
Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=uhte20

Heat Transfer Engineering

ISSN: 0145-7632 (Print) 1521-0537 (Online) Journal homepage: http://www.tandfonline.com/loi/uhte20

Point Thermal Transmittance of Rib Intersections
in Concrete Sandwich Wall Panels

Marta Benedetti, Paola Gervasio, Davide Luscietti, Mariagrazia Pilotelli &
Adriano Maria Lezzi

To cite this article: Marta Benedetti, Paola Gervasio, Davide Luscietti, Mariagrazia Pilotelli
& Adriano Maria Lezzi (2018): Point Thermal Transmittance of Rib Intersections in Concrete
Sandwich Wall Panels, Heat Transfer Engineering, DOI: 10.1080/01457632.2018.1457208

To link to this article:  https://doi.org/10.1080/01457632.2018.1457208

Accepted author version posted online: 26
Mar 2018.
Published online: 12 Apr 2018.

Submit your article to this journal 

Article views: 9

View related articles 

View Crossmark data

http://www.tandfonline.com/action/journalInformation?journalCode=uhte20
http://www.tandfonline.com/loi/uhte20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/01457632.2018.1457208
https://doi.org/10.1080/01457632.2018.1457208
http://www.tandfonline.com/action/authorSubmission?journalCode=uhte20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=uhte20&show=instructions
http://www.tandfonline.com/doi/mlt/10.1080/01457632.2018.1457208
http://www.tandfonline.com/doi/mlt/10.1080/01457632.2018.1457208
http://crossmark.crossref.org/dialog/?doi=10.1080/01457632.2018.1457208&domain=pdf&date_stamp=2018-03-26
http://crossmark.crossref.org/dialog/?doi=10.1080/01457632.2018.1457208&domain=pdf&date_stamp=2018-03-26


HEAT TRANSFER ENGINEERING
, VOL. , NO. , –
https://doi.org/./..

Point Thermal Transmittance of Rib Intersections in Concrete SandwichWall Panels

Marta Benedettia, Paola Gervasiob, Davide Lusciettic, Mariagrazia Pilotellic, and Adriano Maria Lezzic

aDipartimento di Ingegneria dell’Informazione, Università degli Studi di Brescia, Brescia, Italy; bDipartimento di Ingegneria Civile, Architettura,
Territorio, Ambiente e di Matematica, Università degli Studi di Brescia, Brescia, Italy; cDipartimento di Ingegneria Meccanica e Industriale,
Università degli Studi di Brescia, Brescia, Italy

ABSTRACT
Concrete sandwich panels are building elements made by two concrete wythes separated by a layer
of lightweightmaterial: the central layer is inhomogeneous due to the presence of concrete ribswhich
tie the external wythes and act as thermal bridges. This paper deals with the problem of determining
point thermal transmittance associated with rib intersections. Together with previous results by the
authors, it allows accurate calculation of thermal transmittance of sandwich panels according to cur-
rent International Standards. A dataset of 1080 point transmittance values is obtained upon use of a
spectral elementmethod, varying systematicallymaterial conductivities and thickness of panel layers,
for themost commonpairs of ribwidths in current panel production. To limit the computational cost, a
solution strategy based on the use of low-order polynomials on three grids of increasing refinement,
coupled with Richardson extrapolation is adopted. Finally, a power law correlation is proposed that
allows to estimate point transmittance within a relative error of 10%.

Introduction

Precast concrete sandwich wall panels are building ele-
ments that allow fast and economical constructions of
buildings such as factories, warehouses, and malls: these
panels are designed to span from the foundation to the
roof and can be used as load bearing walls, or exterior
claddings, or both. Since panels are usually produced
far from the construction site, weight becomes a crucial
point with regard to handling, transportation, and instal-
lation issues. The easiest way to meet both the require-
ments of structure robustness and weight containment, is
to have a frame of concrete and fill the empty zones with
lightweight materials like expanded polystyrene. In what
follows, this kind of panel will be referred to as precast
concrete lightened sandwich wall panel (LSP). It is worth
underlining that the use of insulating slabs in LSP, which
is aimed to reduce weight, does reduce the average ther-
mal transmittance of the panel at the same time. There are
other types of sandwich panels much more thermal effi-
cient than LSP because of the presence of a continuous
layer of homogeneous insulations between the concrete
wythes (insulated sandwich wall panel): they are not con-
sidered here since the computation of their thermal trans-
mittance is straightforward.

In a LSP, two prestressed concrete wythes are separated
by a heterogeneous layer made by lightweight slabs and
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via Branze ,  Brescia, Italy.

concrete ribs: so there are panel regions made of solid
concrete which act as thermal bridges. Building designers
in order to fulfill the requirements of the European direc-
tives on the energy performance of buildings (Directives
2002/91/EC and 2010/31/EU) as implemented by the EU
member states, need reliable estimates of the thermal
transmittance of building elements, including the effects
of thermal bridges. In principle, computation of the
thermal transmittance U of LSPs is not a critical issue:
ISO 6946, ISO 14683, and ISO 10211 [1]–[3] describe
accurate methods to do that. These methods require the
knowledge of linear and point thermal transmittances
associated with thermal bridges in LSPs. Their values can
be computed upon numerical simulations performed as
described in ISO 10211 [3]. However, most panel man-
ufacturers are small-medium enterprises (SMEs) and
their technical staff does not have either the know-how
or the time to numerically compute values necessary to
determine the transmittance U of their product range:
they consider much more convenient the usage of trans-
mittance catalogs or correlations easily implemented in a
spreadsheet or in an in-house code.

Other recent studies [4], [5] pursue a goal similar to
this study, that is to find correlations to evaluate ther-
mal properties of building components which satisfy the
following requirements: they must reproduce with good
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approximation the results of standardized methods; in
addition, they must be suited for routine use in indus-
try. Tenpierik et al. [4] propose a closed analytical model
for calculating linear transmittances in vacuum insulation
panels that is much more accurate than models based on
electric circuits, but less laborious than numerical simula-
tions. Buratti et al. [5] develop an artificial neural network
(ANN) for estimating U of wooden framed windows.
Based on 278 experimental and numerical data obtained
in accordance with standards, the ANN returns an esti-
mate of window transmittance as a function of 10 sim-
ple parameters like window typology, wood kind, frame
thickness, etc.

In a companion paper [6], the problem of finding an
accurate correlation for prediction of linear thermal trans-
mittance values of LSPs was addressed. The goal was
reached through the combined use of a fast and accu-
rate spectral element method (SEM) and of an ANN. The
SEM allowed the authors to obtain a large dataset of lin-
ear transmittance values and then they used it to train the
ANN. In this work, the study investigating the point ther-
mal bridges in LSPs and determining the associated point
thermal transmittance was completed.

Point thermal bridges in LSPs coincide with concrete
rib intersections, like in the four panel corners. ISO 14683
[2, Clause 5.3.2] states that, in general, the effect of point
thermal bridges “insofar they result from the intersec-
tion of linear thermal bridges,” can be neglected. In past
years, in a few real cases point thermal bridge contribu-
tion in LSPs was evaluated by the authors and it was found
that it accounted for up to 2%, approximately. Besides, the
associated point transmittances were negative: neglect-
ing them implied overestimating panel transmittance U.
In this work, the correctness and the generality of these
conclusions were checked, on the basis of a systematic
study of point transmittance as a function of concrete and
lightweight material conductivities and panel geometrical
parameters.

Evaluation of point thermal transmittance requires
three dimensional (3D) numerical simulations, besides
the knowledge of linear transmittance associated with the
intersecting concrete ribs. As in [6], a conformal quadri-
lateral SEM is used: the computational effort required
to approximate point transmittances is much larger than
that needed to estimate linear ones. That forces the use
of coarse meshes and to approximate the temperature
field in each mesh element with low-order polynomials,
but with the major drawback of loss of accuracy. Here,
a solution strategy that allows to by-pass this problem
is presented and discussed. The numerical problem is
solved on three grids of increasing refinement – although
overall rather coarse – upon use of low-order polynomials
(p = 4): results are extrapolated by Richardson method
[7], [8]. This procedure assures a good trade-off between

accuracy, as required by International Standards, and
computational cost.

A dataset of point transmittance values is obtained
varying systematically material conductivities and thick-
ness of external and central layers, for the most frequent
pairs of rib widths in current panel production. A simple
power law correlation in terms of a new variable depend-
ing on linear transmittances and concrete wythes thick-
ness has been proposed in this study. This correlation
allows to estimate point transmittances within a relative
error of ±10% which is intermediate between the typical
accuracy of numerical calculation of linear thermal trans-
mittance (±5%) and that of linear thermal bridge catalogs
(±20%), as stated in ISO 14683 [2, Clause 6.4].

In the literature there are only a few other studies on
point thermal bridges in precast concrete panels: all of
them consider insulated sandwich wall panels and not
LSPs. An insulated sandwich wall panel is characterized
by a continuous layer of insulation between the outer
concrete wythe and the inner one. The two wythes are
tied together by connectors (usually metal ones). Since
the connectors pass through the insulation layer, they act
as point thermal bridges. Studies [9]–[11] are concerned
with the thermal effect of metal connectors used in insu-
lated sandwich wall panels.

Lee and Pessiki [9] propose a modified algebraic
method to estimate point transmittance associated to
wythe connectors made of steel wires. Their results are
verified by comparison with 3D finite element solutions.

Willems and Hellinger [10] propose a correlation for
point transmittance of metal connectors. Their results are
based on numerical computations and apply to four types
of connectors produced by German manufacturers.

Kim andAllard [11] present an experimental and finite
element study of three types of steel wire connectors, con-
sidering the effect of shape and spacing.

To the authors’ knowledge, therefore, this paper is the
only one that tries and proposes a practical correlation
for calculation of point transmittance associated with rib
intersections in LSP.

Average thermal transmittance of a lightened
sandwich panel

The heat flow rate q through a wall panel can be usually
written as

q = AU�T (1)

where�T is the temperature difference between the inter-
nal and the external environments separated by the panel,
A is the panel area, and U is the panel average thermal
transmittance. In Eq. (1), which defines U, the four panel
edges are considered adiabatic.
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Although q could be calculated upon numerical solu-
tion of the conduction equation for the entire panel,
International Standards [2], [3] suggest a more efficient
method based on analytical and numerical solutions for
a limited number of parts of the panel. Following this
approach, q is written as

q
�T

= AU =
∑
i

AiUi +
∑
j

l jψ j +
∑
k

nkχk (2)

In Eq. (2) Ai and Ui are area and thermal transmit-
tance of the i-th section of the panel; l j and ψ j are length
and linear transmittance of the j-th linear thermal bridge;
nk and χk are number and point transmittance of the k-
th point thermal bridge. Following ISO 6946 [1, Clause
6.7.2.2], here section denotes a panel part made of ther-
mally homogeneous layers. As clearly shown in Figure 1, a
LSP is made of two sections: the solid concrete part, corre-
sponding to ribs (section a); and the three-layer lightened
part, made of the concrete wythes and the lightened layer
that separates them (section b).

The thermal transmittance of the two sections,Ua and
Ub, is easily calculated in terms of surface resistances,
Rse and Rsi, and of thermal resistances of the homoge-
neous layers. Therefore, the first sum in Eq. (2),

∑
i AiUi

represents the transmission heat coefficient through the
panel as if the sections were thermally insulated one from
the other, and the temperature field was 1D within each
section.

The other two sums,
∑

j l jψ j and
∑

k nkχk, represent
the corrections associated with linear and point thermal
bridges, that is with the regions where the temperature
field is two dimensional (2D) and 3D.

In LSPs, the temperature field is closely approximated
by a 2D field near the interfaces between concrete ribs
and lightweight slabs (thick lines in Figure 1), whereas it
is fully 3D in a neighborhood of the intersections of ribs
(open circles in Figure 1).

The linear thermal transmittances ψ j must be eval-
uated upon solving the conduction equation on 2D
domains as described in [6]. Evaluation of the point ther-
mal transmittances χk – which is the goal of this study –

Figure . Plan and section view of a LSP: (a) solid concrete section;
(b) lightened section. Thick lines and open circles indicate linear
and point thermal bridges, respectively. Domains , , and  are
examples of D models used in numerical simulations.

requires solution of the conduction equation on proper
3D domains which represent panel parts centered around
rib intersections. These 3D geometrical models must be
identified in accordance with ISO 10211 [3].

Point transmittance calculation

ProblemDescription

In Figure 2, the 3D model used to determine point ther-
mal transmittance values is sketched: it represents the part
of a panel near the intersection of two ribs. The L-shaped
region formed by the intersecting ribs, represents the solid
concrete section a, whereas the three-layered region is the
lightened section b.

The 3D geometrical model coincides with the
parallelepiped � of sides Lx = Lax + Lbx and Lz =
Laz + Lbz and height (panel thickness) d = d1 + d2 + d3.
d1 and d3 denote the thickness of the external and internal
wythe, respectively, whereas d2 is the lightweight material
thickness.

On the domain boundaries, the following conditions
must be satisfied. On the external and internal surfaces
∂�e(y = 0) and ∂�i(y = d) Robin condition is imposed.
The heat transfer from surface ∂�e to the external envi-
ronment at temperature Te is characterized by a heat
transfer coefficient αe and a surface resistance Rse = 1/αe.
Internal environment temperature Ti, heat transfer coef-
ficient αi, and surface resistance Rsi = 1/αi characterize
heat transfer to the internal surface ∂�i.

Planes x = 0, x = Lx, z = 0, and z = Lz are cut-off
planes as defined in ISO10211 [3, Clause 7.2], which coin-
cide with adiabatic surfaces: the union of all adiabatic lat-
eral surfaces will be denoted ∂�a.

Boundaries x = Lx and z = Lz belong to either an adi-
abatic lateral surface of the panel (as in domains 1 and 2
in Figure 1) or a symmetry plane of an internal rib (as in
domains 2 and 3 in Figure 1): therefore Lax and Laz are
either the width of a bounding rib or the half-width of an
internal rib.

Figure . The computational domain�, the intersecting ribs form
two linear and one point thermal bridges. The linear thermal
transmittances are considered as associated with the black (ψx)
and gray (ψz) interfaces.
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Boundaries x = 0 and z = 0 are placed so far from
the intersection that the temperature field on them is 2D
for all practical purposes. According to ISO 10211, the
distances Lbx and Lbz between the cut-off planes and the
point thermal bridge must be larger or equal to max (1 m,
3 d), where d is the total thickness of the panel. Symmetry
planes of lightweight slab could also be taken as cut-off
plane x = 0 (z = 0, respectively) if Lbx (Lbz, respectively)
is smaller than max (1 m, 3 d).

Denoting q the heat flux through the 3D domain �,
Eq. (2) simplifies as follows:

q
�T

= AaUa + AbUb + Lbzψx + Lbxψz + χ (3)

where Aa + Ab is equal to the area of surfaces ∂�e and
∂�i. ψx and ψz are the linear transmittances associ-
ated with the interfaces between concrete and lightweight
material that are highlighted in black and gray, respec-
tively, in Figure 2.

Uponnumerical evaluation of q andψx andψz (see [6])
the point transmittanceχ associatedwith the rib intersec-
tion modeled in Figure 2, can be computed as

χ = q
�T

− (AaUa + AbUb + Lbzψx + Lbxψz) (4)

Input data

The point transmittance χ as defined by Eq. (4) depends
on several parameters: geometrical, Lax, Laz, Lbx, Lbz, d1,
d2, d3; and thermophysical, λco, λlw, Rse, Rsi.

In this study, Rse, Rsi, Lbx, and Lbz are fixed, and χ is
computed for varying values of the other variables. The
surface resistances are set equal to the conventional values
prescribed by ISO 6946 [1, Clause 6.8]:Rse = 0.04m2K/W
and Rsi = 0.13 m2K/W.

As observed in [6], linear transmittance ψ associated
with a concrete rib tends asymptotically to a constant
value as the lightweight slab length increases (Lbx and
Lbz in Figure 2). As a matter of fact the growth is rapid:
for length larger than 0.25 m the value of ψ is hardly
distinguishable from the asymptotic value. Since in real
panels the lightweight slab length and width are rarely
smaller than 0.5 m, the asymptotic value only is needed
for all practical purposes. A similar behavior is expected
to characterize the dependence of χ on Lbx and Lbz:
therefore, following ISO 10211 [3], in all computations
we set Lbx = Lbz = 1 m.

In [6], linear transmittance ψ is computed for several
thousands of different combinations of (La, d1, d2, d3,
λco, λlw). Due to the larger computational cost of 3D
simulations, χ has been calculated for a subset of the
dataset. Values investigated here are summarized in
Table 1. In particular, only three values for both con-
crete and lightweight material conductivity have been

Table . Input data set used in computations.

Variable Value set Unit

λco ., ., . W/mK
λlw ., ., . W/mK
Lax

∗
., ., ., . m

Laz
∗

., ., ., . m
d1 = d3

∗∗
., ., . m

d2
∗∗

., ., ., ., . m

∗Not all combinations are allowed: Laz ≤ Lax∗∗Not all combinations are allowed: d = d1 + d2 + d3 ≤ . m

considered: λco = 1.6, 2.0, and 2.4 W/mK; λlw = 0.02,
0.04, and 0.06 W/mK.

The dependence of point transmittance on solid con-
crete section widths Lax and Laz, is similar to the one on
Lbx and Lbz: it attains its asymptotic value for Lax and
Laz, larger than 0.2 m, approximately. The three most fre-
quent values of rib width or half-width: 0.05, 0.10, and
0.20 m have been studied. In addition, we compute also
the asymptotic cases which can be approximated setting
widths equal to 1 m.

With respect to Figure 2, for symmetry reasons the
value of χ is invariant when Lax and Laz commute, thus
only combinations Lax � Laz need to be considered.

In current production of LSPs, the concrete wythes
have usually the same thickness, therefore analysis has
been restricted to the symmetric case d1 = d3. Three val-
ues of wythe thickness have been considered: 0.04, 0.06,
and 0.08 m. They are the most frequent for panels of total
thickness less than or equal to 0.24 m. Thickness of the
lightened layer, d2, has been varied among: 0.04, 0.06,
0.08, 0.12, and 0.16 m. However, the following constraint
on panel total thickness has been imposed: d � 0.24 m:
only 12 combinations of values of d1 and d2 satisfy this
condition.

One thousand and eighty numerical estimates of χ
have been obtained upon varying (Lax, Laz, d1, d2, λco, λlw)
as specified above.

Numerical solution

The conduction problem described in the previous sec-
tion is solved through SEM. SEMs are high accuratemeth-
ods designed to discretize partial differential equations.
Their best performance (in terms of computational effi-
ciency) is achieved when the differential problem is set
on Cartesian geometries, exactly as in the problem we are
dealing with, since SEMs exploit the tensorial structure of
the basic functions. The accuracy of SEM is restricted by
the regularity of the data: the thermal conductivity and
the prescribed boundary conditions.

Examples of application of SEM in heat and fluid flows
can be found in [12], [13]. A brief description of SEM
as applied to transmittance computation in LSPs can be
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found in [6, Sec. 4], whereas for an in-depth description
of SEM and of its use to approximate partial differen-
tial equations, we refer, e.g., to [14], [15]. Only features
and terms necessary to understand the solution strategy
adopted have been presented in the study.

With respect to Figure 2, in order to approximate the
heat flux q through � we compute the temperature T =
T (x) inside the panel. It solves a homogeneous elliptic
equation with discontinuous thermal conductivity λ such
that λ|�co = λco, and λ|�lw = λlw, where the nonoverlap-
ping regions�co and�lw correspond to the concrete and
the lightweight material, respectively.

T is the solution of⎧⎪⎨
⎪⎩

−∇ · (λ∇T ) = 0 in�,
λ∂T
∂n + αeT = αeTe on ∂�e, λ

∂T
∂n + αiT = αiTi on ∂�i,

λ ∂T
∂n = 0 on ∂�a

(5)
In SEM, problem (Eq. 5) is reformulated in a

weak sense, and it can be proved that it admits
a unique weak solution T ∈ H1(�), being H1(�) =
{v ∈ L2(�) : ∇v ∈ [L2(�)]2} the Sobolev space of order
1 (see, e.g., [16]). The low regularity of the solution is a
consequence of the discontinuous thermal conductivity.
Nevertheless, when restricted to the subregions where the
thermal conductivity is constant, the temperature field is
more regular, precisely it belongs to the Sobolev space of
order 2.

To approximate the temperature field inside the panel
the computational domain� is partitioned inN nonover-
lapping parallelepipedQk (also named elements) of size h
(typically h denotes the diagonal), such that two adjacent
elements share a vertex, an edge, or a complete face. Such
a partition will be denoted by Qh = ⋃N

k=1 Qk. We accept
that the elements Qk can have different size hk, in such a
case we set h = maxkhk.

Given a partitionQh of�we look for an approximation
Th of T that is globally continuous on �̄ and locally (that
is in each element Qk) is a polynomial of degree p with
respect to each variable. If the surfaces of discontinuity
of the thermal conductivity do not cut any element Qk, it
can be proved that the discrete solution Th converges to
the weak solution T of Eq. (5) when the mesh size h tends
to zero and/or the polynomial degree p grows to infinity.
More precisely, there exists positive constants ck indepen-
dent of both hk and p such that

‖Th − T‖H1(�) ≤
( N∑

k=1

ckhk2p−2 ‖T‖2H2(Qk)

)1/2

(6)

where H2(Qk) is the Sobolev space of order 2 [14].
Once the discrete temperature Th is available, the heat

flux through surfaces ∂�i and ∂�e can be computed by

the following formulas:

qi,h =
∫
∂�i

λco
∂Th (x)
∂n

d∂� =
∫
∂�i

αi (Ti − Th) d∂�

qe,h = −
∫
∂�e

λco
∂Th (x)
∂n

d∂� =
∫
∂�e

αe (Th − Te) d∂�

(7)

qi,h and qe,h are the discrete approximation of the heat flux
through�, q, that is required to calculate the point trans-
mittance χ by Eq. (4). In particular, since both |qi,h − q|
and |qe,h − q| behave like ‖Th − T‖H1(�) when h → 0
and/or p → ∞, we obtain qi,h → q, and qe,h → q when
h → 0 and/or p → ∞. The SEM has been implemented
in MATLAB.

Discretization strategies

In order to get a good trade-off between accuracy and
computational time, one has to choose properly the par-
titionQh and the polynomial degree p. Since p is the same
in every Qk, in view of Eq. (6) the element size hk should
suitably be chosen in order to balance ‖T‖H2(Qk), the latter
being larger next to the surfaces where the thermal con-
ductivity is discontinuous and smaller far from it.

For each set of data, and any fixed p, the discrete fluxes
(Eq. 7) have been computed for three different meshes:

Qh (named coarse), Qh/2 (medium), and Qh/4 (fine).
Therefore, the corresponding point transmittances χh,p,
χh/2,p, and χh/4,p have been evaluated by using Eq. (4)
in which q is replaced by its discrete counterpart qh =
(|qi,h| + |qe,h|)/2.

Finally, χh,p, χh/2,p, and χh/4,p are used to better esti-
mate the point transmittance χ through the Richardson
extrapolation technique (see, e.g., [8, Eq. 9.6]), that in
our case (with data from three different meshes and the
parameter h that is halved at each step) reads

χe,p = 8χh/4,p − 6χh/2,p + χh,p

3
(8)

In view of the convergence estimate of Richardson
extrapolation (see, e.g., [8, Eq. 9.35]), there exists a posi-
tive constant C, independent of h, but possibly depending
on p such that |χe,p − χ | ≤ C(p)(h/4)3. The Richardson
extrapolation turns out to be very efficient for the pur-
pose of this study. As a matter of fact, even if the SEM
approximation error (Eq. 6) vanishes as h1 when h → 0
in view of the low regularity of the thermal conductiv-
ity, Richardson extrapolation allows to gain third order
accuracy with respect to h, i.e., h3, by using a set of three
meshes of moderate sizes h, h/2, and h/4, instead of a
unique mesh with a very small mesh-size, that would
require very large computational effort.
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Table . At left, columns –, CPU-time in seconds needed to compute the temperature by SEM discretization. At right, columns –, the
Richardson extrapolation of the point transmittances (inW/K) for different values of p, the relative error with respect to the best computed
value χe,6, and the total CPU-times (in s).

p Coarse Medium Fine χe,p ep CPU-time

 .× − .×  .×  − .× − .× − .× 

 .×  .×  .×  − .× − .× − .× 

 .×  .×  .×  − .× − — .× 

In our simulations we have chosen to use polynomial
degree p = 4. This choice is motivated by several numer-
ical tests, carried out to measure both the computational
effort required to solve the linear system associated with
the SEMdiscretization of the conduction problem (Eq. 5),
and the accuracy of the computed point transmittance.

As test case to study discretization error and computa-
tional effort, we have chosen the case: Lax = Laz = 0.05 m,
d1 = d3 = 0.06 m, d2 = 0.12 m, λco = 2.0 W/mK, λlw
= 0.04 W/mK, and on the associated geometry we have
designed the following partitions.

The coarse partition ormeshQh is obtained by defining
6 × 4 × 6 (= 144) elements with side sizes hx = [0.6, 0.2,
0.1, 0.05, 0.05, | 0.05], hy = [0.06, | 0.06, 0.06, | 0.06], and
hz = hx. The symbols | highlight where the thermal con-
ductivity is discontinuous. The ratio between the maxi-
mum and the minimum size hk is about 10, with maxkhx
	 0.85 and minkhx 	 0.09. The medium mesh Qh/2 is
obtained by halving (along each direction) any element of
Qh, therefore we have 12 × 8 × 12 (= 1,152) elements;
while the fine mesh Qh/4 is obtained by halving (along
each direction) any element of Qh/2, here we have 24 ×
16 × 24 (= 9,216) elements.

The linear system arising from the SEM discretization
of Eq. (5) has dimension close to p3N and the matrix is
very sparse, therefore it is mandatory to solve it by an iter-
ative method, like, e.g., the Bi-CGStab method [10], pre-
conditioned by an incomplete LU factorization.

The CPU-times (in seconds) needed to compute the
temperature field on an Intel i5-3470 4 core, 64 bit, 3.6
GHz, and 8 GB of RAM, are reported in Table 2, (left), for
p = 2, . . . , 6 and the three partitions Qh, Qh/2, and Qh/4.
Least square approximation of the measured values pro-
vides CPU-time	 10−7p5.6N1.7s. It can be concluded that
a large computational effort is required to solve Eq. (5)
when either moderate or large p is used.

To measure the accuracy of numerical results, the
Richardson extrapolation of the point transmittance χe,p
was computed, for any p = 2, 4, 6, as well as the relative
error with respect to χe,6 (the best estimate), i.e.,

ep = |χe,p − χe,6|
|χe,6| (9)

The computed point transmittancesχe,p, the errors (9),
and the CPU-times needed to estimate χe,p (i.e., the total

CPU-timeneeded to compute the discrete temperature on
all three meshes) are shown in Table 2, (right). It can be
concluded that the best compromise, obtained by mini-
mizing both the CPU-time and the error is achieved for
p = 4.

Results and discussion

One thousand and eighty numerical estimates of χ have
been obtained varying six parameters:

χ = χ (Lax, Laz, d1, d2, λco, λlw) (10)

The interval spanned by χ over the set of input data
ranges between −4.38× 10−2 and −0.48× 10−2W/K: all
values are negative. There is no evidence that the depen-
dence of χ on some of the variables could be neglected
because it is much weaker than others.

With respect to Figure 3, it was observed that χ is
a decreasing function of d1 (see Figure 4 also) and of
λco, whereas it is an increasing function of λlw: the rate
of change does depend on the other variables, but it is
always significant. Dependence on d2 may be considered
less stronger, however that is only because χ distributes
around a relative minimum centered at d2 < 0.08 m (see,
e.g., Figure 4). In other regions of the input data space
investigated here, there is no evidence of the minimum
and χ is an increasing function of d2 (see, e.g., Figure 5).

Figure . χ vs. d1 for λco = 1.6 (♦,♦), λco = 2.0 (�,∇), λco = 2.4
( �,◦), and λlw = 0.02 (open marks), λlw = 0.06 (solid marks).
λ’s in [W/mK]. Lax = Laz = 0.2 m, d2 = 0.04 m. The strong
dependence of χ on the selected parameters is apparent.
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Figure . χ vs. d2 for different d1. Lax = Laz = 0.2 m, λco = 2.0
W/mK,λlw = 0.04W/mK. For this choice of inputsχ shows amin-
imum.

Finally, with respect to Figure 5 it was observed that
χ tends quite fast to an asymptotic value for Lax and Laz
tending to infinity, so that values for Lax = Laz = 0.2 m
almost coincide with those for Lax = Laz = 1 m. However,
when one or both rib widths are equal either to 0.05 or
0.1 m, χ attains a larger value.

In recent years, ANN have been used in heat trans-
fer studies to obtain accurate correlations for either heat
transfer coefficient or other thermal quantities, as in [17],
[18]. Indeed, at the beginning of this study it was planned
to develop an ANN for prediction of χ , as was done forψ
in [6]. However, in [6] to train an ANN able to model cor-
rectly the dependence on La, values of ψ for more than
10 La between 0.05 and 1 m had to be obtained. In this
study, computational cost of tens of (Lax, Laz) pairs was
not affordable. Nor it seemed useful to develop an ANN
for each pair (Lax, Laz) investigated. A different approach
was followed.

According to ISO 14683 [2], the point thermal bridge
studied here can be considered as the intersection

Figure . χ vs. d2 for different (Lax, Laz) pairs. d1 = 0.08m; λco =
2.4W/mK; and λlw = 0.02W/mK.χ tends quite fast to an asymp-
totic value as rib width increases: values for Lax = Laz = 0.2 m
coincide with those for Lax = Laz =  m.

Figure . All computed values of χ vs. the variable
ξ = ψxψz

√
2d1. Solid line: least square approximation of

data through a power law.

of two linear bridges associated with transmittances
ψx(Lax, d1, d2, λco, λlw) and ψz(Laz, d1, d2, λco, λlw):
variable d3 is not listed since only the case d3 = d1 is
being considered. It was thought whether the depen-
dence of χ on the six variables could be captured to some
extent by ψx and ψz, that is whether χ depend implicitly
on (Lax, Laz, d1, d2, λco, λlw) through ψx and ψz:

χ = g (ψx, ψz) (11)

For symmetry reason in Eq. (11)ψx andψz must com-
mute, that is g has to depend on commutative functions
of ψx and ψz, such as ψxψz, ψx + ψz, etc.

As a matter of fact, if computed values of χ are plot-
ted versus ψxψz data tend to fall within a smooth nar-
row region of increasing width for increasing ψxψz. Data
dispersion depends on the original variables, but depen-
dence on d1 seems stronger. After a few trials, the follow-
ing new variable was obtained:

ξ = ψxψz
√
2d1 (12)

for which dispersion is substantially reduced (see
Figure 6). Although factor 2 multiplying d1 is clearly
unnecessary, it was preferred to introduce it because it
was believed that for the more general case d3 �= d1, vari-
able ξ should be defined as ξ = ψxψz

√
(d1 + d3). Upon

fitting data with a power law, the following correlation for
point transmittance has been obtained:

χc (ξ ) = −0.4391ξ 0.7055 (13)

where all quantities are in SI units.
For all practical purposes Eq. (13) supplies a rather

good estimate of χ when the linear transmittances associ-
ated with the intersecting ribs are known. In Figure 7 the
point transmittance estimated by correlation (Eq. 13), χc,
is plotted versus the computed value χ : 97% of estimates
fall within ±10% band.
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Figure . Comparison between correlation predictions, |χc|, and
computed data |χ |: % of estimates fall within±% band.

Eq. (13) on average neither overpredicts nor under-
predicts significantlyχ , since the mean relative deviation,
MRD, is equal to 0.09%. Dispersion of predicted values
is limited since the standard deviation, SD, is equal to
4.5%. Here, SD is defined in terms of relative deviation
RD = (χc − χ)/χ :

SD =
√

1
N − 1

∑
i
(RDi − MRD)2 (14)

As mentioned in the Introduction, the relative con-
tribution of point thermal bridges to the average panel
transmittance U (term

∑
k nkχk in Eq. 2) is up to 2%,

approximately. Therefore, the error introduced upon use
of correlation (Eq. 13) is up to 0.2% of U. This error is of
the same order of magnitude as the one introduced upon
use of the ANN of [6] for determining linear bridges
contribution (term

∑
j l jψ j).

Due to the small contribution of point thermal bridges
in Eq. (2), one may wonder whether it would be worth
to perform some 3D numerical simulations to determine
them: indeed, ISO 14683 [2] does allow to neglect them.
However, if one has already determined the linear trans-
mittances of the panel ψ j to evaluate the second term in
Eq. (2), it is straightforward use of correlation (Eq. 13) to
determine all point thermal transmittances and to calcu-
late a better estimate of U. Besides, since the point ther-
mal transmittances are always negative, taking them into
account prevents panel manufacturers from overestimat-
ing the transmittance of their products.

Conclusions

This paper deals with the problem of determining point
thermal transmittance associated with rib intersec-
tions in LSPs. Together with results presented in [6] it
allows accurate calculation − within ±1% − of nominal
average thermal transmittance of LSPs according to
current International Standards [1]–[3].

To reach this goal, a dataset of point thermal transmit-
tance associated with rib intersections of LSPs has been
built through numerical simulations. One thousand and
eighty data have been obtained as a function of six param-
eters: rib widths, thickness of the concrete wythes and of
the internal layer, concrete and lightweight material con-
ductivity. The parameters span a range of values typical
of current LSPs production. To the authors’ knowledge
these are the only systematic data of point transmittances
in concrete wall panels in literature. In general, ISO
14683 allows to omit point thermal bridge contribution
to LSPs transmittance. For the input data investigated
here it is shown that this contribution is always negative:
one stays on the safe side neglecting it when evaluating
thermal performance of LSPs. Besides, point transmit-
tance values are rather small, their order of magnitude
being 10−2 W/K.

Accurate calculation of such a small quantity through
numerical solution of heat conduction equation in a 3D
domain has been tricky and required a solution strat-
egy based on Richardson extrapolation. A conformal
quadrilateral SEM implemented in MATLAB has been
used to solve the 3D conduction problem. To contain the
computational effort required to solve such a problem,
the unknown temperature field has been approximated
using low-order polynomials, p = 4, with a consequent
significant loss of accuracy. To bypass this problem
and improve accuracy, each problem has been solved
on three partitions of different degrees of refinement,
starting from a very coarse partition: results have been
improved through an iterated application of Richardson
extrapolation. This procedure allowed to determine
point transmittance values with a relative error which is
about 10−4.

Finally, an explicit correlation is proposed for pre-
diction of point transmittance. Although data show a
significant dependence of χ on each of the six variables
mentioned above, a simple power law correlation was
found which allowed to calculate χ as a function of
a single variable, ξ = ψxψz

√
2d1. The correlation has

standard deviation equal to 4.5% and predicts more than
97% of computed data within ±10%. It represents a good
practical tool, easily implemented in a spreadsheet or in
an in-house code for calculation of U.

Nomenclature

A panel area or section area, m2

ANN artificial neural network
a section corresponding to the solid concrete part of the

panel
b section corresponding to the lightened part of the

panel
C constant
d panel thickness or layer thickness, m
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ep relative error according to Eq. (9)
H1, H2 Sobolev space of order 1 or 2

h size of mesh elements, m
l length of a linear thermal bridge, m
L length of sections, m
L2 space of square-integrable functions
Lax length of section a along direction x, m
Lbx length of section b along direction x, m
Laz length of section a along direction z, m
Lbz length of section b along direction z, m
LSP precast concrete lightened sandwich wall panel

MRD mean relative deviation
n number of the point thermal bridges
N number of mesh (partition) elements
p polynomial degree with respect to each variable
q heat flow rate, W

Qk mesh (partition) for the computational domain
Q mesh element
R thermal resistance, m2K/W

RD relative deviation
SD standard deviation

SEM spectral element method
T temperature, K

�T temperature difference, K
U thermal transmittance, W/m2K
x Cartesian axis direction, m
y Cartesian axis direction, m
z Cartesian axis direction, m

Greek Symbols

α heat transfer coefficient, W/m2K
λ thermal conductivity, W/mK
ξ auxiliary variable
χ point thermal transmittance, W/K
χc approximate point thermal transmittance computed by

correlation (Eq. 13), W/K
χe,p point thermal transmittance computed by Richardson

extrapolation (Eq. 8), W/K
ψ linear thermal transmittance, W/mK
ψx linear thermal transmittance associated with interface

orthogonal to x, W/mK
ψz linear thermal transmittance associated with interface

orthogonal to z, W/mK
� computational domain
∂� boundary of the computational domain

Subscripts

a referring to the solid concrete section
b referring to the lightened section
co concrete
e external
h referring to mesh size
i internal

lw lightweight material
p referring to polynomial degree
se external surface
si internal surface
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