Il NUMERO della FILA è contenuto nel testo dell'esercizio n° 8 ed è l'addendo costante nella definizione di f.

Fila 1

- 1. (a) dom $f = \mathbb{R} \setminus \{-2\}$; non ci sono simmetrie.
 - (b) $\lim_{x\to -\infty} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = +\infty$. $\lim_{x\to -2^\pm} f(x) = -\infty$. x=-2 as intoto verticale completo, y=x-8 as intoto obliquo completo. Non ci sono as intoti orizzontali.
 - (c) $f'(x) = \frac{x-2}{(x+2)^3}(x^2+8x-4)$; dom f' = dom f.
 - (d) f strettamente crescente in $(-\infty, -2(2+\sqrt{5})) \cup (-2, 2(\sqrt{5}-2)) \cup (2, +\infty)$, f strettamente decrescente in $(-2(2+\sqrt{5}), -2) \cup (2(\sqrt{5}-2), 2)$, $x = -2(2+\sqrt{5})$ e $x = 2(\sqrt{5}-2)$ punti di massimo relativo, x = 2 punto di minimo relativo, non esistono punti di massimo o di minimo assoluti in quanto f è illimitata.
 - (e) Esiste un punto di flesso a tangente obliqua nell'intervallo $(2(\sqrt{5}-2),2)$
- **2.** $\sup A = 1, \# \max A, \inf A = \min A = \sqrt[3]{1 \sin(1)}.$
- 3. Il luogo geometrico è il punto z=0 ottenuto come intersezione tra la parabola $7x+y^2=0$ e la coppia di rette y(x-7)=0
- **4.** $z_1 = 0, z_2 = \sqrt[3]{3} \left(\frac{\sqrt{3}}{2} + \frac{i}{2} \right), z_3 = \sqrt[3]{3} \left(-\frac{\sqrt{3}}{2} + \frac{i}{2} \right), z_4 = -\sqrt[3]{3} i.$
- 5. $\frac{4}{\log(\frac{2}{3})}$.
- **6.** $+\infty$ se $\alpha < -4$, $\frac{3}{2}$ se $\alpha = -4$, 0 se $\alpha > -4$.
- 7. f continua in x = 0 per $\beta > 0$. f discontinua in x = 0 per $\beta \le 0$: x = 0 punto di discontinuità di seconda specie per $\beta = 0$, x = 0 punto di infinito per $\beta < 0$.
- **8.** f derivabile in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

- 1. (a) dom $f = \mathbb{R} \setminus \{-3\}$; non ci sono simmetrie.
 - (b) $\lim_{x\to -\infty} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = +\infty$. $\lim_{x\to -3^{\pm}} f(x) = -\infty$. x=-3 asintoto verticale completo, y=x-12 asintoto obliquo completo. Non ci sono asintoti orizzontali.
 - (c) $f'(x) = \frac{x-3}{(x+3)^3}(x^2 + 12x 9)$; dom f' = dom f.
 - (d) f strettamente crescente in $(-\infty, -3(2+\sqrt{5})) \cup (-3, 3(\sqrt{5}-2)) \cup (3, +\infty)$, f strettamente decrescente in $(-3(2+\sqrt{5}), -3) \cup (3(\sqrt{5}-2), 3)$, $x = -3(2+\sqrt{5})$ e $x = 3(\sqrt{5}-2)$ punti di massimo relativo, x = 3 punto di minimo relativo, non esistono punti di massimo o di minimo assoluti in quanto f è illimitata.
 - (e) Esiste un punto di flesso a tangente obliqua nell'intervallo $(3(\sqrt{5}-2),3)$
- 2. $\sup A = 1, \# \max A, \inf A = \min A = \sqrt[4]{1 \sin(1)}.$

- 3. Il luogo geometrico è il punto z=0 ottenuto come intersezione tra la parabola $6x+y^2=0$ e la coppia di rette y(x-6)=0
- **4.** $z_1 = 0, z_2 = \sqrt[3]{5} \left(\frac{\sqrt{3}}{2} + \frac{i}{2} \right), z_3 = \sqrt[3]{5} \left(-\frac{\sqrt{3}}{2} + \frac{i}{2} \right), z_4 = -\sqrt[3]{5} i.$
- 5. $\frac{7}{\log(\frac{3}{4})}$.
- **6.** $+\infty$ se $\alpha < -6$, $\frac{3}{2}$ se $\alpha = -6$, 0 se $\alpha > -6$.
- 7. f continua in x = 0 per $\beta > 0$. f discontinua in x = 0 per $\beta \le 0$: x = 0 punto di discontinuità di seconda specie per $\beta = 0$, x = 0 punto di infinito per $\beta < 0$.
- **8.** f derivabile in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Fila 3

- 1. (a) dom $f = \mathbb{R} \setminus \{-4\}$; non ci sono simmetrie.
 - (b) $\lim_{x\to -\infty} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = +\infty$. $\lim_{x\to -4^\pm} f(x) = -\infty$. x=-4 asintoto verticale completo, y=x-16 asintoto obliquo completo. Non ci sono asintoti orizzontali.
 - (c) $f'(x) = \frac{x-4}{(x+4)^3}(x^2 + 16x 16)$; dom f' = dom f.
 - (d) f strettamente crescente in $(-\infty, -4(2+\sqrt{5})) \cup (-4, 4(\sqrt{5}-2)) \cup (4, +\infty)$, f strettamente decrescente in $(-4(2+\sqrt{5}), -4) \cup (4(\sqrt{5}-2), 4)$, $x = -4(2+\sqrt{5})$ e $x = 4(\sqrt{5}-2)$ punti di massimo relativo, x = 4 punto di minimo relativo, non esistono punti di massimo o di minimo assoluti in quanto f è illimitata.
 - (e) Esiste un punto di flesso a tangente obliqua nell'intervallo $(4(\sqrt{5}-2),4)$
- **2.** $\sup A = 1, \# \max A, \inf A = \min A = \sqrt[5]{1 \sin(1)}.$
- 3. Il luogo geometrico è il punto z=0 ottenuto come intersezione tra la parabola $5x+y^2=0$ e la coppia di rette y(x-5)=0
- **4.** $z_1 = 0, z_2 = \sqrt[3]{7} \left(\frac{\sqrt{3}}{2} + \frac{i}{2} \right), z_3 = \sqrt[3]{7} \left(-\frac{\sqrt{3}}{2} + \frac{i}{2} \right), z_4 = -\sqrt[3]{7} i.$
- 5. $\frac{10}{\log(\frac{4}{5})}$.
- **6.** $+\infty$ se $\alpha < -8$, $\frac{3}{2}$ se $\alpha = -8$, 0 se $\alpha > -8$.
- 7. f continua in x=0 per $\beta>0$. f discontinua in x=0 per $\beta\leq0$: x=0 punto di discontinuità di seconda specie per $\beta=0, x=0$ punto di infinito per $\beta<0$.
- **8.** f derivabile in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

- 1. (a) dom $f = \mathbb{R} \setminus \{-5\}$; non ci sono simmetrie.
 - (b) $\lim_{x \to -\infty} f(x) = -\infty$, $\lim_{x \to +\infty} f(x) = +\infty$. $\lim_{x \to -5^{\pm}} f(x) = -\infty$. x = -5 asintoto verticale completo, y = x 20 asintoto obliquo completo. Non ci sono asintoti orizzontali.

- (c) $f'(x) = \frac{x-5}{(x+5)^3}(x^2 + 20x 25)$; dom f' = dom f.
- (d) f strettamente crescente in $(-\infty, -5(2+\sqrt{5})) \cup (-5, 5(\sqrt{5}-2)) \cup (5, +\infty)$, f strettamente decrescente in $(-5(2+\sqrt{5}), -5) \cup (5(\sqrt{5}-2), 5)$, $x = -5(2+\sqrt{5})$ e $x = 5(\sqrt{5}-2)$ punti di massimo relativo, x = 5 punto di minimo relativo, non esistono punti di massimo o di minimo assoluti in quanto f è illimitata.
- (e) Esiste un punto di flesso a tangente obliqua nell'intervallo $(5(\sqrt{5}-2),5)$
- **2.** $\sup A = 1, \# \max A, \inf A = \min A = \sqrt[6]{1 \sin(1)}.$
- 3. Il luogo geometrico è il punto z=0 ottenuto come intersezione tra la parabola $4x+y^2=0$ e la coppia di rette y(x-4)=0
- **4.** $z_1 = 0, z_2 = \sqrt[3]{9} \left(\frac{\sqrt{3}}{2} + \frac{i}{2} \right), z_3 = \sqrt[3]{9} \left(-\frac{\sqrt{3}}{2} + \frac{i}{2} \right), z_4 = -\sqrt[3]{9} i.$
- 5. $\frac{13}{\log(\frac{5}{6})}$.
- **6.** $+\infty$ se $\alpha < -10$, $\frac{3}{2}$ se $\alpha = -10$, 0 se $\alpha > -10$.
- 7. f continua in x = 0 per $\beta > 0$. f discontinua in x = 0 per $\beta \le 0$: x = 0 punto di discontinuità di seconda specie per $\beta = 0$, x = 0 punto di infinito per $\beta < 0$.
- 8. f derivabile in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

- 1. (a) dom $f = \mathbb{R} \setminus \{-6\}$; non ci sono simmetrie.
 - (b) $\lim_{x\to -\infty} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = +\infty$. $\lim_{x\to -6^\pm} f(x) = -\infty$. x=-6 asintoto verticale completo, y=x-24 asintoto obliquo completo. Non ci sono asintoti orizzontali.
 - (c) $f'(x) = \frac{x-6}{(x+6)^3}(x^2 + 24x 36)$; dom f' = dom f.
 - (d) f strettamente crescente in $(-\infty, -6(2+\sqrt{5})) \cup (-6, 6(\sqrt{5}-2)) \cup (6, +\infty)$, f strettamente decrescente in $(-6(2+\sqrt{5}), -6) \cup (6(\sqrt{5}-2), 6)$, $x = -6(2+\sqrt{5})$ e $x = 6(\sqrt{5}-2)$ punti di massimo relativo, x = 6 punto di minimo relativo, non esistono punti di massimo o di minimo assoluti in quanto f è illimitata.
 - (e) Esiste un punto di flesso a tangente obliqua nell'intervallo $(6(\sqrt{5}-2),6)$
- **2.** $\sup A = 1, \# \max A, \inf A = \min A = \sqrt[7]{1 \sin(1)}.$
- 3. Il luogo geometrico è il punto z=0 ottenuto come intersezione tra la parabola $3x+y^2=0$ e la coppia di rette y(x-3)=0
- **4.** $z_1 = 0$, $z_2 = \sqrt[3]{11} \left(\frac{\sqrt{3}}{2} + \frac{i}{2} \right)$, $z_3 = \sqrt[3]{11} \left(-\frac{\sqrt{3}}{2} + \frac{i}{2} \right)$, $z_4 = -\sqrt[3]{11} i$.
- 5. $\frac{16}{\log(\frac{6}{7})}$.
- **6.** $+\infty$ se $\alpha < -12$, $\frac{3}{2}$ se $\alpha = -12$, 0 se $\alpha > -12$.
- 7. f continua in x=0 per $\beta>0$. f discontinua in x=0 per $\beta\leq0$: x=0 punto di discontinuità di seconda specie per $\beta=0$, x=0 punto di infinito per $\beta<0$.

8. f derivabile in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

- 1. (a) dom $f = \mathbb{R} \setminus \{-7\}$; non ci sono simmetrie.
 - (b) $\lim_{x\to -\infty} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = +\infty$. $\lim_{x\to -7^\pm} f(x) = -\infty$. x=-7 asintoto verticale completo, y=x-28 asintoto obliquo completo. Non ci sono asintoti orizzontali.
 - (c) $f'(x) = \frac{x-7}{(x+7)^3}(x^2 + 28x 49)$; dom f' = dom f.
 - (d) f strettamente crescente in $(-\infty, -7(2+\sqrt{5})) \cup (-7, 7(\sqrt{5}-2)) \cup (7, +\infty)$, f strettamente decrescente in $(-7(2+\sqrt{5}), -7) \cup (7(\sqrt{5}-2), 7)$, $x = -7(2+\sqrt{5})$ e $x = 7(\sqrt{5}-2)$ punti di massimo relativo, x = 7 punto di minimo relativo, non esistono punti di massimo o di minimo assoluti in quanto f è illimitata.
 - (e) Esiste un punto di flesso a tangente obliqua nell'intervallo $(7(\sqrt{5}-2),7)$
- **2.** $\sup A = 1, \# \max A, \inf A = \min A = \sqrt[8]{1 \sin(1)}$
- 3. Il luogo geometrico è il punto z=0 ottenuto come intersezione tra la parabola $2x+y^2=0$ e la coppia di rette y(x-2)=0
- **4.** $z_1 = 0, z_2 = \sqrt[3]{13} \left(\frac{\sqrt{3}}{2} + \frac{i}{2} \right), z_3 = \sqrt[3]{13} \left(-\frac{\sqrt{3}}{2} + \frac{i}{2} \right), z_4 = -\sqrt[3]{13} i.$
- 5. $\frac{19}{\log\left(\frac{7}{8}\right)}$.
- **6.** $+\infty$ se $\alpha < -14$, $\frac{3}{2}$ se $\alpha = -14$, 0 se $\alpha > -14$.
- 7. f continua in x = 0 per $\beta > 0$. f discontinua in x = 0 per $\beta \le 0$: x = 0 punto di discontinuità di seconda specie per $\beta = 0$, x = 0 punto di infinito per $\beta < 0$.
- 8. f derivabile in $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.