H
1=2
00 .� / D f' 2 L2.� / W 9 Q' 2 H1=2.@A/ W Q'j� D '; Q'j@An� D 0g: (43)
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The space L2b.� / endowed with the norm

k'kL2b.� / D
�Z

�

jb � n� j'2d�
�1=2

is a Hilbert space.
The following result has been proved in [30]:

Theorem 1. Assume the following regularity properties on the data: @˝1 and @˝2

are Lipschitz continuous, piecewise C1;1; � is of class C1;1;

� 2 L1.˝2/; b 2 �W 1;1.˝/
�2
; b0 2 L1.˝/; f 2 L2.˝/;

g 2 H�1=2.@˝/ W g1 2 L2b..@˝1 n � /in/; g2 2 H1=2.@˝2 n � /: (44)

Finally assume (31).
Then there is a unique pair .u1; u2/ 2 L2.˝1/ 	 H1.˝2/ which solves (40),

where: (40)1 and (40)2 hold in the sense of distributions in˝1 and˝2, respectively;
interface condition (41)1 holds a.e. on � in, interface condition (41)2 holds in
.H

1=2
00 .�

out//0; interface condition (41)3 holds in .H1=2
00 .�

in//0. Finally, problem
(40) is limit of a family of globally elliptic variational problems.

From now on, the solution .u1; u2/ of the heterogeneous problem (40) will be
named heterogeneous solution.

Other interface conditions have been proposed in the literature to close system
(32), (33), (36). For instance, the conditions

�b � n� u1 D �
@u2
@n�

� b � n� u2 on � out

u1 D u2;
@u1
@n�

D @u2
@n�

on � in;

(45)

have been proposed in [21] and are based on absorbing boundary condition theory.
The following set (see [23, 24]):

u1 D u2 on �

@u1
@n�

D @u2
@n�

on � in
(46)

takes into account the requirement of glueing the solutions across the interface with
high regularity.

However, the coupled problem with either one of these set of conditions (45) and
(46) cannot be regarded as a limit of the original complete variational problem as
the viscosity " tends to zero in ˝1.

Another possible approach to set suitable interface conditions was proposed
in [25] for the one-dimensional case with constant coefficients and it is based
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on the factorization of the differential operator. To briefly explain it, let us take
˝ D .x1; x2/ and let x0 2 ˝ denote the position of the interface between ˝1 and
˝2, i.e. ˝1 D .x1; x0/ and ˝2 D .x0; x2/. The method consists in the following
steps:

– Factorize the differential operator A2� D ��@2x � Cb@x � Cb0� as

A2 D .b@x � b�C/
�
��
b
@x C �

b
��
�
;

where �˙ D .b ˙p
b2 C 4�b0/=.2�/, with �C > 0 and �� < 0.

– Compute the function Qu1.x/ D Qu1.x1/e�C.x�x1/C 1
b

R x
x1
f .t/e�

C.x�t /dt , which is

the solution of the modified advection–reaction equation QA1 Qu1 D b Qu0
1�b�C Qu0

1 D
f in ˝1 with a suitable boundary condition at x D x1.

– Solve the advection diffusion problem A2u2 D f in ˝2 with the following
interface condition at x D x0:

��
b

u0
2.x0/C

�

b
��u2.x0/D

�
��
b

u0
1.x1/C

�

b
��u1.x1/� Qu1.x1/

�
e��Cx1 C Qu1.x0/:

– Solve the advection reaction problem A1u1 D bu0
1 C b0u1 D f in˝1 with either

u1.x0/ D u2.x0/ if b < 0, or a suitable boundary condition at x D x1 if b > 0.

It is shown in [25] that the L2�norm error between the heterogeneous solution
and the global elliptic one behaves like � (for � ! 0) in the domain˝1, while in˝2

it exponentially decreases with � when b < 0 and it behaves like �m (m D 1; 2; : : :)
when b > 0. The integer m depends on the accuarcy of the boundary condition
imposed at x D x1.

2.3 Domain Decomposition Algorithms for the Solution
of the Reduced Advection–Diffusion Problem

In this Section we will present two iterative domain decomposition methods to solve
the coupled problem (40), starting from the interface conditions (40)3;4. Moreover
we will reformulate the heterogeneous problem in terms of the Steklov–Poincaré
equation at the interface.

2.3.1 Dirichlet–Neumann algorithm

The interface conditions (40)3 and (40)4 provide, respectively, Dirichlet or Neumann
data at the interface � . Then we can use the condition (40)3 as an inflow (Dirichlet)
condition for the advection problem in ˝1 and the condition (40)4 as a Neumann
condition for the elliptic problem in ˝2. The algorithm, named Dirichlet–Neumann
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(DN) method, produces two sequences of functions fu.k/1 g and fu.k/2 g converging to
the solutions u1 and u2, respectively, of the heterogeneous problem as follows.

Given �.0/ 2 L2b.� in/, for k � 0 do:

Solve

8̂
<̂
ˆ̂:
A1u

.kC1/
1 D f in ˝1

u.kC1/
1 D g on .@˝1 n � /in

u.kC1/
1 D �.k/ on � in;

Solve

8̂
ˆ̂̂<
ˆ̂̂̂
:

A2u
.kC1/
2 D f in ˝2

u.kC1/
2 D g on @˝2 n �

�� @u.kC1/
2

@n�
C b � n� u.kC1/

2 D b � n� u.kC1/
1 on �;

Compute �.kC1/ D .1 � #/�.k/ C #u.kC1/
2 j� in ;

(47)

where # > 0 is a suitable relaxation parameter.

The convergence properties of this method are analysed in [30], while several
numerical results can be found in [22]. The convergence of DN method is
guaranteed by the following theorem [30].

Theorem 2. Let us consider the assumptions of Theorem 1. There exists ı > 0 such
that, if �.0/ 2 L2b.� in/ and # 2 .0; 1C ı/, then the sequence .u.k/1 ; u

.k/
2 / converges

to a limit pair .u1; u2/ in the following sense:

u.k/1 ! u1 in L2.˝1/; u.k/2 ! u2 in H1.˝2/:

The limit pair provides the unique solution to the coupled problem (40).

Other research papers connected with this approach are [2, 9, 29, 55].
We note that, when � out D � , the DN algorithm (47) converges in one iteration,

since the solution in ˝1 is independent of the solution in ˝2 and, once u1 is known,
the solution in ˝2 is obtained by a single “Neumann step”.

On the contrary, when � in D � , the coupled problem (40) can be solved without
iterations. As a matter of fact, by re-writing the interface condition (47)6 as in
(41), we note that the solution in ˝2 is uniquely determined, independently of a
trace function � on � . Consequently, the solution in ˝1 is uniquely defined by the
interface condition (41)1.

2.3.2 Adaptive Robin Neumann Algorithm

Another iterative algorithm, that can be invoked to solve the reduced advection–
diffusion problem (40) reads as follows. Given the functions �.0/ 2 L2b.� in/, 
.0/ 2
L2b.�

out/ and u.0/2 2 H1.˝2/, for k � 0 do:
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Solve

8̂̂
ˆ̂<
ˆ̂̂̂
:

div.bu.kC1/
1 /C b0u

.kC1/
1 D f in ˝1

u.kC1/
1 D g on .@˝1 n � /in

�b � n� u.kC1/
1 D �

@u.k/2
@n�

� b � n� �.k/ on � in;

Solve

8̂
ˆ̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂:

div.��ru.kC1/
2 C bu.kC1/

2 /C b0u
.kC1/
2 D f in ˝2

u.kC1/
2 D g on @˝2 n �

�
@u.kC1/

2

@n�
� b � n� u.kC1/

2 D �b � n� 
.k/ on � out

�
@u.kC1/

2

@n�
D 0 on � in;

Compute

(
�.kC1/ D .1 � #/�.k/ C #u.kC1/

2 on � in


.kC1/ D .1 � #/
.k/ C #u.kC1/
1 on � out:

(48)

The algorithm (48) is obtained as the limit, when " ! 0, of the Adaptive-Robin–
Neumann (ARN) method proposed in [10] for the homogeneous global elliptic
problem (37). In its original form, ARN method reads given �.0/, 
.0/ and u.0/2 ,
for k � 0 do

Solve

8̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂̂
:

�"�u.kC1/
1;" C div.bu.kC1/

1;" /C b0u
.kC1/
1;" D f in ˝1

u.kC1/
1;" D g on .@˝1 n � /in

"
@u.kC1/

1;"

@n�
� b � n� u.kC1/

1;" D �"
@u.k/2;"
@n�

� b � n� �.k/ on � in
1 D � in

"
@u.kC1/

1;"

@n�
D �"

@u.k/2;"
@n�

on � out
1 D � out;

Solve

8̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
:

div.��"ru.kC1/
2;" C bu.kC1/

2;" /C b0u
.kC1/
2;" D f in ˝2

u.kC1/
2;" D g on @˝2 n �

�"
@u.kC1/

2;"

@n�
� b � n� u.kC1/

2;" D "
@u.kC1/

1;"

@n�
� b � n� 
.k/ on � in

2 D � out

�"
@u.kC1/

2;"

@n�
D "

@u.kC1/
1;"

@n�
on � out

2 D � in;

Compute

(
�.kC1/ D .1 � #/�.k/ C #u.kC1/

2;" on � in


.kC1/ D .1 � #/
.k/ C #u.kC1/
1;" on � out:

(49)

The idea of this method is to impose a Robin interface condition on the local (i.e.
referred to that subdomain) inflow interface � in

i (i D 1; 2) and a Neumann interface
condition on the local outflow interface � out

i (i D 1; 2).
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Coming back to the heterogeneous coupling, it is straightforward to prove that,
if the choice of # guarantees the convergence of ARN method, then the limit
solution of ARN (48) coincides with the solution of the heterogeneous problem
(40). Moreover, if u.0/2 is chosen with null normal derivative on the interface � and
# D 1, then ARN (48) and DN (47) methods coincide.

When either � in D � or � out D � we can conclude that no iterations are need
for ARN method, as for DN.

Remark 1. We want to remark here that in the Dirichlet/Neumann method, the Neu-
mann condition (47)6 is in fact a conormal derivative associated to the differential
operatorA2. On the contrary, in the ARN method the Neumann condition (as (48)7)
is a pure normal derivative on the interface, while the conormal derivative (48)6 is
called Robin condition, in agreement with the classical definition of Robin boundary
condition. Following the latter notation, actually the Dirichlet/Neumann method
should be a Dirichlet/Robin method.

2.3.3 Steklov–Poincaré Based Solution Algorithms

Let us consider the heterogeneous problem (40) with homogeneous Dirichlet
conditions on @˝ , i.e., g � 0. Let � 2 H

1=2
00 .� / denote the unknown trace of

the solution u2 on � . Thanks to the interface condition (40)4, the solution .u1; u2/
of (40) can be written as

u1 D u�1 C w1; u2 D u�2 C w2;

where w1 and w2 depend on the assigned function f and are the solution of

�
A1w1 D f in ˝1

w1 D 0 on @˝ in
1 ;

�
A2w2 D f in ˝2

w2 D 0 on @˝2;
(50)

while u�1 and u�2 are the solutions of

8<
:
A1u�1 D 0 in ˝1

u�1 D 0 on .@˝1 n � /in
u�1 D �j� in on � in;

8<
:
A2u�2 D 0 in ˝2

u2 D 0 on @˝2 n �
u�2 D � on �:

(51)

Given � 2 H
1=2
00 .� /, we define the Steklov–Poincaré operators S1 and S2 such

that

S1� D
(

b � n� u�1 on � out

0 on � in
(52)
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and

S2� D

8̂̂
<
ˆ̂:
�
@u�2
@n�

� b � n� u�2 on � out

�
@u�2
@n�

on � in:

(53)

Actually, S1� depends only on the values of � on � in.
Then the interface conditions (40)3 can be equivalently expressed in terms of

Steklov–Poincaré operators as

S� � S1�C S2� D �; (54)

where

� D

8̂
<
:̂

�b � n� w1 � �
@w2
@n�

C b � n� w2 on � out

�� @w2
@n�

on � in:

(55)

The operator S W H1=2
00 .� / ! .H

1=2
00 .� //

0 is the so-called Steklov–Poincaré opera-
tor and the (54) is the Steklov–Poincaré equation associated to the heterogeneous
problem (40). The solution of (40) can be reached by sequentially solving the
problems (50), (54) and (51).

Several methods may be invoked to solve the Steklov–Poincaré equation (54). To
start, let us consider the preconditioned Richardson method

�
�.0/ given
P.�.kC1/ � �.k// D #.� � S�.k//; for k � 0;

(56)

where P is the preconditioner and # > 0 an acceleration parameter.
Thanks to the well-posedness of the ellitpic problem in ˝2, the operator S2 is
invertible and we can use it as preconditioner, so that (56) becomes

(
�.0/ given
�.kC1/ D .1 � #/�.k/ C #S�1

2 .� � S1�
.k//; for k � 0:

(57)

By comparing (57) with (47), we recognize that the Dirichlet–Neumann method
is equivalent to the Richardson iterative method applied to the Steklov–Poincaré
equation (54) with preconditionerS2, since the identity u.kC1/

2 j� D S�1
2 .��S1�.k//

holds.
After a discretization of the heterogeneous problem (by, e.g., finite elements or

spectral methods) it is possible to write the discrete counterpart of both the Steklov–
Poincaré equation (54) and the Dirichlet–Neumann algorithm (47).

It can be be proven that the Dirichlet–Neumann algorithm converges, for suitable
choices of the relaxation parameter # , independently of the discretization parameter
h for finite elements or N for spectral methods (see, e.g., [30] for a proof in the
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spectral method context). This because the local Steklov–Poincaré operator S2 is
spectrally equivalent to the global Steklov–Poincaré operator S .

Krylov methods are valid alternatives to Richardson iterations to solve the
preconditioned Steklov–Poincaré equation

S�1
2 S� D S�1

2 �: (58)

In the next section we will provide numerical results about the numerical solution of
the coupled problem (40) by using either Dirichlet–Neumann method (47), Adaptive
Robin-Neumann method (48) and the preconditioned Bi-CGStab [57] on (58).

2.4 Numerical Results for the Advection–Diffusion Problem

In this Section we will provide the numerical solution of a test case in two-
dimensional computational domains. The discretization of the differential equation
inside each subdomain is performed by quadrilateral conformal Spectral Element
Methods (SEM). We refer to [8] for a detailed description of these methods, while
here we recall in brief their basic features.

Let T D fTmgMmD1 be a partition of the computational domain ˝ � Rd , where
each element Tm is obtained by a bijective and differentiable transformation Fm
from the reference (or parent) element Ő d D .�1; 1/d . On the reference element we
define the finite dimensional space OQN D spanf Oxj11 � � � Oxjdd W 0 
 j1; : : : ; jd 
 N g
and, for any Tm 2 T : Tm D Fm. Ő d /, set hm D diam.Tm/ and

VNm.Tm/ D fv W v D Ov ı F�1
m for some Ov 2 OQNmg:

The SEM multidimensional space is

Xı D fv 2 C0.˝/ W vjTm 2 VNm.Tm/; 8Tm 2 T g;

where ı is an abridged notation for “discrete”, that accounts for the local
geometric sizes fhmg and the local polynomial degrees fNmg, for m D 1; : : : ;M .

Let us consider the variational formulation (38) and, for simplicity, impose
the homogeneous Dirichlet condition on the boundary (i.e. g � 0). The SEM
approximation of the solution of (38) is the function uı 2 Vı D Xı \ H1

0 .˝/,
such that X

m

aTm.uı; vı/ D
X
m

.f; vı/Tm 8vı 2 Vı (59)

holds, where aTm and .f; v/Tm denote the restrictions to Tm of the bilinear form and
the L2-inner product (respectively) defined in (39).

Since the high computational cost in evaluating integrals in (59), the bilinear form
aTm and the L2-inner product .f; v/Tm are often approximated by a discrete bilinear
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form aNm;Tm and a discrete inner product .f; v/Nm;Tm , respectively, in which exact
integrals are replaced by Numerical Integration (NI) based on Legendre–Gauss–
Lobatto formulas.
The SEM-NI approximation of the solution of (38) will be the function uı 2 Vı such
that X

m

aNm;Tm.uı; vı/ D
X
m

.f; vı/Nm;Tm 8vı 2 Vı: (60)

We consider now a test case and we compare the convergence rate of the
iterative methods explained in Sect. 2.3. We will denote by DN the Dirichlet
Neumann method (47), by ARN the Adaptive Robin–Neumann method (48) and by
BiCGStab-SP the preconditioned BiCGstab method applied to the preconditioned
Steklov–Poincaré equation (58). Our aim is twofold. From one hand we will
represent the numerical solution of the heterogeneous problem (40), on the other
hand we want to investigate and compare the convergence rate of the iterative
methods versus the magnitude of the viscosity � and the discretization size (i.e.
the local geometric sizes hm and the local polynomial degreesNm).

Test case #1: Let us consider problem (40). The computational domain ˝ D
.�1; 1/2 is split in ˝1 D .�1; 0:8/ 	 .�1; 1/ and ˝2 D .0:8; 1/ 	 .�1; 1/. The
interface is � D f0:8g 	 .�1; 1/. The data of the problem are: b D Œy; 0	t , b0 D
1, f D 1 and the inflow interface is � in D f0:8g 	 .�1; 0/. Dirichlet boundary
conditions are imposed on the vertical sides of˝ , precisely g D 1 on f�1g 	 .0; 1/,
g D 0 on f1g 	 .�1; 1/, while homogeneous Neumann conditions are imposed on
the horizontal sides of ˝2. The viscosity will be specified below.

In Fig. 8 the SEM-NI solutions for � D 10�2 and � D 10�3 are shown. A non-
uniform partition in 3 	 6 (4 	 6, resp.) quadrilaterals has been considered in
˝1 (˝2, resp.). The same polynomial degree N D 8 has been fixed inside each
spectral element. The jump of the solution across � out is evident for � D 0:01,
in particular we have obtained ku1 � u2kL1.� out/ ' 0:237 when � D 0:01 and
ku1 � u2kL1.� out/ ' 0:020 when � D 0:001.

Now we want to compare DN, ARN and BiCGStab-SP methods for what
concerns the convergence rate and the computational efficiency.

layer
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1.000×100

x

−1
0

1 y−1
0

1
5.787×10–7

1.000×100
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W2

Fig. 8 Test case #1. The data of the test case (left) and the heterogeneous solution for � D 0:01

(center) and � D 0:001 (right)
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The convergence of both DN and ARN is measured by the stopping test on the
difference between two iterates, i.e.

k�.kC1/ � �.k/k 
 " for DN

maxfk�.kC1/ � �.k/k; k
.kC1/ � 
.k/kg 
 " for ARN,
(61)

while the convergence of BiCGStab-SP is measured by the stopping test on the
residual r.kC1/ D � � S�.kC1/, i.e.

kr.kC1/k
kr.0/k 
 ": (62)

The convergence of both DN and ARN methods depends on the choice of
the relaxation parameter # , on the contrary, the BiCGStab-SP algorithm does not
require to set any acceleration parameter.

In Fig. 9 we report the number of iterations of both DN and ARN methods in
order to converge up to a tolerance of 10�6 for � D 0:01 and we conclude that, for
this test case, the optimal value of # is #opt D 1. Analogous results are obtained for
smaller values of the viscosity.

In Table 1 we report the number of iterations needed by every iterative scheme
(DN, ARN, BiCGstab-SP) to converge up to a tolerance of 10�6, versus the
polynomial degreeN . For both DN and ARN method we set # D 1. The partition of
˝ is not uniform and it coincides with that used to represent the numerical solutions
in Fig. 8. The discretization we have used is fine enough to guarantee the absence of
spurious oscillations due to large Péclet number.

As we can see, the convergence rate of all methods is independent of both
polynomial degree N and viscosity �.

The BiCGStab-SP method requires the smallest number of iterations, neverthe-
less each Bi-CGStab iteration costs about two and a half iterations of either DN
or ARN. As a matter of fact, each iteration of DN (or equivalenlty ARN) requires
the solution of an advection problem in ˝1 plus the solution of an elliptic problem
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Fig. 9 Test case #1 with
� D 0:01. DN and ARN
iterations to satisfy the
stopping test (61) versus the
relaxation parameter #
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Table 1 Test case #1. Number of iterations to satisfy stopping test with " D 10�6

N � D 0:1 � D 0:01 � D 0:001

DN ARN SP DN ARN SP DN ARN SP

4 2 3 1 2 3 1 2 3 1
6 2 3 1 2 3 1 2 3 1
8 2 3 1 2 3 1 2 3 1
10 2 3 1 2 3 1 2 3 1
12 2 3 1 2 3 1 2 3 1
14 2 3 1 2 3 1 2 3 1
16 2 3 1 2 3 1 2 3 1

The relaxation parameter is # D 1 in both DN and ARN. SP is an abridged
notation for BiCGStab-SP method.

in ˝2. On the contrary, each iteration of BiCGstab-SP requires two matrix vector
products to compute the residual r.k/ D � � S�.k/ plus the solution of two linear
systems on the preconditioner S2z.k/ D r.k/, meaning that we have to solve two
advection problems in ˝1 plus three elliptic problems in ˝2 at each iteration.

For this test case, we conclude that all three methods are very efficient and
their computational costs are comparable. Nevertheless, both DN and ARN methods
require a priori knowledge of the optimal relaxation parameter # .

2.5 Navier–Stokes/Potential Coupled Problem

Models similar to the (Navier–)Stokes/Darcy problem introduced in Sect. 1 can be
used in external aerodynamics to describe the motion of an incompressible fluid
around a body such as, for example, a ship, a boat or a submerged body in a water
basin. In fact, such problems can be studied by decomposing the computational
domain into two parts: a region ˝2 close to the body where, due to the viscosity
effects, all the interesting features of the flow occur, and an outer region ˝1 far
away from the body where one can neglect the viscosity effects. See, e.g., Fig. 10.

Therefore, suitable heterogeneous differential models comprising Navier–Stokes
equations, Euler equations, potential flows and other models from fluid dynamics
could be envisaged (see, e.g., [3, 35]).

Here, we present a simple model where in˝2 we consider the full Navier–Stokes
equations, while in ˝1 we adopt a Laplace equation for the velocity potential.

A coupled heterogeneous model of this kind has been studied in [56] considering
a computational domain as in Fig. 11 and the following generalized Stokes problem:

8̂
<̂
ˆ̂:
˛u" � �"�u" C rp" D f in ˝

r � u" D 0 in ˝

u" D 0 on �b;

(63)
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Fig. 10 Flow around a
cylinder computed using a
Navier–Stokes/potential
coupled problem

Γ∞

Γ

body

n

inflow
GbW2

W1

Fig. 11 Representation of the computational domain for an external aerodynamics problem

with suitable boundary conditions on the outer boundary �1. The viscosity is
�" D � in ˝2, while �" D " in ˝1.

In [56] a vanishing viscosity argument is used letting " ! 0 in ˝1 in order to set
up a suitable global model and to define the correct interface conditions across � .
Precisely, the following limit coupled problem was characterized:

8̂̂
<
ˆ̂:

˛u � ��u C rp D f in ˝2

r � u D 0 in ˝2

�q D r � f in ˝1

(64)

with suitable boundary conditions and the coupling conditions across the inter-
face �

@q

@n�
D .f � ˛u/ � n� on �

�� @u
@n�

C pn� D qn� on �:

(65)
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n� denotes the unit normal vector on � directed from ˝2 to ˝1. We remark that,
apart from the physical meaning of the variables, the coupling conditions (65) are
similar in their structure to those used for the Navier–Stokes/Darcy coupling (28). In
fact, (65)1 corresponds to (28)1, and in (65)2 the pressure is still discontinuous across
the interface, even if there is no distinction between the normal and the tangential
components of the stress tensor as in (28)2 and (28)3.

Because of these similarities, the analysis that we shall develop in Sect. 2.6 for
the Navier–Stokes/Darcy problem could be accommodated to account also for the
heterogenous coupling (64) and (65).

However, one has to keep in mind that the physical meaning of the two coupled
problems is very different. In the Navier–Stokes/Darcy case we have two viscous
models where Darcy equation and the coupling conditions can be obtained by
homogenization in the limit " ! 0 in˝p, where " represents the size of the pores in
the porous medium. On the other hand, the Navier–Stokes/potential model couples
viscous and inviscid equations, the latter being obtained in the limit � ! 0 like also
the corresponding coupling conditions.

2.6 Asymptotic Analysis of the Coupled
Navier–Stokes/Darcy Problem

We focus now on the coupled Navier–Stokes/Darcy problem (27) and (28), however
we confine ourselves to the steady problem by dropping the time-derivative in the
momentum equation (27)1:

�div T.uf ; pf /C .uf � r/uf D f in ˝f : (66)

Even when considering the time-dependent problem, a similar kind of “steady”
problem can be found when using an implicit finite difference time-advancing
scheme. In that case, however, an extra reaction term ˛uf would show up on the
left-hand side of (66), where the positive coefficient ˛ plays the role of inverse of
the time-step. This reaction term would not affect our forthcoming analysis, though.

To discuss possible boundary conditions on the external boundary of ˝f and
˝p, let us split the boundaries @˝f and @˝p as @˝f D � [ � in

f and @˝p D
� [ �p [ � b

p , as shown in Fig. 6, left.
For the Darcy equation we assign the piezometric head ' D 'p on �p; moreover,

we require that the normal component of the velocity vanishes on the bottom
surface, that is, up � np D 0 on � b

p .
For the Navier–Stokes problem, several combinations of boundary conditions

are possible, representing different kinds of flow problems. Here, we assign a non-
null inflow uf D uin on � in

f and a no-slip condition uf D 0 on the remaining
boundary �f .

To summarize, the coupled problem (66)–(28) is supplemented with the bound-
ary conditions:
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uf D uin on � in
f ; uf D 0 on �f ;

' D 'p on �p; K
@'

@n
D 0 on � b

p :
(67)

We introduce the following functional spaces:

Hf D fv 2 .H1.˝f //
d W v D 0 on �f [ � in

f g;eHf D fv 2 .H1.˝f //
d W v D 0 on �f [ � g;

Q D L2.˝f /; Hp D f 2 H1.˝p/ W  D 0 on �pg:
(68)

We denote by j � j1 and k � k1 the H1-seminorm and norm, respectively, and by
k � k0 the L2-norm; it will always be clear form the context whether we are referring
to spaces on˝f or ˝p .

The space W D Hf 	Hp is a Hilbert space with norm

kwkW D 	kwk21 C k k21

1=2 8w D .w;  / 2 W:

Finally, we consider on � the trace space 
 D H
1=2
00 .� / and denote its norm by

k � k
 (see [42]).
We introduce a continuous extension operator

Ef W .H1=2.� in
f //

d ! eHf : (69)

Then 8uin 2 .H
1=2
00 .�

in
f //

d we can construct a vector function Ef uin 2 eHf such
that Ef uinj� inf D uin.

We introduce another continuous extension operator:

EpWH1=2.� b
p / ! H1.˝p/ such that Ep'p D 0 on �: (70)

Then, for all ' 2 H1.˝p/ we define the function '0 D ' � Ep'p .
Finally, we define the following bilinear forms:

af .v;w/ D
Z
˝f

�

2
.rv C rT v/ � .rw C rT w/ 8v;w 2 .H1.˝f //

d ;

bf .v; q/ D �
Z
˝f

q div v 8v 2 .H1.˝f //
d ; 8q 2 Q;

ap.';  / D
Z
˝p

r � Kr' 8'; 2 H1.˝p/ ;

(71)

and, for all v;w; z 2 .H1.˝f //
d , the trilinear form

cf .wI z; v/ D
Z
˝f

Œ.w � r/z	 � v D
dX

i;jD1

Z
˝f

wj
@zi
@xj

vi : (72)
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Now, if we multiply (66) by v 2 Hf and integrate by parts we obtain

af .uf ; v/C cf .uf I uf ; v/C bf .v; pf /�
Z
�

n � T.uf ; pf / v D
Z
˝f

f � v :

Notice that we can write

�
Z
�

n � T.uf ; pf / v D �
Z
�

Œn � T.uf ; pf / � n	v � n �
Z
�

.T.uf ; pf / � n/� � .v/� ;

so that we can incorporate in weak form the interface conditions (28)2 and (28)3 as
follows:

�
Z
�

n � T.uf ; pf / v D
Z
�

g'.v � n/C
Z
�

�˛BJp
K
.uf /� � .v/� :

Finally, we consider the lifting Ef uin of the boundary datum and we split uf D
u0f C Ef uin with u0f 2 Hf ; we recall that Ef uin D 0 on � and we get

af .u0f ; v/C cf .u0f C Ef uinI u0f C Ef uin; v/C bf .v; pf /

C
Z
�

g'.v � n/C
Z
�

�˛BJp
K
.uf /� � .v/� D

Z
˝f

f � v � af .Ef uin; v/: (73)

From (27)2 we find

bf .u0f ; q/ D �bf .Ef uin; q/ 8q 2 Q: (74)

On the other hand, if we multiply (27)3 by  2 Hp and integrate by parts we get

ap.';  /C
Z
�

K
@'

@n
 D 0 :

Now we incorporate the interface condition (28)1 in weak form as

ap.';  / �
Z
�

.uf � n/ D 0;

and, considering the splitting ' D '0 C Ep'p we obtain

ap.'0;  / �
Z
�

.uf � n/ D �ap.Ep'p;  /: (75)

We multiply (75) by g and sum to (73) and (74); then, we define

A .v;w/ D af .v;w/C g ap.';  /C
Z
�

g '.w � n/ �
Z
�

g  .v � n/

C
Z
�

�˛BJp
K
.w/� � .v/� ; (76)
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C .vI w; u/ D cf .vI w;u/;

B.w; q/ D bf .w; q/;

for all v D .v; '/, w D .w;  /, u D .u; �/ 2 W , q 2 Q. Finally, we define the
following linear functionals:

hF ;wi D
Z
˝f

f � w � af .Ef uin;w/� g ap.Ep'p;  /;

hG ; qi D �bf .Ef uin; q/;
(77)

for all w D .w;  / 2 W , q 2 Q.
Adopting these notations, the weak formulation of the coupled Navier–

Stokes/Darcy problem reads
find u D .u0f ; '0/ 2 W , pf 2 Q such that

�
A .u; v/C C .u C u�I u C u�; v/C B.v; pf / D hF ; vi 8v D .v;  / 2 W
B.u; q/ D hG ; qi 8q 2 Q;

(78)
with u� D .Ef uin; 0/ 2 eHf 	H1.˝p/.

Remark that the interface conditions (28) have been incorporated in the weak
formulation as natural conditions on � : in particular, (28)2 and (28)3 are natural
conditions for the Navier–Stokes problem, while (28)1 becomes a natural condition
for Darcy’s problem.

The well-posedness of (78) can be proved quite easily in the case of the
Stokes/Darcy coupling, i.e. when we neglect the trilinear form C .�I �; �/. Indeed, in
this case the existence and uniqueness of the solution follows from the classical
theory of Brezzi for saddle-point problems after proving the continuity of A .�; �/,
its coerciveness on the kernel of B.�; �/ and that an inf-sup condition holds between
the spacesW and Q. For details of this analysis we refer to [18].

The case of the Navier–Stokes/Darcy problem is more involved. In particular,
in this case we could prove the well-posedness only under some hypotheses on
the data similar to those required for the sole Navier–Stokes equations. Moreover,
uniqueness is guaranteed only in the case of small enough filtration velocities uf � n
across � . The analysis that we have carried out is based on classical results for
nonlinear saddle-point problems (see, e.g., [31]). We refer the reader to [4, 19].
Similar results have been proved using a different approach in [32].

2.7 Solution Techniques for the Navier–Stokes/Darcy Coupling

A possible approach to solve the Navier–Stokes/Darcy problem is to exploit its
naturally decoupled structure keeping separated the fluid and the porous media parts
and exchanging information between surface and groundwater flows only through
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boundary conditions at the interface. From the computational point of view, this
strategy is useful at the stage of setting up effective methods to solve the problem
numerically.

Therefore, we apply a domain decomposition technique at the differential level to
study the Navier–Stokes/Darcy coupled problem. Our aim will be to introduce and
analyze a generalized Steklov–Poincaré interface equation (see [51]) associated to
our problem, in order to reformulate it solely in terms of interface unknowns. This
re-interpretation is crucial to set up iterative procedures between the subdomains
˝f and˝p , that can be used at the discrete level.

Here we illustrate the main ideas behind this approach, and refer to [19] for a
complete analysis.

We choose a suitable governing variable on the interface � . Considering the
interface conditions (28)1 and (28)2, we can foresee two different strategies to select
the interface variable:

1. We can set the interface variable � as the trace of the normal velocity on the
interface:

� D uf � n D �K
@'

@n
: (79)

2. We can define the interface variable � as the trace of the piezometric head on � :

� D ' D � 1
g

n � T.uf ; pf / � n: (80)

Both choices are suitable from the mathematical viewpoint since they guarantee
well-posed subproblems in the fluid and the porous medium part.

We discuss here the approach in the case of the Stokes/Darcy coupling consider-
ing the choice of the interface variable � as in (79). We refer the reader to [15] for
the second case (80).

For simplicity, from now on we consider the following condition on the interface:

.uf /� D 0 on � (81)

instead of (28)3.
Consider the auxiliary problems:

8̂̂
ˆ̂̂<
ˆ̂̂̂
:̂

�div T.u�; p�/ D f in ˝f

div u� D 0 in ˝f

u� D uin on � in
f

.u�/� D 0 on �
u� � n D 0 on �;

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

�div .Kr'�/ D 0 in ˝p

'� D 'p on �p

K
@'�

@n
D 0 on � b

p

K
@'�

@n
D 0 on �:

(82)

Then, assuming to know the value of � 2 
0, with


0 D f
 2 H1=2
00 .� / W R

�

 D 0g;
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we consider the problems:

8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

�div T.u�; p�/ D 0 in ˝f

div u� D 0 in ˝f

u� D 0 on � in
f

.u�/� D 0 on �
u� � n D � on �;

8̂
ˆ̂̂̂̂
<
ˆ̂̂̂̂
:̂

�div .Kr'�/ D 0 in ˝p

'� D 0 on �p

K
@'�

@n
D 0 on � b

p

K
@'�

@n
D � on �:

(83)

We can prove that the solution of the Stokes–Darcy problem can be expressed as:
uf D u� C u�, pf D p� C p�, ' D '� C '�, where � 2 
0 is the solution of the
Steklov–Poincaré equation

.Sf C Sp/� D � on �: (84)

Sf and Sp are the local Steklov–Poincaré operators formally defined as

Sf W 
0 ! 
0
0 such that Sf � D n � T.u�; p�/ � n on �;

while

Sp W 
0 ! 
0
0 such that Sp� D g'� on �:

Finally,

� D �n � T.u�; p�/ � n � g'� on �:

The analysis of the operators Sf and Sp as well as the study of the well-posedness
of the interface equation (84) have been carried out in [18]. In particular, we have
proved that the operator Sf is invertible on the trace space 
0 and it is spectrally
equivalent to Sf CSp , i.e., there exist two positive constants k1 and k2 (independent
of �) such that

k1hSf �; �i 
 hS�; �i 
 k2hSf �; �i 8� 2 
0:

The same property holds at the discrete level considering conforming finite element
approximations of Sf and Sp with constants k1 and k2 that do not depend on the
grid size h. This property makes the operator Sf an attractive preconditioner to
solve the interface problem (84) via an iterative method like, e.g., Richardson or the
Conjugate Gradient, yielding a convergence rate independent of h.

For example, we can consider the following Richardson iterations: given �.0/ 2

0, for k � 0,

�.kC1/ D �.k/ C #S�1
f .� � .Sf C Sp/�

.k// on �; (85)

where 0 < # < 1 is a suitable relaxation parameter.
This method requires at each step to apply Sp and S�1

f , i.e., recalling the
definitions of these operators, to solve a Darcy problem in˝p with given flux across
� and a Stokes problem in ˝f with assigned normal stress on � . More precisely,
we can rewrite (85) as: let �.0/ 2 
 be an initial guess; for k � 0,
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Solve

8̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂:

�div .Kr'.kC1// D 0 in ˝p

'.kC1/ D 'p on �p

K
@'.kC1/

@n
D 0 on � b

p

K
@'.kC1/

@n
D �.k/ on �;

Solve

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

�div T.u.kC1/; p.kC1// D f in ˝f

div u.kC1/ D 0 in ˝f

u.kC1/ D uin on � in
f

.u.kC1//� D 0 on �
�n � T.u.kC1/; p.kC1// � n D g'.kC1/ on �;

Compute �.kC1/ D .1 � #/�.k/ C #u.kC1/ � n on �:

(86)

Remark that this algorithm has the same structure as the Dirichlet–Neumann
method in the domain decomposition framework.

Another possible algorithm that we have studied in [20] is a sequential Robin-
Robin method which at each iteration requires to solve a Darcy problem in ˝p

followed by a Stokes problem in ˝f , both with Robin conditions on � . Precisely,
the algorithm reads as follows.

Having assigned a trace function �0 2 L2.� /, and two acceleration parameters
�f � 0 and �p > 0, for each k � 0:

Solve

8̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂:

�div .Kr'.kC1// D 0 in ˝p

'.kC1/ D 'p on �p

K
@'.kC1/

@n
D 0 on � b

p

��pK
@'.kC1/

@n
C g'

.kC1/
j� D �.k/ on �;

Solve

8̂
ˆ̂̂̂
ˆ̂̂̂̂
<̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂:

�div T.u.kC1/; p.kC1// D f in ˝f

div u.kC1/ D 0 in ˝f

u.kC1/ D uin on � in
f

.u.kC1//� D 0 on �

n � T.ukC1
f ; pkC1

f / � n C �f u.kC1/
f � n

D �g'.kC1/
j� � �f K

@'.kC1/

@n
on �;

Compute �.kC1/ D �n � T.u.kC1/
f ; p

.kC1/
f / � n C �pu.kC1/

f � n on �:

(87)
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Both the Stokes problem in ˝f and the Darcy problem in ˝p are well-posed
and, at convergence, we recover the solution .uf ; pf / 2 Hf 	 Q and ' 2 Hp of
the coupled Stokes/Darcy problem. Indeed, denoting by '� the limit of the sequence
'k in H1.˝p/ and by .u�

f ; p
�
f / that of .ukf ; p

k
f / in .H1.˝f //

d 	Q, we obtain

� �pK
@'�

@n
C g'�

j� D �n � T.u�
f ; p

�
f / � n C �pu�

f � n on � ; (88)

so that we have

.�f C �p/u�
f � n D �.�f C �p/K

@'�

@n
on � ;

yielding, since �f C �p ¤ 0, u�
f � n D �K @'�

@n
on � , and also, from (88), that

n � T.u�
f ; p

�
f / � n D �g'�

j� on � . Thus, the two interface conditions (28)1 and (28)2
are satisfied, and we can conclude that the limit functions '� 2 Hp and .u�

f ; p
�
f / 2

Hf 	Q are the solutions of the coupled Stokes/Darcy problem.
A proof of convergence is presented in [20] and it follows the guidelines of the

theory by Lions [41] for the Robin–Robin method (see also [51, Sect. 4.5]).
A crucial point in the algorithm is the choice of the acceleration parameters �f

and �p. A general strategy is not available, but thanks to a reinterpretation of the
Robin–Robin method as an alternating direction scheme à la Peaceman–Rachford
(see [48]), we were able to give some hints on how to choose them. We refer to [20].

We will illustrate the numerical behavior of the Dirichlet–Neumann and of the
Robin–Robin algorithms in Sect. 2.8.

Finally, we address the case of the Navier–Stokes/Darcy coupling. Also to this
nonlinear problem we can asociate an interface equation similar to (84) still involv-
ing the operator Sp but a nonlinear operator QSf analogous to Sf . Formally, we can
represent QSf W 
0 ! 
0

0 as the operator associated to the Navier–Stokes problem:

8̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂̂
ˆ̂̂:

�div T.u�; p�/C .u� � r/u� D 0 in ˝f

div u� D 0 in ˝f

u� D 0 on � in
f

.u�/� D 0 on �

u� � n D � on �;

(89)

such that QSf � D n � T.u�; p�/ � n on � .
Then, we can write the interface problem:

find � 2 
0 W QSf .�/C Sp� D �p on �; (90)

with �p D, and prove its equivalence to the global coupled problem.
A rigorous presentation of this approach can be found in [4].
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The set-up of effective iterative methods for the interface problem (90) is not
straightforward. In particular, no results are available yet on the characterization of
suitable operators spectrally equivalent to QSf C Sp . In [4, 19] we have proposed
and analyzed two classical schemes, fixed-point or Newton, for (90) showing their
equivalence to the following algorithms, respectively.

Fixed-point iterations: Given u0f 2 Hf , for k � 1, find u.k/f 2 Hf , p.k/f 2 Q,

'.k/ 2 Hp such that, for all v 2 Hf , q 2 Q,  2 Hp ,

8̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂
:

af .u
.k/

f ; v/C cf .u
.k�1/
f I u.k/f ; v/C bf .v; p

.k/

f /

C
Z
�

g '.k/.v � n/C
Z
�

�˛BJp
K
.u.k/f /� � .v/� D

Z
˝f

f � v

bf .u
.k/

f ; q/ D 0

ap.'
.k/;  / D

Z
�

 .u.k/f � n/:

(91)

Newton-like methods: Let u0f 2 Hf be given; then, for k � 1, find u.k/f 2 Hf ,

p
.k/

f 2 Q, '.k/ 2 Hp such that, for all v 2 Hf , q 2 Q,  2 Hp ,

8̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

af .u
.k/

f ; v/C cf .u
.k/

f I u.k�1/
f ; v/C cf .u

.k�1/
f I u.k/f ; v/C bf .v; p

.k/

f /

C
Z
�

g'n.v � n/C
Z
�

�˛BJp
K
.u.k/f /� � .v/�

D cf .u
.k�1/
f I u.k�1/

f ; v/C
Z
˝f

f � v

bf .u
.k/

f ; q/ D 0

ap.'
.k/;  / D

Z
�

 .u.k/f � n/:

(92)

Some numerical results will be presented in Sect. 2.8.

2.8 Numerical Results for the Navier–Stokes/Darcy Problem

We consider a regular triangulation Th of the domain ˝f [ ˝p , depending on a
positive parameter h > 0, made up of triangles T . We assume that the triangulations
Tf h and Tph induced on the subdomains ˝f and ˝p are compatible on � , that is
they share the same edges therein. Finally, we suppose the triangulation induced on
� to be quasi-uniform (see, e.g., [50]).

Several choices of finite element spaces can be made. If we indicate by Wh and
Qh the finite element spaces which approximate the velocity and pressure fields,
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respectively, for the Navier–Stokes problem, there must exist a positive constant
ˇ� > 0, independent of h, such that the classical inf-sup condition is satisfied, i.e.,
8qh 2 Qh, 9vh 2 Wh, vh 6D 0, such that

Z
˝f

qh div vh � ˇ�kvhkH1.˝f /kqhkL2.˝f /:

No additional compatibility condition is required when coupling with the Darcy
equations. Thus, for our tests we use the P2 � P1 Taylor–Hood finite elements for
Stokes or Navier–Stokes and P2 elements for Darcy equation.

We investigate the convergence properties of algorithm (86) (or, equivalently,
(85)) and the PCG algorithm for (84) with preconditioner S�1

f . For the moment we
set the physical parameters �, K, g to 1. We consider the computational domain
˝ � R2 with ˝f D .0; 1/ 	 .1; 2/, ˝p D .0; 1/ 	 .0; 1/ and the interface � D
.0; 1/ 	 f1g. The boundary conditions and the forcing terms are chosen in such a
way that the exact solution of the coupled Stokes/Darcy problem is

.uf /1 D � cos
��
2
y
�

sin
��
2
x
�
; .uf /2 D sin

��
2
y
�

cos
��
2
x
�

� 1C x;

pf D 1 � x; ' D 2

�
cos

��
2
x
�

cos
��
2
y
�

� y.x � 1/;

where .uf /1 and .uf /2 are the components of the velocity field uf (see [19]).
Four different regular conforming meshes have been considered whose number

of elements in ˝ and of nodes on � are reported in Table 2, together with the
number of iterations to convergence. A tolerance 10�10 has been prescribed for
the convergence tests based on the relative residues. In the Dirichlet–Neumann-like
algorithm (86) we set the relaxation parameter # D 0:7.

Figure 12 shows the computed residues for the adopted iterative methods when
using the finest mesh (logarithmic scale on the y-axis).

These numerical tests show that the discrete preconditioner Sf is optimal with
respect to the grid parameter h since the corresponding preconditioned methods
yield convergence in a number of iterations independent of h.

We consider now the influence of the physical parameters, which govern the
coupled problem, on the convergence rate. We use the PCG method as it embeds the
choice of dynamic optimal acceleration parameters. We take the same computational

Table 2 Number of iterations obtained on different grids

Number of mesh Number of nodes Algorithm (86) PCG for (84) (preconditioner
elements on � (# D 0:7) S�1

f )

172 13 18 5
688 27 18 5
2,752 55 18 5
11,008 111 18 5
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Table 3 Iterations using the PCG method (preconditioner S�1
f ) with respect to several values of

� and K
� K h D 1=7 h D 1=14 h D 1=28 h D 1=56

1 1 5 5 5 5
10�1 10�1 11 11 10 10
10�2 10�1 15 19 18 17
10�3 10�2 20 54 73 56
10�4 10�3 20 59 # #
10�6 10�4 20 59 148 #

domain, but here the boundary data and the forcing terms are chosen in such a way
that the exact solution of the coupled problem is (see [19]):

.uf /1 D y2 � 2y C 1; .uf /2 D x2 � x; pf D 2�.x C y � 1/C g

3K
;

' D 1

K

�
x.1 � x/.y � 1/C y3

3
� y2 C y

�
C 2�

g
x:

The most relevant physical quantities for the coupling are the fluid viscosity �
and the hydraulic conductivity K. Therefore, we test our algorithms with respect to
different values of � and K, and set the other physical parameters to 1. We consider
a convergence test based on the relative residue with tolerance 10�10.

In Table 3 we report the number of iterations necessary for several choices of
� and K. The symbol # indicates that the method did not converge within 150
iterations.

We can see that the convergence of the algorithm is troublesome when the values
of � and K decrease. In fact, in that case the method converges in a large number
of iterations which increases when h decreases, losing its optimality properties.
The subdomain iterative method that we have proposed is then effective only when
the product �K is sufficiently large, while dealing with small values causes severe
difficulties.
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Table 4 Number of iterations to solve problem the modified Stokes/Darcy problem using (93) for
different values of �, K and �

� K � Iterations on the mesh with grid size

h D 1=7 h D 1=14 h D 1=28 h D 1=56

10 15 24 28 28
10�3 10�2 102 12 14 16 14

103 8 9 9 8

103 15 23 28 33
10�6 10�4 104 13 14 17 18

105 8 9 9 9

Table 5 Number of iterations using the Robin–Robin method with respect to �, K and four
different grid sizes h; the acceleration parameters are �f D 0:3 and �p D 0:1

� K h D 1=7 h D 1=14 h D 1=28 h D 1=56

10�4 10�3 19 19 19 19
10�6 10�4 20 20 20 20
10�6 10�7 20 20 20 20

However, the algorithm still performs well if, instead of the steady Stokes
problem, one considers the generalized Stokes momentum equation:

�uf � div T.uf ; pf / D Qf in ˝f ; (93)

where � can represent the inverse of a time step within a time discretization using,
e.g., the implicit Euler method. Some numerical results are reported in Table 4 (see
also [16]).

On the other hand, the Robin–Robin method (87) performs quite well in presence
of small values of � and K. We present hereafter a test considering the same setting
as for Table 3. The analogy with the Peaceman–Rachford method has suggested us
to set �f D 0:3 and �p D 0:1 (see [15] for more details). In Table 5 we report the
number of iterations obtained using the Robin–Robin method for some small values
of � and K and for four different computational grids. A convergence test based on
the relative increment of the trace of the discrete normal velocity on the interface
ukf h � nj� has been considered with tolerance 10�9. (See [20].)

Finally, we present some numerical tests for the Navier–Stokes/Darcy coupling
using the fixed-point and Newton algorithms of Sect. 2.7. The computational domain
and the finite element discretization are the same as in the previous tests. (See
also [4].)

In a first test, we set the boundary conditions in such a way that the analytical
solution for the coupled problem is uf D .exCy C y;�exCy � x/, pf D
cos.�x/ cos.�y/ C x, ' D exCy � cos.�x/ C xy. In order to check the behavior
of the iterative methods with respect to the grid parameter h, we set the physical
parameters (�, K, g) all equal to 1.
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Table 6 Number of iterations for the iterative methods with respect to h

h Fixed-point Newton

h D 1=7 9 5
h D 1=14 9 5
h D 1=28 9 5

Table 7 Number of iterations of the fixed-point (FP) and Newton (N) methods with respect to the
parameters � and K

� K h D 1=7 h D 1=14 h D 1=28

FP N FP N FP N

1 1 7 5 7 5 7 5
1 10�4 5 4 5 4 5 4
10�1 10�1 10 5 10 5 10 5
10�2 10�1 17 6 17 6 17 6
10�2 10�3 14 5 14 5 14 5

The algorithms are stopped as soon as kxn � xn�1k2=kxnk2 
 10�10, where k � k2
is the Euclidean norm and xn is the vector of the nodal values of .unf ; p

n
f ; '

n/. Our

initial guess is u0f D 0.
The number of iterations obtained using the fixed-point algorithm (91), and the

Newton method (92) are displayed in Table 6. Both methods converge in a number
of iterations which does not depend on h.

A second test is carried out in order to assess the influence of the physical
parameters on the convergence rate of the algorithms. In this case, the analytical
solution is uf D ..y � 1/2 C .y � 1/C p

K=˛BJ ; x.x � 1//, pf D 2�.xC y � 1/,
and ' D K�1.x.1� x/.y � 1/C .y � 1/3=3/C 2�x. We choose several values for
the physical parameters � and K as indicated in Table 7.

3 Virtual Control Approach

The virtual control approach represents an alternative approach to the variational
asymptotic one, to solve heterogeneous problems.

It is based on the optimal control theory that has been introduced in domain
decomposition method with overlapping subdomains to treat both heterogeneous
couplings, involving Navier–Stokes and full potential operators [13, 28], and
homogeneous problems, either elliptic and parabolic (see [12, 27, 43–45]). In the
pioneering papers of Glowinski et al. [12,27], this method was referred to as a Least
Square formulation of the multi domain problem.

The basic idea of this approach consists in introducing two “virtual” controls
which play the role of unknown Dirichlet data on the interfaces of the decomposition
and in minimizing the L2-norm of the difference between the hyperbolic and the
elliptic solutions (defined inside the two subdomains) on the overlap.
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The virtual control approach for heterogeneous advection–diffusion operators
was introduced and analysed in [26] and there it has been extended to non-over-
lapping subdomain decompositions (with sharp interfaces). In the latter situation,
the virtual controls are defined on the unique interface and the cost functional to be
minimized has to be chosen accurately in order to guarantee the well posedness of
the optimal control problem.

Finally, in [1] two different formulations of the heterogeneous advection–
diffusion problem with either two and three virtual controls have been analysed
for overlapping decompositions.

In the following subsection we will give a detailed description of virtual control
approach with either overlapping and non-overlapping decompositions for the
heterogeneous problems introduced in Sect. 1.

Here we only note that the virtual control approach without overlap is more
efficient than the overlapping version, however the former requires a more definite
a priori knowledge on structure of interface conditions. On the contrary, the virtual
control approach with overlap is more general and it can be regarded as a rigorous
translation of a common practice in engineering community based on solving both
problems in a common region and using simple “Dirichlet” type conditions at
subdomain boundaries.

3.1 Virtual Control Approach Without Overlap for AD Problems

The idea of this approach consists in formulating an optimal control problem [39]
featuring both control and observation on the interface � . We introduce two func-
tions �1 and �2 defined on the interface � and called virtual controls (Fig. 13), such
that they represent the unknown Dirichlet data on � for u1 and u2, respectively, i.e.

u1 D �1 on � in; u2 D �2 on �: (94)

By collecting differential equations (32) and (33), the external boundary condi-
tions (36) and the interface condition (94), we consider the following problem: given
�1; �2, find u1 D u1.�1/ and u2 D u2.�2/ such that

Γ Γ

λ1 λ2

G in

W1

W1

W2

W2

Fig. 13 Virtual control without overlap
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8<
:
A1u1 D div.bu1/C b0u1 D f in ˝1

u1 D g1 on .@˝1 n � /in
u1 D �1 on � in

(95)

and

8<
:
A2u2 D �div.�ru2/C div.bu2/C b0u2 D f in ˝2

u2 D g2 on @˝2 n �
u2 D �2 on �:

(96)

In the case where � in D ;, no �1 is needed since there is no need to prescribe
any boundary data on � in for problem (95).

The virtual controls �1 and �2 are determined in such a way that the solutions
u1 and u2 of (95) and (96) adjust in the best possible way on � . More precisely, we
look for the solution of the minimization problem

inf
�1; �2

J.�1; �2/; (97)

where J.�1; �2/ is a suitably chosen cost functional.
Various instances have been proposed and analyzed in [26]. Consider, for

example,

J.�1; �2/ D 1

2
ku1.�1/ � u2.�2/k2L2b.� in/

C 1

2
k'1.�1/C '2.�2/k2H�1=2.� / ; (98)

where

'1.�1/ D �b � n� u1.�1/; '2.�2/ D �� @u2.�2/

@n�
C b � n� u2.�2/ (99)

are the fluxes on � associated to the differential operatorsA1 and A2 (respectively)
and H�1=2.� / is the dual space of H1=2

00 .� /. Denoting by ��� the Laplace
Beltrami operator on � , for any  ; ' 2 H�1=2.� / we define the following inner
product (see, e.g., [39]):

. ; '/H�1=2.� / D
Z
�

.��� /
�1=4 .��� /

�1=4'd� D
Z
�

.��� /
�1=2 'd�

(100)

and the related norm k kH�1=2.� / D . ; /
1=2

H�1=2.� /
.

We note that the observation is performed on the whole interface � for what
concerns the gap on the fluxes, whereas it is restricted to the inflow interface � in for
that on the velocities.
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From now on, by solution of the virtual control approach we will mean the
solution of the minimization problem (97), with J defined in (98) and with ui .�i /
(for i D 1; 2) the solutions of problems (95) and (96), respectively.

Problems (95) and (96) are well posed. As a matter of fact, the following result
holds (see, e.g., [30]):

Theorem 3. Under assumptions (44), if g1 2 L2b..@˝1 n � /in/ and �1 2 L2b.� in/,
then the first-order problem (95) admits a unique solution u1 D u1.�1/ 2 L2.˝1/.
Moreover u1 2 L2b.@˝1/ and div.bu1/ 2 L2.˝1/.

As of problem (96), if g2 2 H1=2.@˝2 n � / and �2 2 H1=2.� /, and moreover
there exists a function 
 2 H1=2.@˝2/ with g2 D 
j.@˝2n� / and �2 D 
j� , then
there exists a unique solution u2.�2/ of (96) belonging to H1.˝2/. (See, e.g., [30].)

We introduce the following spaces:

V1 D fw 2 L2.˝1/ W div.bw/ 2 L2.˝1/; wj� 2 L2b.� /g; ƒ1 D L2b.�
in/;

V2 D H1.˝2/;

ƒ2 D ˚
�2 2 H1=2.� / W 9
 2 H1=2.@˝2/ s.t. �2 D 
j� and g2 D 
j@˝2n�

�
;

V D V1 	 V2; ƒ D ƒ1 	ƒ2:

(101)

In order to prove the existence of solution of the minimization problem (97), we
define two pairs of auxiliary problems:
find .wf1 ;w

f
2 / 2 V such that

8̂
<̂
ˆ̂:

A1w
f
1 D f in ˝1

wf1 D g1 on .@˝1 n � /in
wf1 D 0 on � in;

8̂
<̂
ˆ̂:

A2w
f
2 D f in ˝2

wf2 D g2 on @˝2 n �
wf2 D 0 on �;

(102)

and find .u�11 ; u
�2
2 / 2 V such that

8̂̂
<
ˆ̂:

A1u
�1
1 D 0 in ˝1

u�11 D 0 on .@˝1 n � /in
u�11 D �1 on � in;

8̂̂
<
ˆ̂:

A2u
�2
2 D 0 in ˝2

u�22 D 0 on @˝2 n �
u�22 D �2 on �:

(103)

Moreover we define the fluxes on the interface � associated to the solutions u�11

and u�22 as

'
�1
1 D �b � n� u�11 ; '

�2
2 D �� @u�22

@n�
C b � n� u�22 ; (104)
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while those associated to the solutions wf1 and wf2 are

�1 D �b � n� wf1 ; �2 D �� @wf2
@n�

C b � n� wf2 : (105)

The cost functional J can be split as

J.�1; �2/ D J 0.�1; �2/C A .�1; �2/; (106)

where

J 0.�1; �2/ D 1

2
k�1 � �2k2L2b.� in/

C 1

2

���'�11 C '
�2
2

���2
H�1=2.� /

;

while A is an affine functional which reads

A .�1; �2/ D 1

2
k�1 C �2k2H�1=2.� / C

�
�1 C �2; '

�1
1 C '

�2
2

�
H�1=2.� /

:

If all data are smooth enough, the existence of � D .�1; �2/ achieving
infJ.�1; �2/ in a possibly very large abstract space ƒ, follows from the property
of .J 0.�1; �2//1=2 to be a norm (see [26, Sect. 5]).

3.1.1 The Optimality System

By following standard arguments of optimal control theory for elliptic problems
(see [39]), we derive now the optimality system corresponding to the minimization
problem (97).
Let us write the minimization problem (97) in a variational setting, i.e., we look for
the solution � D .�1; �2/ 2 ƒ such that

hrJ.�/;�i D 0 8� 2 ƒ: (107)

The partial derivative of J are



@J

@�1
; 
1

�
D .�1 � �2; 
1/L2b.� in/ C

	
'1.�1/C'1.�2/; '
11



H�1=2.� /

8
12ƒ1;

@J

@�2
; 
2

�
D � .�1 � �2; 
2/L2b.� in/ C

	
'1.�1/C'1.�2/; '
22



H�1=2.� /

8
22ƒ2;

(108)

where, for any .
1; 
2/ 2 ƒ, '
11 and '
22 follow the definition of the fluxes as
in (104), while u
11 ; u
22 are defined as in (103).

From the definition (100), for i D 1; 2 we obtain

	
'1.�1/C '1.�2/; '


i
i



H�1=2.� /

D
Z
�

.��� /
�1=2.'1.�1/C'1.�2// '
ii d� (109)
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and, in particular for the flux '
11 , it holds

Z
�

.��� /
�1=2.'1.�1/C '2.�2// '


1
1 d�

D
Z
� in
.��� /

�1=2.'1.�1/C '2.�2// .�b � n� /
1d�

C
Z
� out
.��� /

�1=2.'1.�1/C '1.�2// .�b � n� /u

1
1 d�: (110)

By defining the adjoint problems

8<
:
A�
1p1 � �b � rp1 C b0p1 D 0 in ˝1

p1 D 0 on .@˝1 n � /out

p1 D .��� /
�1=2.'1.�1/C '2.�2// on � out

(111)

and

8<
:
A�
2p2 � �div.�rp2/ � b � rp2 C b0p2 D 0 in ˝2

p2 D 0 on @˝2 n �
p2 D .��� /

�1=2.'1.�1/C '2.�2// on �
(112)

and, by making use of Green’s formula, we have

Z
� out
.��� /

�1=2.'1.�1/C '1.�2// .�b � n� /u

1
1 d� D

Z
� out

p1 .�b � n� /u

1
1 d�

D
Z
� in
.b � n� /p1
1d�

while

Z
�

.��� /
�1=2.'1.�1/C '1.�2// '


2
2 d� D

Z
�

p2

�
�� @u
22

@n�
C b � n� u
22

�
d�

D �
Z
�

�
@p2

@n�

2;

whence


@J

@�1
; 
1

�
D
Z
� in
.�b � n� / Œ.�1 � �2/C .p2 � p1/	 
1d�;



@J

@�2
; 
2

�
D
Z
� in
.b � n� /.�1 � �2/
2d� �

Z
�

�
@p2

@n�

2d�

(113)

for any 
1 2 ƒ1 and 
2 2 ƒ2. In conclusion, the solution of the minimization
problem (97) satisfies the following optimality system (in distributional sense):
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.OS/

8̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
:

- state equations (95) and (96);

- adjoint equations (111) and (112);

- Euler equations:

.�1 � �2/C p2 � p1 D 0 on � in

b � n� .�1 � �2/ � � @p2
@n�

D 0 on � in

�� @p2
@n�

D 0 on � out:

3.1.2 Computation of the Laplace–Beltrami Operator

The computation of the discrete counterpart of .��� /
�1=2.'1.�1/C '2.�2// when

˝ � R2 can be made as follows.
Given a differentiable function u in an open neighbourhood of � , the tangential

gradient of u is defined by (see, e.g., [11])

r� u.x/ D ru.x/� .ru.x/ � n� .x//n� .x/; 8x 2 �; (114)

where r denotes the usual gradient in R2. The Laplace–Beltrami operator can be
defined through the weak relation:

Z
�

��� u wd� D
Z
�

r� u � r� wd�; (115)

for any function w differentiable in an open neighbourhood of � vanishing at the
end-points of � . In particular, if � is a segment parallel to the y-axis, it reduces to

Z
�

��� u wd� D
Z
�

@u

@y

@w

@y
d�: (116)

In a finite dimensional context, if A�;h denotes the symmetric positive definite
matrix associated to the discretization of (116), we approximate .��� /

1=2 by the
square root of A�;h, that is the s.p.d. matrix A1=2�;h defined by

A
1=2

�;h D Pƒ1=2P T ; (117)

whereƒ and P are the eigenvalues and eigenvectors matrices, respectively, of A�;h.
Alternatively, the fractional Laplace–Beltrami operator .��� /

�1=2 can be
defined through a Neumann to Dirichlet map defined from H�1=2.� / to H1=2.� /.
Precisely, for any ' 2 H�1=2.� / we solve the problem
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8̂̂
ˆ̂<
ˆ̂̂̂
:

��u C u D 0 in ˝1

@u

@n
D 0 on @˝1 n �

@u

@n�
D ' on �

(118)

and we set .��� /
�1=2' D uj� . The differential problem (118) may be solved in

˝2 instead of ˝1.

3.1.3 Recovering the Interface Conditions

In order to recover the interface conditions we are imposing on the interface � , we
eliminate the adjoint state variables p1 and p2 from the optimality system (OS).

Let us setbb D �b, b0 D b0 � divbb and

� in
b D � out; � out

b D � in; .@˝1 n � /inb D .@˝1 n � /out:

Thanks to (111), (112) and Euler equations in (OS), the functions p1 and p2 satisfy
the following coupled problem in ˝:

8̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

div.bbp1/C b0p1 D 0 in ˝1

�div.�rp2/C div.bbp2/C b0p2 D 0 in ˝2

p1 D 0 on .@˝1 n � /inb
p2 D 0 on @˝2 n �

�� @p2
@n�

C .bb � n� /p2 D .bb � n� /p1 on � out
b

p1 D p2 on � in
b

�
@p2

@n�
D 0 on � in

b :

(119)

By noting that b0 C 1
2
divbb D b0 C 1

2
divb � �0 > 0 (see (31)) and by applying

Theorem 1, problem (119) admits the unique solution p1 D 0 in ˝1, p2 D 0 in ˝2.
Therefore, (112)3 implies '1.�1/C '2.�2/ D 0 on � , while the first Euler equation
in .OS/ implies that �1 � �2 D 0 on � in, i.e. the following conditions hold on the
interface:

'1.�1/C '2.�2/ D 0 on �

�1 D �2 on � in:
(120)

In conclusion the following result holds:
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Theorem 4. If � is the solution of the minimization problem (97) with J defined
in (98), then the state solutions u1 and u2 of (95) and (96) satisfy the interface
conditions (120). Moreover the pair .u1.�1/; u2.�2//, obtained by the virtual control
approach coincides with the solution of the heterogeneous problem (40).

Thanks to the interface condition (120)2, the virtual control problem may be
reformulated in terms of a unique control function � defined on � and coinciding
with �2. The control �1, previously introduced, will coincide now with the
restriction of � to � in.

By this reduction, the virtual control problem (97) becomes:
look for the solution of the minimization problem

inf
�2ƒ2

J1.�/ with J1.�/ D 1

2
k'1.�/C '2.�/k2H�1=2.� /

; (121)

with

'1.�/ D �b � n� u1.�/; '2.�/ D �� @u2.�/

@n�
C b � n� u2.�/ (122)

and u1 D u1.�/, u2 D u2.�/ solutions of (95) and (96) with �2 D �, �1 D �j� in .
By working as done for the two-controls formulation, the derivative of the cost
functional J1 reads

hJ 0
1.�/; 
i D

Z
� in
.�b � n� /.p2 � p1/
d�

�
Z
�

�
@p2

@n�

d�

(123)

for any 
 2 ƒ2.
The corresponding optimality system .OS1/ reads

.OS1/

8̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂
:̂

- state equations (95) and (96) with �2 D �, �1 D �j� in

- adjoint equations (111) and (112) with 'i.�/ instead of

'i.�i /, for i D 1; 2;

- Euler equations:

.b � n� /.p2 � p1/C �
@p2

@n�
D 0 on � in

�
@p2

@n�
D 0 on � out:

Remark 2. Another cost functional proposed in [26] is

QJ .�1; �2/ D 1

2
ku1.�1/ � u2.�2/k2L2b.� / C 1

2
k'1.�1/C '2.�2/k2H�1=2.� / : (124)
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In this case the observation is performed on the whole interface for both fluxes and
velocities. The minimization problem (97), in which the functional J is replaced
by QJ , admits a unique solution too (see [26]), however it is not guaranteed that
inf QJ .�1; �2/ D 0, so that no interface conditions are explicitely associated to this
minimization problem.

Remark 3. We finally remark that the cost functional to be minimized is set up
starting from known interface conditions, it is problem dependent and it requires
a priori knowledge of the coupled problem. When the latter are not available, it is
more suitable to consider the virtual control approach with overlap, that we will
introduce in Sect. 3.3.

3.1.4 How to Solve the Optimality System

A first intuitive way to solve the optimality system .OS1/ consists in invoking a
Krylov method to seek the solution � of the Euler equation of .OS1/. Let us write
the Euler equation, in distributional sense, as

J 0
1.�/ D 0: (125)

When we solve it by a Krylov method, like either GMRES or Bi-CGStab, we have
to evaluate the action of the functional J 0

1 on the iterate �.k/ at each iteration k � 0

and this means to perform the steps summarized in the following algorithm.

Algorithm 1

1. solve the primal problems (95) and (96) with �.k/ instead of �i , for i D 1; 2;
2. compute the fluxes '1.�.k//, '2.�.k// and the function
s.k/ D .��� /

�1=2.'1.�.k//C '2.�
.k///

3. solve the dual problems (111), (112) with s.k/ instead of .��� /
�1=2.'1.�1/ C

'2.�2//

4. compute J 0
1.�

.k// by (123), which reads (in distributional sense):

J 0
1.�/ D

8̂
<
:̂
.�b � n� /.p2 � p1/ � � @p2

@n�
on � in

�� @p2
@n�

on � out:

(126)

The solution of the Euler equation J 0
1.�/ D 0, by a Krylov method with the use

of Algorithm 1, is an alternative to the solution of the Steklov–Poincaré equation
(54).

By properly replacing the definition of both state and adjoint equations and by
correctly writing the derivatives of the cost functional, Algorithm 1 can be adapted
to solve the optimality system associated to the minimization of QJ .

Solving J 0.�/ D 0 is equivalent to solve the Schur complement with respect to
the control variable � derived from the optimal system .OS1/.
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Table 8 Test case #1. Comparison between the cost functionals (121) and (124)

� J1.�/ QJ .�1; �2/
ku1 � u2kL1.� out/ infJ1 #it ku1 � u2kL1.� out/ inf QJ #it

0.1 2.330e�1 1.242e�12 18 1.367e�1 5.239e�6 44
0.05 1.221e�1 3.137e�12 27 5.275e�2 3.286e�7 61
0.01 1.346e�2 6.989e�11 60 7.146e�4 6.234e�10 134
0.005 1.075e�2 2.294e�11 82 5.049e�4 8.749e�10 177
#it stands for the number of Bi-CGStab-VC iterations.

3.1.5 Numerical Results for Decompositions Without Overlap

Let us consider the Test case #1 introduced in Sect. 2.4. First of all we compare the
numerical solutions obtained by the virtual control approach by minimizing either
the cost functional J1.�/ defined in (121) (or, equivalently J.�1; �2/ defined in
(98)) and QJ .�1; �2/ defined in (124). We have solved both the optimality system
.OS1/ and that associated to the minimization of QJ by Bi-CGStab iterations and
by following the steps summarized in Algorithm 1 (see Sect. 3.1.4). We will name
Bi-CGStab-VC this approach.

In Table 8 we report for both the functionals (121) and (124):
� TheL1-norm on � out of the jump of the solution, i.e., Œu	� out D ku1�u2kL1.� out/

� The infimum of the minimized cost functional
� The number of Bi-CGStab-VC iterations to converge up a tolerance " D 10�8
versus the viscosity �

A non-uniform spectral element discretization has been considered to solve the
boundary-value problems in both ˝1 and ˝2. The domain ˝1 (˝2, resp.) has been
split in 3 	 6 (4 	 6, resp.) quadrilaterals with the same polynomial degreeN D 16

in each spatial direction and in each element.
First of all we note that not only the solution .u1; u2/, obtained by minimizing the

cost functional J1, features a jump on � out (in fact we know that it is discontinuous
on � out), but also the solution obtained by minimizing the cost functional QJ is
discontinuous on � out. Moreover, as pointed out in Remark 2, we observe that the
value inf QJ is not null for any considered viscosity, however inf QJ ! 0 as � ! 0.
We have observed that the reached value infJ1 is independent of the viscosity and
it is very close to the machine accuracy.

About the number of Bi-CGStab iterations needed to solve the variational
equation J 0

1.�/D 0, we observe that the convergence rate linearly depends on
the reciprocal of the viscosity, that the minimimiziation of QJ requires twice the
iterations to minimize J1 and that the computational cost of each Bi-CGStab-VC
iteration is the same for both the minimization problems. Then we conclude that the
minimization of the cost functional QJ costs twice that of J1.

In Table 9 we report the number of BiCGStab-VC iterations needed to solve the
optimality system (OS1) up to a tolerance " D 10�6, versus the polynomial degree
N , for two different values of the viscosity: � D 0:01 and 0:005. It emerges that the
convergence rate of Bi-CGStab-VC is independent of the polynomial degree.
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Table 9 Number of Bi-CGStab-VC iterations for the minimization of J1.�/ on the test case #1

N � D 0:01

LB (1) LB (SP�1)

4 19 18
6 16 17
8 15 16
10 17 18
12 18 18
14 19 18
16 21 20

N � D 0:005

LB (1) LB (SP�1)

4 23 24
6 26 23
8 27 26
10 33 27
12 27 27
14 26 28
16 26 28

The acronym LB(1) stands for the implementation based on the
computation of the square root of the discrete Laplace–Beltrami
operator, while LB(SP�1) stands for the implementation based on
the inversion of the Steklov–Poincaré (or Dirichlet to Neumann)
operator (see Remark 3.1.2).

3.2 Domain Decomposition with Overlap

Let us consider now a decomposition of ˝ with overlap. Precisely, we introduce
two subdomains˝1 and ˝2, such that

˝ D ˝1 [˝2; ˝12 D ˝1 \˝2 ¤ ;; �i D @˝i n .@˝i \ @˝/; i D 1; 2

(127)

and we denote by n�i (for i D 1; 2) the outward normal vector on �i with respect
to ˝i .

In view of the considerations given at the beginning of this section, our aim is to
investigate domain decomposition approaches alternative to the sharp-interface one
which do not require a priori knowledge of interface conditions.

3.2.1 An Engineering Practice on Overlapping Subdomains

The simpler and, very likely, most largely used approach consists in extending the
classical Schwarz method [40, 54] to the heterogeneous coupling, then iterating on
the Dirichlet data on the interfaces �1 and �2.

For example, if A1 and A2 are the differential operators defined in (32) and (33),
respectively, the additive (or sequential) version of the Schwarz method reads:
given u.0/1 and u.0/2 , for k � 0 do

8̂<
:̂
A1u

.kC1/
1 D f in ˝1

u.kC1/
1 D g1 on .@˝1 n �1/in

u.kC1/
1 D u.k/2 on � in

1 ;

8̂<
:̂
A2u

.kC1/
2 D f in ˝2

u.kC1/
2 D g2 on @˝2 n �2

u.kC1/
2 D u.kC1/

1 on �2:

If we replace the interface condition u.kC1/
2 D u.kC1/

1 with u.kC1/
2 D u.k/1 on �2,

we obtain the so-called multiplicative (or parallel) version of the Schwarz method.
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The convergence of the Schwarz method applied to the global advection–
diffusion equation has been largely studied, see, e.g. [6, 7, 33, 47].

In [47], the analysis of the Schwarz alternating method is made for homogeneous
singular perturbation problems in which the advection dominates. Precisely, the
author proves that if the subdomains can be chosen to follow the flow, i.e., if the
boundary interface of one of the subdomains corresponds to an outflow boundary for
the streamlines of the flow, then the Schwarz iterates converge in the maximum norm
with an error reduction factor per iteration that exponentially decays with increasing
overlap or decreasing diffusion. On the contrary, if the flow is recirculating and the
subdomains are not suitably chosen, numerical evidence shows that there can be
some deterioration in the convergence factor of the Schwarz method. No theoretical
results however are available in literature about the convergence of Schwarz method
for heterogeneous decompositions.

3.2.2 Schwarz Method with Dirichlet/Robin Interface Conditions

In [34] a variant of the classical Schwarz method is proposed, always for homo-
geneous advection–diffusion problems, and it consists in replacing Dirichlet with
Robin conditions only on one interface of the decomposition with the aim of
accelerating the convergence.

Let us consider again the overlapping decomposition shown in Fig. 14. In [34],
Houzeaux and Codina consider the homogenous problem (1) and propose to solve
it by a two-domain approach as follows: find the pair .u1; u2/ such that

8̂
ˆ̂̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
ˆ̂:

A2u1 D f in ˝1

u1 D g on @˝1 n �1
u1 D u2 on �1

A2u2 D f in ˝2

u2 D g on @˝2 n �2
�
@u1
@n�2

� 1

2
.b � n�2/u1 D �

@u2
@n�2

� 1

2
.b � n�2 /u2 on �2:

(128)

G2
G1

W1

W12 W2

Fig. 14 The computational
domain split in two
overlapping subdomains



Heterogeneous Mathematical Models in Fluid Dynamics 107

By introducing Steklov–Poincaré operators on the interfaces, they prove that
problem (128) admits a unique solution .u1; u2/ such that u1 D u2 on˝12. Moreover,
the function

u D
�

u1 in .˝1 n˝12/

u2 in ˝2

coincides with the solution of (1).
However, in [34] an overlapping Dirichlet/Robin method is proposed for the

solution of the two advection–diffusion problems, with the purpose of inheriting
the robustness properties of the classical Schwarz method, yet allowing the limit
case of zero (or extremely small) overlapping, for which Dirichlet/Dirichlet method
fails. Note that the interface condition (128)6 arises from writing the convective term
in skew-symmetric form.

Problem (128) can be solved iterating by subdomains. The resulting method is
called Dirichlet–Robin method and it reads: given u.0/1 and u.0/2 , for k � 0 do

8̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂:

A2u
.kC1/
1 D f in ˝1

u.kC1/
1 D g on @˝1 n �1

u.kC1/
1 D #u.k/2 C .1 � #/u.k/1 on �1

A2u
.kC1/
2 D f in ˝2

u.kC1/
2 D g on @˝2 n �2

�
@u.kC1/

2

@n�2
� 1

2
.b � n�2/u

.kC1/
2 D �

@u.kC1/
1

@n�2
� 1

2
.b � n�2/u

.kC1/
1 on �2;

(129)

where # > 0 is a suitable relaxation parameter. As alternative to the relaxation of
Dirichlet data (129)3, the authors propose to relax the Robin data (129)6. Under
suitable choices of the relaxation parameter the Dirichlet–Robin algorithm (129)
converges to the solution of the advection–diffusion problem (128).

When the heterogeneous coupling is considered, the Robin interface condition
(128)6 could be replaced by the following one:

� 1

2
.b � n�2/u1 D �

@u2
@n�2

� 1

2
.b � n�2/u2 on �2; (130)

so that the iterative Dirichlet–Robin algorithm for the coupled advection/advection–
diffusion problem should read:
given u.0/1 and u.0/2 , for k � 0 do
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8̂
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂̂:

A1u
.kC1/
1 D f in ˝1

u.kC1/
1 D g on .@˝1 n �1/in

u.kC1/
1 D #u.k/2 C .1 � #/u.k/1 on � in

1

A2u
.kC1/
2 D f in ˝2

u.kC1/
2 D g on @˝2 n �2
�
@u.kC1/

2

@n�2
� 1

2
.b � n�2/u

.kC1/
2 D �1

2
.b � n�2/u

.kC1/
1 on �2:

(131)

We note that algorithm (131) coincides with the Dirichlet–Neumann algorithm
(47) when the overlap reduces to the empty set. We refer to Remark 1 in Sect. 3.3.2
about the classification of Neumann and Robin interface conditions.

3.3 Virtual Control Approach with Overlap
for the Advection–Diffusion Equation

Let us consider an overlapping decomposition of ˝ as in (127). As done for the
non-overlapping situation presented in Sect. 3.1, we introduce the Dirichlet virtual
controls �1 2 L2b.� in

1 / and �2 2 H1=2.�2/ (Fig. 15) and we look for the solution of
the following minimization problem:

inf
�1;�2

OJ .�1; �2/; (132)

with

OJ .�1; �2/ D
Z
˝12

.u1.�1/� u2.�2//
2d˝; (133)

and u1 D u1.�1/; u2 D u2.�2/ solutions of

8<
:
A1u1 D f in ˝1

u1 D g1 on .@˝1 n �1/in
u1 D �1 on � in

1 ;

8<
:
A2u2 D f in ˝2

u2 D g2 on @˝2 n �2
u2 D �2 on �2:

(134)

G2

G1
in

G1
l1

l2

G2

W1

W1

W2

W2

Fig. 15 Virtual control with overlap
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The minimization problem (132) has been studied in [1, 26].
Along this section we set

ƒ1 D L2b.�
in
1 /;

ƒ2 D ˚
�22H1=2.�2/ W 9
 2 H1=2.@˝2/ s.t. �2D
j�2 and g2 D 
j@˝2n�2

�
;

(135)

The following result is stated in [26].

Proposition 1. If the cost functional OJ can be written as the sum of a quadratic
functional OJ 0.�1; �2/ and an affine functional OA .�1; �2/ (as done in Sect. 3.1), and
if the seminorm

k.�1; �2/k D
� OJ 0.�1; �2/

�1=2
(136)

is indeed a norm, then problem (132) admits a unique solution in the space obtained
by completion of ƒ1 	ƒ2 with respect to the norm (136).

The property of (136) being a norm, depends on problem data, i.e. on the convection
field b and on the domain.

In [1], sufficient conditions which guarantee uniqueness of solution of the
minimization problem (132) are furnished.
For simplicity, let us consider the decomposition of ˝ in two subdomains, as
described in (15) and we refer to [1] for more general situations where either the
overlapping set ˝12 D ˝1 \ ˝2 is not connected or @˝12 \ @˝ D ;. We denote
by n12 the outward unit normal to ˝12. The sufficient conditions (alternative one to
each other) which guarantee uniqueness of solution for (132) are:

I: b � n12 ¤ 0 on @˝12 \ @˝;

II.

8̂
<
:̂

 D b0 C divb � 0 on @˝12; 
 6� 0 on @˝12;

the direction b at any point of @˝12 forms with the outward normal

to @˝12 an acute angle;

III.

8̂
ˆ̂̂<
ˆ̂̂̂
:

b � n12 ¤ 0 on @˝12;



bn
� 1

2

@

@�

 
b�

bn

!
> 0 on @˝12;

where
@

@�
is the derivative along @˝12; while bn and b� are the normal

and tangential components, respectively, of b on @˝12.

The previous proposition guarantees, under suitable assumptions, the uniqueness
of the virtual controls and then that of the solution u1 in ˝1 and u2 in ˝2. However
in general, u1 ¤ u2 on the overlap˝12. A natural question is: how do we recover in
˝12 a solution of the heterogeneous problem.
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The following result ensures that the difference between u1 and u2 in theL2.˝12/

norm annihilates when the viscosity vanishes (see [26]).

Theorem 5. If we set

'.�/ D inf
�1;�2

OJ .�1; �2/ (137)

and if we let � ! 0, all other data being fixed, then

'.�/ ! 0 as � ! 0: (138)

The optimality system associated to the minimization problem (132) can be
derived by proceeding as in Sect. 3.1.

For any 
1 2 ƒ1, 
2 2 ƒ2, we introduce the auxiliary problems as follows:

8<
:
A1u


1
1 D 0 in ˝1

u
11 D 0 on .@˝1 n �1/in
u
11 D 
1 on � in

1 ;

8<
:
A2u


2
2 D 0 in ˝2

u
22 D 0 on @˝2 n �2
u
22 D 
2 on �2;

(139)

and we differentiate the functional OJ :
*
@ OJ
@�1

; 
1

+
D 	

u1.�1/ � u2.�2/; u

1
1



L2.˝12/

8
1 2 ƒ1;

*
@ OJ
@�2

; 
2

+
D � 	u1.�1/ � u2.�2/; u


2
2



L2.˝12/

8
2 2 ƒ2:

(140)

We define the adjoint problems:

�
A�
1p1 D �12.u1.�1/ � u2.�2// in ˝1

p1 D 0 on @˝out
1

(141)

and

�
A�
2p2 D ��12.u1.�1/ � u2.�2// in ˝2

p2 D 0 on @˝2;
(142)

(where �12 denotes the characteristic function of the overlapping set ˝12) and,
by Green’s formulas and the boundary conditions set in (139), (141) and (142),
the optimality system associated to the minimization problem (132) reads (in
distributional sense):
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.OS2/

8̂̂
ˆ̂̂̂
ˆ̂̂<
ˆ̂̂̂
ˆ̂̂̂̂
:

- State equations (134);

- Adjoint equations (141) and (142);

- Euler equations:

.�b � n�1/p1 D 0 on � in
1

�
@p2

@n�2
D 0 on �2:

The optimality system .OS2/ can be solved as described in Sect. 3.1.4 by a Bi-
CGStab method.

3.3.1 Using Three Virtual Controls

In order to force the solutions u1 and u2 to coincide in˝12, a virtual control problem
with three controls has been proposed and studied in [1]. Precisely, in addition to the
Dirichlet controls �1 and �2, a distributed control �3 2 L2.˝12/ is used as forcing
term in the hyperbolic equation in ˝1.

Let ƒ1 and ƒ2 the spaces defined in (135), then we set

ƒ3 D L2.˝12/: (143)

The three virtual controls problem is defined as follows. We seek� D .�1; �2; �3/ 2
ƒ1 	ƒ2 	ƒ3 solution of the regularized minimization problem

inf
�1;�2;�3

OOJ˛.�1; �2; �3/; (144)

where

OOJ˛.�1; �2; �3/ D 1

2

Z
˝12

.u1.�1; �3/� u2.�2//
2d˝

C˛

2

	k�1k2ƒ1 C k�2k2ƒ2 C k!�3k2ƒ3


;

(145)

u1 D u1.�1; �3/ and u2 D u2.�2/ are the solutions of the state equations

8<
:
A1u1 D f C !�3 in ˝1

u1 D g on .@˝1 n �1/in
u1 D �1 on � in

1

8<
:
A2u2 D f in ˝2

u2 D g on @˝2 n �2
u2 D �2 on �2;

(146)

˛ � 0 is a penalization coefficient and, finally, ! is a smooth function in ˝ such
that

0 
 !.x/ 
 1 in ˝; ! D 0 in ˝n˝12; ! > 0 in ˝12:
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The optimality system associated to (145) reads (in variational form)

.OS3/

8̂
ˆ̂̂̂̂
ˆ̂̂̂
<̂
ˆ̂̂̂
ˆ̂̂̂̂
ˆ̂:

- State equations (146);

- Adjoint equations (141) and (142);

- Euler–Lagrange equations:

.�b � n�1 /.p1 C ˛�1/ D 0 on � in
1

�
@p2

@n�2
C ˛�2 D 0 on �2

˛!�3 C !p1 D 0 in ˝12:

The following Theorem is proved in [1]:

Theorem 6. For any ˛ > 0, the minimization problem (144) has a unique solution
depending on ˛, say .�1; �2; �3/ D .�1.˛/; �2.˛/; �3.˛//, such that

ku1.�1.˛/; �3.˛// � u2.�2.˛//kL2.˝12/ ! 0 as ˛ ! 0: (147)

Moreover, if there exists a solution .�01; �
0
2; �

0
3/ of the problem (146) such that the

corresponding state functions coincide in˝12, i.e. u01.�
0
1; �

0
3/ D u02.�

0
2/ in˝12, then

the solution .�01; �
0
2; �

0
3/ is unique and �k.˛/ ! �0k as ˛ ! 0, for k D 1; 2; 3.

Remark 4. The third control has been introduced to dump the difference between
the hyperbolic and elliptic solutions on the overlap. It is important to highlight that
it is added to the right hand side of the hyperbolic equation and not to the right hand
side of the elliptic problem. This choice guarantees the uniqueness of solution of the
minimization problem (144) when ˛ D 0, through the application of the uniqueness
continuation theorem.

3.3.2 Numerical Results on Virtual Control Approaches

In this section we present some numerical results obtained by solving the cou-
pled advection/advection–diffusion problem by two- and three-virtual controls
approaches. First of all, we consider the one-dimensional problem

� ��u00.x/C u0.x/ D 1 0 < x < 1

u.0/ D u.1/ D 0;
(148)

and we set ˝1 D .0; 0:6/, ˝2 D .0:3; 1/. In Fig. 16 we show the numerical
solution obtained with both two-controls (dashed line) and three-controls (solid

line), for � D 1, at left and � D 10�2 at right. The regularization parameter in OOJ˛
is ˛ D 0. The discretization is performed by spectral elements, precisely, we have
decomposed both ˝1 and ˝2 in two spectral elements and the common element
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Fig. 16 Numerical solutions of (148) obtained with two controls (dashed line) and three controls
(solid line) for � D 1 at left and for � D 10�2 at right. ˝1 D .0; 0:6/, ˝2 D .0:3; 1/

Table 10 Test case #1. The number of Bi-CGStab iterations to solve the optimality systems (OS2)

and (OS3) and the infimum of the cost functionals OJ and OOJ0 versus the viscosity �

� Two-controls Three-controls

#it inf OJ .�1; �2/ #it inf OOJ0.�1; �2; �3/
0:1 18 8:71� 10�4 319 2:83 � 10�11

0:01 15 5:85 � 10�5 276 1:97 � 10�11

0:001 18 4:92� 10�7 220 5:81 � 10�11

0:0001 18 9:79� 10�9 190 2:45 � 10�11

discretizes the overlap˝12. The polynomial degree used isN D 16 in each element
of both ˝1 and ˝2 when � D 1, while it is N D 16 in each element of ˝1 and
N D 24 in ˝2 n ˝12 when � D 10�2. As we can see the solution obtained with
three-controls matches on the overlap˝12 also with large viscosity � D 1.

Note that the interface �1 is an outflow boundary for the hyperbolic problem,
so that the control �1 is not needed. The number of degrees of freedom (i.e. the
dimension of the system solved by Bi-CGStab) is one for the two controls approach,
while it is of the same order of the number of discretization nodes on the overlap
(aboutN ) for the three controls approach.

Let us consider now the 2D problem described in the Test case # 1 and let OOJ0
denotes the cost functional OOJ˛ with ˛ D 0 (i.e. without regularization). In the

following table the infimum reached by both the cost functionals OJ and OOJ0 is shown
for different values of the viscosity �. It is evident that the minimization of the
cost functional with three controls provides a better solution with respect to the
two virtual controls approach. Nevertheless, the cost of the three virtual controls
approach (in terms of BiCG-Stab iterations needed to solve the optimality system)
is very large, as shown in Table 10.
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Fig. 17 Test case #1. � D 0:01. Left: the solution obtained by minimizing OJ .�1; �2/. Right: the

solution obtained by minimizing OOJ˛.�1; �2; �3/ with ˛ D 0

The stopping test for Bi-CGStab iterations is performed on the norm of the rel-
ative residual with tolerance " D 10�6. We observe that the number of iterations is
small and is independent of the viscosity in the case of two virtual controls, while it
is very large for the three virtual controls approach, even if it decreases when � ! 0.

In Fig. 17 we can appreciate the difference between the hyperbolic solution
u1 and the elliptic one u2 inside the overlapping region ˝12 for the two-virtual
controls approach (left), and the goodness of the solution of the three virtual controls
approach (right) when the viscosity is � D 0:01.

Remark 5. We conclude this Section by highlighting some features of the virtual
control approach with overlap.

The analysis carried out on the virtual control approach with overlap represents
a formal mathematical justification to engineering practice, that is to the Schwarz
method applied to heterogeneous problems.

The virtual control approach with overlap is more “indifferent” with respect to
interface conditions (no a priori information are required, contrary to the virtual
control approach without overlap (see Remark 3).)

However, some open questions remain about the setting of the cost functional.
In particular it is interesting to know if a “best” functional exists, if it is problem
dependent or, again, if it depends on the characteristic parameters of the problem
itself.

3.4 Virtual Control with Overlap for the Stokes–Darcy Coupling

In this section we apply the virtual control approach with overlap introduced in
Sect. 3.3 to the coupled Stokes–Darcy problem that we have considered in Sect. 2.6.
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Fig. 18 Schematic representation of the computational domain

Figure 18 shows our computational domain. In the subdomain ˝1 we consider
the following Stokes problem: find .u; p/ 2 ŒH1.˝1/	

2 	 L2.˝1/ such that

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

���u C rp D f in ˝1

div u D 0 in ˝1

�ru � n1 � pn1 D g on � t
1

u D u� on � w
1

u D �1 on �1;

(149)

where f, g and u� are suitably chosen enough regular data.
On the other hand, in the subdomain ˝2, we consider the Darcy problem: find

the piezometric head ' 2 H1.˝2/ such that

8̂̂
<
ˆ̂:

�div .Kr'/ D 0 in ˝2

Kr' � n2 D  N on � w
2

' D  D on � b
2

' D �2 on �2;

(150)

where  N and  D are suitable boundary data.
We refer to Fig. 18 for the notation of the boundaries.
�1 and �2 are the controls variables which have to be seeked in the following

spaces, respectively:


1 D ˚
� 2 ŒH1=2.�1/	

2 : 9v 2 ŒH1.˝1/	
2; v D � on �1; v D 0 on � w

1

�
; (151)


2 D ˚

 2 H1=2.�2/ : 9 2 H1.˝2/;  D 
 on �2; r' � n2 D 0 on � w

2 ;

 D 0 on � b
2

�
: (152)



116 M. Discacciati et al.

�1 and �2 are the solutions of the following minimization problem:

inf
�1;�2

J.�1; �2/ with J.�1; �2/ D 1

2

Z
˝12

.u CKr'/2 : (153)

Remark 6. Other functionals may be considered for the minimization problem
(153) instead of J . For example, we may minimize the jump of pressures in the
overlapping region, thus considering

inf
�1;�2

J .�1; �2/ with J .�1; �2/ D 1

2

Z
˝12

.p � g'/2 : (154)

Moreover, we could take into account some continuity condition (i.e., the continuity
of the normal velocities) on the physical interface � � ˝12 between the fluid and
the porous-media regions. In this case we consider the functional

QJ .�1; �2/ D 1

2

Z
�

.u � n CKr' � n/2 C 1

2

Z
˝12

.p � g'/2 ; (155)

where n is the normal unit vector on � directed outwards of the fluid domain.

We introduce now the following auxiliary problems:
find .uf ; pf / 2 ŒH1.˝1/	

2 	L2.˝1/ such that
8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

���uf C rpf D f in ˝1

div uf D 0 in ˝1

�ruf � n1 � pf n1 D g on � t
1

uf D u� on � w
1

uf D 0 on �1;

(156)

and find '� 2 H1.˝2/ such that

8̂
<̂
ˆ̂:

�div .Kr'�/ D 0 in ˝2

Kr'� � n2 D  N on � w
2

'� D  D on � b
2

'� D 0 on �2:

(157)

Moreover, we consider the following problems depending only on the control
variables:

find .u�1 ; p�1 / 2 ŒH1.˝1/	
2 	L2.˝1/ such that

8̂
ˆ̂̂̂<
ˆ̂̂̂̂
:

���u�1 C rp�1 D 0 in ˝1

div u�1 D 0 in ˝1

�ru�1 � n1 � p�1n1 D 0 on � t
1

u�1 D 0 on � w
1

u�1 D �1 on �1;

(158)
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and find '�2 2 H1.˝2/ such that

8̂
<̂
ˆ̂:

�div .Kr'�2/ D 0 in ˝2

Kr'�2 � n2 D 0 on � w
2

'�2 D 0 on � b
2

'�2 D �2 on �2:

(159)

Then, we can split

u D uf C u�1 ; p D pf C p�1; ' D '� C '�2 : (160)

In this way we can rewrite the functional J.�1; �2/ in (153) as

J.�1; �2/ D J 0.�1; �2/C A .�1; �2/; (161)

where J 0.�1; �2/ is the quadratic functional

J 0.�1; �2/ D 1

2

Z
˝12

.u�1 CKr'�2/2 (162)

while A .�1; �2/ is the affine functional

A .�1; �2/ D 1

2

Z
˝12

.uf CKr'�/2C
Z
˝12

.u�1 CKr'�2/ � .uf CKr'�/: (163)

We compute now rJ D rJ 0 C rA .
We have

h@J
0

@�1
;�1i D

Z
˝12

u�1 � .u�1 CKr'�2/: (164)

Considering the dual problem
8̂̂
ˆ̂̂<
ˆ̂̂̂̂
:

���v C rq D .u�1 CKr'�2/�˝12 in ˝1

div v D 0 in ˝1

�rv � n1 � qn1 D 0 on � t
1

v D 0 on � w
1

v D 0 on �1;

(165)

we can characterize the operator (164) as



@J 0

@�1
;�1

�
D �

Z
�1

.�rv � n1 � qn1/ � � 8� 2 
1: (166)

On the other hand, we have


@J 0

@�2
; 
2

�
D
Z
˝12

�div.K.u�1 CKr'�2/�˝12/'
2 ; (167)
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and, using the dual problem:

8̂
<̂
ˆ̂:

�div .Kr / D �div.K.u�1 C r'�2/�˝12 / in ˝2

Kr � n2 D 0 on � w
2

 D 0 on � b
2

 D 0 on �2;

(168)

we obtain 

@J 0

@�2
; 
2

�
D �

Z
�2

Kr � n2 
2 8
2 2 
2: (169)

We proceed in a similar way to characterize the affine functional A . In this case,
we have



@A

@�1
;�1

�
D �

Z
�1

.�r Qv � n1 � Qqn1/ � � 8� 2 
1; (170)



@A

@�2
; 
2

�
D �

Z
�2

Kr Q � n2 
2 8
2 2 
2: (171)

.Qv; Qq/ 2 ŒH1.˝1/	
2 	L2.˝1/ is the solution of the dual problem (165) with forcing

term .uf C Kr'�/�˝12 , while Q 2 H1.˝2/ is the solution of the dual problem
(168) with forcing term �div.K.uf CKr'�/�˝12 /.

To solve the minimization problem (153) we use the following algorithm:

1. Solve (156) and (157) to get uf , pf and '�.
2. Compute rA :

• solve (165) with forcing term .uf CKr'�/�˝12 and compute (170);
• solve (168) with forcing term �div.K.uf CKr'�/�˝12 / and compute (171).

3. Find .�1; �2/ 2 
1	
2 such that rJ 0 D �rA . To this aim we use an iterative
method like Bi-CGStab. At each iteration, to compute rJ 0.�1; �2/ we do

• solve (158) and (159);
• compute u�1 CKr'�2 in ˝12;
• solve (165) to get (166);
• solve (168) to get (169).

4. Finally, solve (158) and (159) using the functions �1 and �2 computed at step 3
and use (160) to obtain the desired solutions.

3.4.1 Stokes/Darcy Coupling with Three Virtual Controls

A three virtual controls approach for the Stokes/Darcy coupling with overlap can be
formulated as follows:
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8̂̂
ˆ̂̂̂
ˆ̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂
ˆ̂̂̂
ˆ̂̂̂̂
:

˛u � ��u C .u � r/u C rp D 0 in ˝1

divu D 0 in ˝1

�ru � n1 � pn1 D g on � t
1

u D u� on � w
1

u D �1 on �1

�div.Kr'/ D �˝12�3 in ˝2

Kr' � n2 D  N on � w
2

' D  D on � b
2

' D �2 on �2;

where �3 is the third control, while other notations are those introduced in the
previous section. It turns out that the virtual controls �1; �2; and �3 are solutions of
the minimization problem

inf
�1;�2;�3

J.�1; �2; �3/:

Several possible choices can be made for the cost functional J , e.g.,

J.�1; �2; �3/ D
Z
˝12

.Kr' C u/2d˝:

A discussion about this approach (and related ones) is given in [14].

3.5 Coupling for Incompressible Flows

The Navier–Stokes/potential coupling introduced in Sect. 2.5 has been considered
by Glowinski et al. [12, 13] in the framework of virtual controls with overlapping
decomposition.

We denote by ˝1 the extended subdomains where we consider the potential
model, while let ˝2 be the extended subregion where we consider the full Navier–
Stokes equations. Finally, ˝12 D ˝1 \ ˝2 is the overlapping region, and �i D
@˝i n .@˝i \ @˝/, for i D 1; 2. See Fig. 19.

Gb

G1

G2

G∞

W2
W1Fig. 19 Splitting of the

computational domain in two
overlapping regions for the
Navier–Stokes/potential
coupling
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We consider two control variables �1 and �2 in the following spaces, respec-
tively:


1 D
n

 2 H1=2.�1/ W 9 2 H1.˝1/;  D 
 on �1;

@ 

@n1

D 0 on �1
o
;


2 D f� 2 ŒH1=2.�2/	
d W 9v 2 ŒH1.˝2/	

d ; v D � on �2;
v D 0 on �b [ .�1 \ @˝2/; d D 2; 3g:

�1 and �2 represent Dirichlet interface conditions for the two subproblems. Indeed,
we consider: 8̂̂

<̂
ˆ̂̂:

�' D 0 in ˝1

@'

@n1
D u1 � n1 on �1 \ @˝1

' D �1 on �1

(172)

and 8̂
<̂
ˆ̂:

˛u � ��u C .u � r/u C rp D f in ˝2

div u D 0 in ˝2

u D 0 on �b [ .�1 \ @˝2/

u D �2 on �2:

(173)

The unknown Dirichlet data �1 and �2 are the solutions of the minimization
problem:

inf
�1;�2

J.�1;�2/ with J.�1;�2/ D 1

2

Z
˝12

.r' � u/2d˝ (174)

and satisfying the condition

Z
�2

�2 � n�2d� C
Z
�1\@˝2

u1 � n1d� D 0:

We refer the interested reader to [12, 13]. A similar approach for the case of
compressible flows is presented in [28].
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21. E. Dubach, Contribution à la résolution des equations fluides en domaine non borné. Ph.D.
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54. H.A. Schwarz, Über einige abbildungsaufgaben. Ges. Math. Abh. 11, 65–83 (1869)
55. J.S. Scroggs, A parallel algorithm for nonlinear convection-diffusion equations, in Third Inter-

national Symposium on Domain Decomposition Methods for Partial Differential Equations,
Houston, TX, 1989 (SIAM, Philadelphia, PA, 1990), pp. 373–384

56. K. Schenk and F.K. Hebeker, Coupling of two dimensional viscous and inviscid incompressible
Stokes equtions. Technical Report Preprint 93-68 (SFB 359), Heidelberg University, 1993

57. H.A. van der Vorst, Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the
solution of nonsymmetric linear systems. SIAM J. Sci. Statist. Comput. 13(2), 631–644 (1992)



http://www.springer.com/978-3-642-24078-2


