Corso di laurea ETELT Cognomi (M-Z)

Il NUMERO della FILA è contenuto nel testo dell'esercizio 3 ed è il coefficiente di n^n all'interno del sin.

Fila 1

1. $\operatorname{dom} f = (0,1) \cup (1,+\infty)$; f non presenta simmetrie; $\lim_{x\to 0^+} f(x) = -\frac{\pi}{2}$; $\lim_{x\to 1^\pm} f(x) = \pm \infty$; x=1 è asintoto verticale completo; $\lim_{x\to +\infty} f(x) = \frac{\pi}{2}$; $y=\frac{\pi}{2}$ è asintoto orizzontale destro;

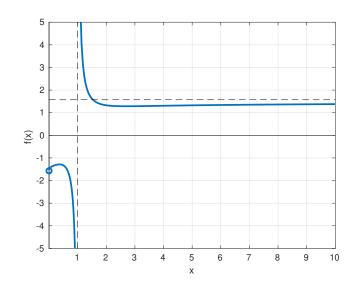
$$f'(x) = \frac{(\log x)^2 - 1}{2x (\log x)^2 [(\log x)^2 + 1]}$$

 $\operatorname{dom} f' = \operatorname{dom} f$, f è quindi derivabile in tutto il suo dominio;

f presenta due punti stazionari: x = 1/e e x = e;

f è crescente in $]0, 1/e[\cup]e, +\infty[$ e descrescente in $]1/e, 1[\cup]1, e[$;

x=1/e è punto di massimo relativo, x=e è punto di minimo relativo; f non ammette punti di minimo e di massimo assoluti.



Il punto di minimo x=e non è molto evidente dal grafico in quanto la funzione tende all'asintoto molto lentamente.

- **2.** Il luogo geometrico è l'unione della retta bisettrice del secondo e quarto quadrante e dei tre punti $z_1 = \sqrt[3]{2}(-\frac{\sqrt{3}}{2} \frac{1}{2}i), \ z_2 = \sqrt[3]{2}i, \ z_3 = \sqrt[3]{2}(\frac{\sqrt{3}}{2} \frac{1}{2}i).$
- 3. Il limite vale: $\ell = \frac{e^2}{2}$
- **4.** La funzione è continua in x = 0 se $\alpha = \beta = \frac{4}{3}$.

Fila 2

1. dom $f = (0,1) \cup (1,+\infty)$; f non presenta simmetrie;

 $\lim_{x\to 0^+} f(x) = -\frac{\pi}{2}$; $\lim_{x\to 1^{\pm}} f(x) = \pm \infty$; x=1 è asintoto verticale completo;

 $\lim_{x\to+\infty} f(x) = \frac{\pi}{2}$; $y = \frac{\pi}{2}$ è asintoto orizzontale destro;

$$f'(x) = \frac{(\log x)^2 - 1}{2x (\log x)^2 [(\log x)^2 + 1]}$$

 $\operatorname{dom} f' = \operatorname{dom} f$, f è quindi derivabile in tutto il suo dominio;

f presenta due punti stazionari: x = 1/e e x = e;

f è crescente in $]0, 1/e[\cup]e, +\infty[$ e descrescente in $]1/e, 1[\cup]1, e[$;

x=1/e è punto di massimo relativo, x=e è punto di minimo relativo; f non ammette punti di minimo e di massimo assoluti.

Il punto di minimo x=e non è molto evidente dal grafico in quanto la funzione tende all'asintoto molto lentamente.

- 2. Il luogo geometrico è l'unione della retta bisettrice del secondo e quarto quadrante e dei tre punti $z_1 = \sqrt[3]{3}(-\frac{\sqrt{3}}{2} \frac{1}{2}i), \ z_2 = \sqrt[3]{3}i, \ z_3 = \sqrt[3]{3}(\frac{\sqrt{3}}{2} \frac{1}{2}i).$
- 3. Il limite vale: $\ell = \frac{e^2}{2}$
- **4.** La funzione è continua in x = 0 se $\alpha = \beta = \frac{6}{5}$.

Fila 3

1. dom $f = (0,1) \cup (1,+\infty)$; f non presenta simmetrie;

 $\lim_{x\to 0^+} f(x) = -\frac{\pi}{2}$; $\lim_{x\to 1^{\pm}} f(x) = \pm \infty$; x=1 è asintoto verticale completo;

 $\lim_{x\to+\infty} f(x) = \frac{\pi}{2}$; $y=\frac{\pi}{2}$ è asintoto orizzontale destro;

$$f'(x) = \frac{(\log x)^2 - 1}{2x (\log x)^2 [(\log x)^2 + 1]}$$

 $\operatorname{dom} f' = \operatorname{dom} f, f$ è quindi derivabile in tutto il suo dominio;

f presenta due punti stazionari: x = 1/e e x = e;

f è crescente in $]0, 1/e[\cup]e, +\infty[$ e descrescente in $]1/e, 1[\cup]1, e[$;

x=1/e è punto di massimo relativo, x=e è punto di minimo relativo; f non ammette punti di minimo e di massimo assoluti.

Il punto di minimo x = e non è molto evidente dal grafico in quanto la funzione tende all'asintoto molto lentamente.

2. Il luogo geometrico è l'unione della retta bisettrice del secondo e quarto quadrante e dei tre punti $z_1 = \sqrt[3]{4}(-\frac{\sqrt{3}}{2} - \frac{1}{2}i), z_2 = \sqrt[3]{4}i, z_3 = \sqrt[3]{4}(\frac{\sqrt{3}}{2} - \frac{1}{2}i).$

- 3. Il limite vale: $\ell = \frac{e^2}{2}$
- **4.** La funzione è continua in x = 0 se $\alpha = \beta = \frac{8}{7}$.

Fila 4

1. dom $f = (0,1) \cup (1,+\infty)$; f non presenta simmetrie;

 $\lim_{x\to 0^+} f(x) = -\frac{\pi}{2}$; $\lim_{x\to 1^{\pm}} f(x) = \pm \infty$; x=1 è asintoto verticale completo;

 $\lim_{x\to+\infty} f(x) = \frac{\pi}{2}; y = \frac{\pi}{2}$ è asintoto orizzontale destro;

$$f'(x) = \frac{(\log x)^2 - 1}{2x (\log x)^2 [(\log x)^2 + 1]}$$

 $\operatorname{dom} f' = \operatorname{dom} f, \, f$ è quindi derivabile in tutto il suo dominio;

f presenta due punti stazionari: x = 1/e e x = e;

f è crescente in $]0,1/e[\cup]e,+\infty[$ e descrescente in $]1/e,1[\cup]1,e[;$

x=1/e è punto di massimo relativo, x=e è punto di minimo relativo; f non ammette punti di minimo e di massimo assoluti.

Il punto di minimo x=e non è molto evidente dal grafico in quanto la funzione tende all'asintoto molto lentamente.

- **2.** Il luogo geometrico è l'unione della retta bisettrice del secondo e quarto quadrante e dei tre punti $z_1 = \sqrt[3]{5}(-\frac{\sqrt{3}}{2} \frac{1}{2}i), \ z_2 = \sqrt[3]{5}i, \ z_3 = \sqrt[3]{5}(\frac{\sqrt{3}}{2} \frac{1}{2}i).$
- 3. Il limite vale: $\ell = \frac{e^2}{2}$
- **4.** La funzione è continua in x = 0 se $\alpha = \beta = \frac{10}{9}$.