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Convergence results for the θ−method

If u0, f , and u are sufficiently regular, it holds:

‖u(tn)− unh‖2
L2(Ω) + 2α∆t

n∑
k=1

‖u(tk)− ukh‖2
H1(Ω) ≤

C (u0, f , u)(∆t2q(θ) + h2r )

where

q(θ) =

{
1 if θ 6= 1/2
2 if θ = 1/2,

and r is the local polynomial degree.
It follows that, if h is taken small enough (such that
h2r < ∆t2q(θ)), it holds

‖u(T )− uNt
h ‖L2(Ω) ∼

{
∆t Euler (θ = 0, θ = 1)
∆t2 Crank-Nicolson (θ = 1/2)

2
Paola Gervasio - DICATAM - unibs.it



Problem 1 (d = 1)

Set Ω = (0, 1), t0 = 0, and T = 1.

1. Approximate the solution u of the parabolic problem
∂u

∂t
− ∂2u

∂x2
= sin(x)(cos(t)− sin(t)) (x , t) ∈ Ω× (0,T )

u(0, t) = 0, u(1, t) = sin(1) cos(t) t ∈ (0,T )
u(x , 0) = sin(x) x ∈ Ω

by FEM-P1 in space and θ−method in time, with
θ ∈ {0, 0.5, 1}.

2. The exact solution is u(x , t) = sin(x) cos(t), verify the
convergence order of the θ−method by using three values
for Ne (number of elements): Ne = 125 (h = 0.008),
Ne = 250 (h = 0.004), Ne = 500 (h = 0.002).
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FEM1d/fem 1d heat solver.m

>> help fem_1d_heat_solver
fem_1d_solver: solve du/dt -mu d^2u/dx^2+ sigma u=f

in Omega x (t0,T)
with Dirichlet and/or Neumann boundary conditions
by either P1-fem or P2-fem on a uniform grid.

[nodes ,un1]= fem_1d_heat_solver(geom ,problem_data ,...
parameters)

Input: geom: struct with fields:
geom.xa , geom.xb = end -points of Omega
geom.t0 , geom.tf = end -points of (t0,T)

problem_data: struct with coefficients and
functions data

.mu = mu (positive constant)
...

Output: nodes = column array with the nodes of the mesh
un1 = column array of the numerical solution

at the final time T
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Solution.

Write a script to:

1. define the geometry,
2. define the problem data,
3. define the discretization parameters,
4. call fem 1d heat solver,
5. plot the solution,
6. compute the errors by fem 1d errors.

Different runs:

θ = 1 (BE), Ne = 125, Nt = [20, 40, 80, 160]
θ = 1 (BE), Ne = 250, Nt = [20, 40, 80, 160]
θ = 1 (BE), Ne = 500, Nt = [20, 40, 80, 160]
θ = 1/2 (CN), Ne = 125, Nt = [20, 40, 80, 160]
θ = 1/2 (CN), Ne = 250, Nt = [20, 40, 80, 160]
θ = 1/2 (CN), Ne = 500, Nt = [20, 40, 80, 160]
θ = 0 (FE), Ne = 10, Nt = 500, 600, ∆t < ch2?
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Problem 2 (d = 1)

We consider a homogeneous, three meters long aluminium bar with uniform
section. We are interested in simulating the evolution of the temperature in the
bar starting from a suitable initial condition, by solving the heat equation

ρCp
∂u

∂t
−∇ · (k∇u) = f in Ω× (t0,T ).

If we impose adiabatic conditions on the lateral surface of the bar (i.e.
homogeneous Neumann conditions), and Dirichlet conditions at the end
sections of the bar, the temperature only depends on the axial space variable
(denoted by x). Thus the problem can be modeled by the one-dimensional heat
equation with f = 0, completed by the initial condition at t = t0 and by
Dirichlet boundary conditions at the endpoints of the reduced computational
domain Ω = (0, L) (L = 3m). Pure aluminium has thermal conductivity
k = 237 W/(m K), density ρ = 2700kg/m3 and specific heat capacity c = 897
J/(kg K), then its thermal diffusivity is µ = 9.786 · 10−5m2/s. Finally we
consider the initial condition T (x , 0) = 500 K if x ∈ (1, 2), 250 K otherwise
and the Dirichlet boundary conditions T (0, t) = T (3, t) = 250 K.
Simulate the evolution for 2000 seconds and Nt = 100, with θ = 0, 1, 0.5 and
compare the three solutions.

CN: small oscillation in corrispondence of the discontinuity of the initial datum;
FE: huge spurious oscillations occur;
BE: smooth solution.
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d ≥ 2: MATLAB pdetool

1. create a PDEModel object
2. define the geometry (Ω),
3. define the data: coefficientis, source term, initial condition,
4. define the boundary conditions,
5. built the mesh (Th),
6. solve the discrete problem (compute unh),
7. plot the solution.

Remark. Solvepde calls the function ode15s for time
discretization. ode15s implements adaptive multistep methods for
stiff equations: you do not need to set ∆t, it is computed
automatically, in order to guarantee that the error w.r.t. the exact
solution is about 10−3. To change this value, for example to 10−4:

model.SolverOptions.RelativeTolerance = 1e-04;

before to solve.
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The heat equation

The heat equation reads:
ρCp

∂u
∂t −∇ · (k∇u) = f in Ω× (t0,T )

u = gD on ∂ΩD × (t0,T ) gD = external temperature
µn · ∇u = gN on ∂ΩN × (t0,T ) gN = heat flux
µn · ∇u + αu = αuext on ∂ΩR × (t0,T ) convective heat transfer
u = u0 in Ω× {t0}

data:

ρ = mass density of the material,

Cp = specific heat capacity,

k = thermal conductivity,

f = internal heat source,

α = heat transfer coefficient,

uext = temperature of the surrounding medium.
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Problem 3

Let us consider a region Ω = R1 \ (R2 ∪ R3) of the plane with
R1 = (0, 1)× (0, 2), R2 = (0.3, 0.4)× (0.3, 0.9), and
R3 = (0.5, 0.6)× (1.1., 1.7), that represent the vertical section of a
piece of medium with two cavities.
The mass density of the medium is 7.2 kg/m3, the specific heat
capacity is Cp = 500 J/(kg K), and the thermal conductivity is
k = 50 W/(m K).
The left wall of the medium is in contact with a body at constant
temperature u = 373K, the right wall is in contact with air at a
constant temperature uext = 293K (heat transfer coefficient is
α = 25W/(m2 K)), no heat exchange occurs through the other
walls.
Simulate the evolution of the temperature inside the medium along
the time interval (0, 20) sec, provided that the initial temperature
is u0 = 273.15K in the whole medium.
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Set the geometry

model=createpde; % object PDEModel
R1=[3,4,0,1,1,0,0,0,2,2]’;

R2=[3 ,4 ,0.3 ,0.4 ,0.4 ,0.3 ,0.3 ,0.3 ,0.9 ,0.9] ’;

R3=[3 ,4 ,0.5 ,0.6 ,0.6 ,0.5 ,1.1 ,1.1 ,1.7 ,1.7] ’;

gd=[R1 ,R2 ,R3];

ns=(char(’R1’,’R2’,’R3’))’;

sf=’R1-R2 -R3’;

g=decsg(gd ,sf ,ns);

% import the geometry into the model
geometryFromEdges(model ,g)

% draw the geometry
figure (1); clf

pdegplot(model ,’EdgeLabels ’,’on’)
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Data of the problem
Recall that the general equation reads:

m
∂2u

∂t2
+ d

∂u

∂t
−∇ · (c∇u) + au = f

and that the boundary conditions are:

Dirichlet : hu = r on ∂ΩD

Neumann : n · (c∇u) + qu = g on ∂ΩN

% coefficients
rho =7.2; % kg/m^3
Cp =500; % J/(kg K)
k=50; % W/(m K)
specifyCoefficients(model ,’m’,0,’d’,rho*Cp ,’c’,k,...

’a’,0,’f’ ,0);
% boundary conditions
applyBoundaryCondition(model ,’dirichlet ’,...

’Edge’,7,’u’ ,373.15); % left
applyBoundaryCondition(model ,’neumann ’,...

’Edge’,1,’q’,25,’g’ ,25*293); % right
applyBoundaryCondition(model ,’neumann ’,...

’Edge’,1,’q’,0,’g’ ,0); % other edges
% initial condition
setInitialConditions(model ,273.15);
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Mesh and solution

% mesh
generateMesh(model ,’Hmax’ ,0.05,...

’GeometricOrder ’,’quadratic ’);

% set a list of time -steps at which you want
% to draw the solution
tlist =0:1:20; % seconds

% solve
results=solvepde(model ,tlist);

% compute the gradient of the temperature
[gradx ,grady]= evaluateGradient(results );
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Plot

% fixed bounds for the colorbar
clim=[min(min(results.NodalSolution )),...

max(max(results.NodalSolution ))];

figure (2); clf

nt=size(tlist ,2); % number of time steps
for n=1:nt

% extract the temperature at time t=tlist(n)
u=results.NodalSolution (:,n);

% plot
pdeplot(model ,’XYData ’,u,’Contour ’,’on’,...

’FlowData ’,[-gradx(:,n),-grady(:,n)]);

set(gca ,’CLim’,clim)

colormap(’parula ’)

set(gca ,’Xlim’ ,[0,1],’YLim’ ,[0,2],...

’PlotBoxAspectRatio ’ ,[1,2,1])

title([’t=’,num2str(tlist(n))]);

pause (0.2)

end
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