Il NUMERO della FILA è contenuto nel testo dell'esercizio 2 ed è il numero intero precedente al coefficiente di $(-1)^n$.

Fila 1

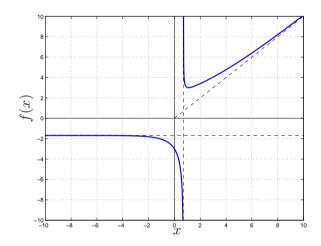
1. $dom f = \mathbb{R} \setminus \{\log 2\}$, non ci sono simmetrie.

 $\lim_{x\to\log 2^{\pm}} f(x) = \pm \infty$, $x = \log 2$ asintoto verticale, $\lim_{x\to-\infty} f(x) = \log 2 - \frac{3}{\sqrt[3]{2}}$, $y = \log 2 - \frac{3}{\sqrt[3]{2}}$ asintoto orizzontale, $\lim_{x\to+\infty} f(x) = +\infty$, y = x asintoto obliquo per $x\to+\infty$.

La derivata prima è

$$f'(x) = \frac{e^x}{e^x - 2} \left[1 - \frac{1}{\sqrt[3]{e^x - 2}} \right], \quad \text{dom} f' = \text{dom} f.$$

f è crescente in $]\log 3, +\infty[$, decrescente altrove; $x=\log 3$ è punto di minimo relativo; f è illimitata.



- 2. $\inf A = -1, \sup A = \max A = 4$
- 3. La retta y = 0 unita con la circonferenza $7(x^2 + y^2) = 1$.
- 4. Area=14
- 5. Il limite vale $\ell = -2$
- **6.** $\alpha < 2/3$
- 7. g è continua in $\mathbb{R} \setminus \{-7\}$; x = -7 è punto di infinito. g è derivabile in $\mathbb{R} \setminus \{-7, -6\}$; x = -6 è punto angoloso.

Fila 2

1. $\operatorname{dom} f = \mathbb{R} \setminus \{\log 3\}$, non ci sono simmetrie. $\lim_{x \to \log 3^{\pm}} f(x) = \pm \infty, \ x = \log 3 \text{ asintoto verticale, } \lim_{x \to -\infty} f(x) = \log 3 - \frac{3}{\sqrt[3]{3}}, \ y = \log 3 - \frac{3}{\sqrt[3]{3}}$ asintoto orizzontale, $\lim_{x \to +\infty} f(x) = +\infty, \ y = x$ asintoto obliquo per $x \to +\infty$.

La derivata prima è

$$f'(x) = \frac{e^x}{e^x - 3} \left[1 - \frac{1}{\sqrt[3]{e^x - 3}} \right], \quad \text{dom} f' = \text{dom} f.$$

f è crescente in $]\log 4, +\infty[$, decrescente altrove; $x=\log 4$ è punto di minimo relativo; f è illimitata.

- 2. $\inf A = -2, \sup A = \max A = 5$
- 3. La retta y = 0 unita con la circonferenza $6(x^2 + y^2) = 1$.
- 4. Area=12
- 5. Il limite vale $\ell = -3$
- 6. $\alpha < 2/5$
- 7. g è continua in $\mathbb{R} \setminus \{-6\}$; x = -6 è punto di infinito. g è derivabile in $\mathbb{R} \setminus \{-6, -5\}$; x = -5 è punto angoloso.

Fila 3

1. $dom f = \mathbb{R} \setminus \{\log 4\}$, non ci sono simmetrie.

 $\lim_{x\to \log 4^{\pm}} f(x) = \pm \infty$, $x = \log 4$ asintoto verticale, $\lim_{x\to -\infty} f(x) = \log 4 - \frac{3}{\sqrt[3]{4}}$, $y = \log 4 - \frac{3}{\sqrt[3]{4}}$ asintoto orizzontale, $\lim_{x\to +\infty} f(x) = +\infty$, y = x asintoto obliquo per $x\to +\infty$.

La derivata prima è

$$f'(x) = \frac{e^x}{e^x - 4} \left[1 - \frac{1}{\sqrt[3]{e^x - 4}} \right], \quad \text{dom} f' = \text{dom} f.$$

f è crescente in $]\log 5, +\infty[$, decrescente altrove; $x=\log 5$ è punto di minimo relativo; f è illimitata.

- 2. $\inf A = -3, \sup A = \max A = 6$
- 3. La retta y = 0 unita con la circonferenza $5(x^2 + y^2) = 1$.
- 4. Area=10
- 5. Il limite vale $\ell = -4$
- **6.** $\alpha < 2/7$
- 7. g è continua in $\mathbb{R} \setminus \{-5\}$; x = -5 è punto di infinito. g è derivabile in $\mathbb{R} \setminus \{-5, -4\}$; x = -4 è punto angoloso.

1. $dom f = \mathbb{R} \setminus \{\log 5\}$, non ci sono simmetrie.

 $\lim_{x\to \log 5^{\pm}} f(x) = \pm \infty$, $x = \log 5$ as into to verticale, $\lim_{x\to -\infty} f(x) = \log 5 - \frac{3}{\sqrt[3]{5}}$, $y = \log 5 - \frac{3}{\sqrt[3]{5}}$ as into orizzontale, $\lim_{x\to +\infty} f(x) = +\infty$, y = x as into obliquo per $x\to +\infty$.

La derivata prima è

$$f'(x) = \frac{e^x}{e^x - 5} \left[1 - \frac{1}{\sqrt[3]{e^x - 5}} \right], \quad \text{dom} f' = \text{dom} f.$$

f è crescente in $]\log 6, +\infty[$, decrescente altrove; $x=\log 6$ è punto di minimo relativo; f è illimitata.

- 2. $\inf A = -4, \sup A = \max A = 7$
- 3. La retta y=0 unita con la circonferenza $4(x^2+y^2)=1$.
- 4. Area=8
- 5. Il limite vale $\ell = -5$
- **6.** $\alpha < 2/9$
- 7. g è continua in $\mathbb{R} \setminus \{-4\}$; x = -4 è punto di infinito. g è derivabile in $\mathbb{R} \setminus \{-4, -3\}$; x = -3 è punto angoloso.

Fila 5

1. $dom f = \mathbb{R} \setminus \{\log 6\}$, non ci sono simmetrie.

 $\lim_{x\to \log 6^{\pm}} f(x) = \pm \infty$, $x = \log 6$ asintoto verticale, $\lim_{x\to -\infty} f(x) = \log 6 - \frac{3}{\sqrt[3]{6}}$, $y = \log 6 - \frac{3}{\sqrt[3]{6}}$ asintoto orizzontale, $\lim_{x\to +\infty} f(x) = +\infty$, y = x asintoto obliquo per $x\to +\infty$.

La derivata prima è

$$f'(x) = \frac{e^x}{e^x - 6} \left[1 - \frac{1}{\sqrt[3]{e^x - 6}} \right], \quad \text{dom} f' = \text{dom} f.$$

f è crescente in $]\log 7, +\infty[$, decrescente altrove; $x=\log 7$ è punto di minimo relativo; f è illimitata.

- 2. $\inf A = -5, \sup A = \max A = 8$
- 3. La retta y=0 unita con la circonferenza $3(x^2+y^2)=1$.
- **4.** Area=6
- 5. Il limite vale $\ell = -6$
- **6.** $\alpha < 2/11$
- 7. g è continua in $\mathbb{R} \setminus \{-3\}$; x = -3 è punto di infinito. g è derivabile in $\mathbb{R} \setminus \{-3, -2\}$; x = -2 è punto angoloso.

1. $dom f = \mathbb{R} \setminus \{\log 7\}$, non ci sono simmetrie.

 $\lim_{x\to\log 7^{\pm}} f(x) = \pm \infty$, $x = \log 7$ asintoto verticale, $\lim_{x\to-\infty} f(x) = \log 7 - \frac{3}{\sqrt[3]{7}}$, $y = \log 7 - \frac{3}{\sqrt[3]{7}}$ asintoto orizzontale, $\lim_{x\to+\infty} f(x) = +\infty$, y = x asintoto obliquo per $x\to+\infty$.

La derivata prima è

$$f'(x) = \frac{e^x}{e^x - 7} \left[1 - \frac{1}{\sqrt[3]{e^x - 7}} \right], \quad \text{dom} f' = \text{dom} f.$$

f è crescente in $]\log 8, +\infty[$, decrescente altrove; $x=\log 8$ è punto di minimo relativo; f è illimitata.

- 2. $\inf A = -6, \sup A = \max A = 9$
- 3. La retta y = 0 unita con la circonferenza $2(x^2 + y^2) = 1$.
- **4.** Area=4
- 5. Il limite vale $\ell = -7$
- 6. $\alpha < 2/13$
- 7. g è continua in $\mathbb{R} \setminus \{-2\}$; x = -2 è punto di infinito. g è derivabile in $\mathbb{R} \setminus \{-2, -1\}$; x = -1 è punto angoloso.