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Partial Differential Equation
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Ω ⊂ Rd (with d = 1, 2, 3) open and bounded domain (space domain)
(t0,T ) ⊂ R an open interval (time domain)
u : Ω× (t0,T )→ R a function.
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A Partial Differential Equation (PDE)

F (x, t, u,
∂u

∂t
,
∂u

∂x1
, . . . ,

∂u

∂xd
,
∂2u

∂x2
1

, . . . , g) = 0

is a relation between:
– two independent variables t and x,
– a function u = u(x, t) and its partial
derivatives,
- the data g g −→ PDE −→ u

(data) (model) (solution)



The PDE F (x, t, u,
∂u

∂t
,
∂u

∂x1
, . . . ,

∂u

∂xd
,
∂2u

∂x2
1

, . . . , g) = 0 can also be

written as

L(x, t, u) = f

L is called partial differential operator, while f is the right hand
side.

Definition. If L is linear in u, i.e.

L(x, t, α1u1 + α2u2) = α1L(x, t, u1) + α2L(x, t, u2),

for any α1, α2 ∈ R (or C), then, the PDE is called linear,
otherwise non-linear.
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Elementary differential operators

Let u = u(x) a scalar function and b = [b1(x), . . . , bd(x)] a vector
function.

gradient of u: ∇u =


∂u
∂x1
...
∂u
∂xd


divergence of b: div b = ∇ · b =

∂b1

∂x1
+ · · ·+ ∂bd

∂xd

Laplacian of u: ∆u = ∇ · (∇u) =
∂2u

∂x2
1

+ · · ·+ ∂2u

∂x2
d

curl of b ∈ R3: curl b = ∇× b = det

 i j k
∂
∂x1

∂
∂x2

∂
∂x3

b1 b2 b3


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Poisson and Laplace equations
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Given f : Ω→ R, look for u : Ω→ R such that

−∆u = f in Ω

[Laplace when f ≡ 0]
Some applications:

Photo by Sarah Richter from Pixabay Photo by Edith Lüthi from Pixabay

steady state of the diffu-
sion of a drop of soluble
substance in a liquid

an elastic membrane sub-
ject to an external force
(steady case)

electric potential generated
by two ideal charges

u = ink concentration u = vertical displacement u = electric potential
f = source of ink f = external force f = ρ/ε (density over di-

electric constant)



Heat equation
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Given f : Ω× (t0,T )→ R, look for u : Ω× (t0,T )→ R such that

∂u

∂t
− µ∆u = f in Ω× (t0,T )

u = temperature of a body occupying
the space Ω

f = heat source

µ = thermal diffusivity

The larger µ, the faster the heat diffusion

https://strumentidimisuraclick.com/termocamera/



Wave equation
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Given f : Ω× (t0,T )→ R, look for u : Ω× (t0,T )→ R such that

∂2u

∂t2
− c∆u = f in Ω× (t0,T )

u = wave form

f = source

c = speed of propagation (c > 0)

©Sean Scott Photography Photo by Gerd Altmann from Pixabay

plane wave incident circular waves on water surface



Convection-diffusion-reaction equation
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Given f : Ω× (t0,T )→ R, µ = µ(x) > 0, b(x), and γ(x) > 0 , look
for u : Ω× (t0,T )→ R such that

∂u

∂t
− ∇ · (µ∇u) + ∇ · (bu) + γu = f

↑ ↑ ↑
diffusion convection absorption

(or reaction)

Photo by Nikola Belopitov from Pixabay Florida Division of Plant Industry, Florida Department of Agricul-
ture and Consumer Services, Bugwood.org. CC3.0

pollution diffusion due to industrial chim-
neys in the presence of wind b

evolution of population abundance, b =
growth rate, γ =mortality rate, µ =
stochastic dispersion



Other PDEs

Helmholtz equation: −∆u − ω2u = 0 with ω 6= 0

Plate equation: utt + ∆2u = f

Telegraph equation: utt − τ2uxx + αut + βu = 0

Burgers equation: ut + uux = εuxx

(viscous ε > 0; inviscid ε = 0)

Korteg-de Vries equation: ut + cuux + uxxx = 0
(with c 6= 0)

Vahn-Hilliard equation: ut + ν∆2u −∆(βu3 − αu) = 0
(with ν > 0, α > 0, β > 0)

Monge-Ampere equation: det(Hu) = f (x, u,∇u)
(where H is the Hessian matrix).

9
Paola Gervasio - DICATAM - unibs.it



Classification of PDEs

Based on:

order of a PDE: the maximum derivation order,

linear / non–linear PDE: when L is linear (or non–linear)
w.r.t. u.

Examples:

−∆u = f , linear 2nd-order pde,

∆2u + u = f , linear 4th-order pde,

−∆u + u2 = f , non-linear 2nd-order pde,

ut + uux = 0 non-linear 1st-order pde

10
Paola Gervasio - DICATAM - unibs.it



Classification of 2nd-order linear PDEs

Let us start from the case d = 2, with u = u(x) (indep. of time):

−∂
2u

∂x2
1

− ∂2u

∂x2
2

+ 0
∂2u

∂x1∂x2
+ · · · · · · · · ·︸ ︷︷ ︸

lower order terms

= f

and set

aij = coefficient of
∂2u

∂xi∂xj
and

A =

[
a11 a12

a21 a22

]
=

[
−1 0
0 −1

]
.

The eigenvalues of A are λ1,2(A) = −1 < 0.

Definition. A 2nd order–linear PDE is named elliptic when the
eigenvalues of A are either all positive or all negative.

Thus, the Poisson equation −∆u = f is a linear 2nd-order elliptic
pde.
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Classification of 2nd-order PDEs (cont’d)

The heat equation (with µ > 0)

∂u

∂t
− µ∆u = f

The time variable plays the same role as the space variables, ∂2u
∂t2 is

missing, then (if d = 2) we have

A =

t x1 x2[ ]0 0 0 t
0 −µ 0 x1

0 0 −µ x2

The eigenvalues of A are λ1 = 0, λ2,3 = −µ < 0.
Def. When A has a unique null eigenvalue, while the others are
either all positive or all negative, then the PDE is named
parabolic.
The heat equation is a linear 2nd-order parabolic pde.
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Classification of 2nd-order PDEs (cont’d)

The wave equation
∂2u

∂t2
− c∆u = f

with c > 0. If d = 2 we have

A =

t x1 x2[ ]1 0 0 t
0 −c 0 x1

0 0 −c x2

The eigenvalues of A are λ1 = 1, λ2,3 = −c < 0.
Def. When there exists a unique positive (resp. negative)
eigenvalue, while the others are all negative (resp., all positive),
then the PDE is named hyperbolic.
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Boundary and initial conditions

A PDE, like an ODE, can have infinite solutions.

If a PDE admits solutions, to guarantee that the solution is
unique, the PDE needs to be supplemented by boundary
conditions and initial conditions (the latter are only required if the
solution is time dependent).

14
Paola Gervasio - DICATAM - unibs.it



Boundary conditions for 2nd order elliptic PDEs
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Ω

∂Ω

Dirichlet condition: you know the solution on the boundary, where it
equals a known function gD .

Dirichlet boundary conditions guarantee the uniqueness of the
solution of a PDE.

Given f and gd , look for u such that{
−∆u = f in Ω
u = gD on ∂Ω ←− Dirichlet condition

Photo by Edith Lüthi from Pixabay

Example: If u is the
displacement of a membrane,
u = 0 (gD = 0) on the
boundary means “the bubble
sticks to the floor”



Boundary conditions for 2nd order elliptic PDEs (2)
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Ω

n(x)∂Ω
x

Let n(x) = [n1(x), n2(x)] be the outward unit normal vector on ∂Ω.
Neumann condition: you know the flux ∂u

∂n = ∇u · n through the
boundary, where it equals the known function gN .
Given f and gN , look for u such that:

(N)

{
−∆u = f in Ω
∂u
∂n = gN on ∂Ω ←− Neumann condition

Remark 1: to guarantee existence of solution, a compatibility

condition on f and gN is required: −
∫
∂Ω

gN =

∫
Ω

f

Remark 2: Problem (N) still has infinite solutions, while problem
(N1) has a unique solution

(N1)

{
−∆u + u = f in Ω
∂u
∂n = gN on ∂Ω



Boundary conditions for 2nd order elliptic PDEs (3)
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Ω

n

∂ΩD

∂ΩN

∂ΩN , ∂ΩD ⊂ ∂Ω, with:
∂ΩN ∩ ∂ΩD = ∅ and ∂ΩN ∪ ∂ΩD = ∂Ω

Mixed boundary conditions:
−∆u = f in Ω
u = gD on ∂ΩD
∂u
∂n = gN on ∂ΩN

Robin condition:

αu + β
∂u

∂n
= gR on ∂ΩR ⊆ ∂Ω

where α, β ∈ R are given



BC and initial conditions

For time dependent PDEs, initial conditions at time t = t0 are
required to guarantee the uniqueness of solution.
Given f , gD , uext , and u0, look for u solution of

∂u

∂t
− µ∆u = f in Ω× (t0,T )

µ
∂u

∂n
+ αu = αuext on ∂ΩR × (t0,T ) ←− convection thermal exchange

u = gD on ∂ΩD × (t0,T ) ←− fixed temperature
µ ∂u

∂n = 0 on ∂ΩN × (t0,T ) ←− adiabatic condition

u = u0 Ω× {t0} ←− initial condition

adiabatic condition

contact with

another body

with known 

temperature

convective exchange
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How to solve PDEs?

Mathematical Analysis studies the well posedness of the
continuous problem

P(u, g) = 0

(e.g. P(u, g) = F (x, t, u, ∂u∂t ,
∂u
∂x1
, . . . , ∂u∂xd ,

∂2u
∂x2

1
, . . . , g) = 0,)

i.e., it proves

the existence of solutions
the uniqueness of a solution
the continuous dependence on the data

but almost always a closed formula to find the solution does not
exist.

Help is given by Numerical Analysis and, more in general, by
Scientific Computing.
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Numerical approximation
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Instead of looking for the solution u of P(u, g) = 0, we look for an
approximation uN of u, i.e. uN solution of

PN(uN , gN) = 0

(the numerical model)

N is a discretization parameter.
We require our method to provide numerical solutions that
converge to the continuous one when N increases, i.e., that
uN → u when N →∞.

Def. A numerical method is said convergent if:

∀ε > 0 ∃N0 = N0(ε), ∃δ = δ(N0, ε) : ∀N > N0

∀gN : ‖gN − g‖ < δ ⇒ ‖uN − u‖ < ε

Tipically, the larger N, the more accurate the approximation,
but the heavier the computational cost.


