Analisi Matematica A	9 gennaio 2006	FOGLIO A

Cognome e nome	Firma

Corso di Laurea: \Diamond CIVL; \Diamond AMBL. Matricola

Istruzioni. 1. COMPILARE la parte precedente queste istruzioni, in particolare, scrivere cognome e nome (in stampatello), firmare, segnare il proprio corso di laurea ed il proprio numero di matricola.

- 2. SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
- 3. I PUNTEGGI attribuiti per la risposta esatta sono indicati alla fine di ogni quesito.
- 4. PROIBITO usare libri, quaderni, calcolatori, telefoni cellulari.
- 5. CONSEGNARE questo foglio e tutti i fogli di protocollo.
- 6. TENERE il foglio B come promemoria delle risposte date.
- 7. TEMPO a disposizione: 150 min.

1. Determinare $\inf A$, $\sup A$ ed eventualmente $\min A$, $\max A$, essendo A	$A = \left\{ (-1)^n e^{\frac{n+1}{n}}, \ n \in \mathbf{Z}^+ \right\}.$
---	--

Risposta [punti 3]:

2. Calcolare in **C** tutte le soluzioni della seguente equazione
$$(z^2 + 2iz + 3)(z - 1 + 7i)^2 = 0$$
.

Risposta [punti 3]:

3. Determinare il luogo geometrico degli
$$z \in \mathbb{C}$$
 tali che $z^2(\overline{z}+7) - 7z(z+1) = 0$.

......

Risposta [punti 3]:

4. Calcolare il limite della successione

$$\lim_{n \to +\infty} \frac{\log 3^n - \log 2^n}{\sqrt{2n^2 + 2n} - \sqrt{n^2 + 7n}}$$

Risposta [punti 3]:

5. Calcolare il limite della successione

$$\lim_{n \to +\infty} \frac{n^{\alpha} \sin(n^{-2}) + \frac{\sin(n^{\alpha})}{e^{n}}}{\log(n+1) - \log n}$$

al variare di $\alpha \in \mathbf{R}^+$.

Risposta [punti 3]:

6.	Sia f la funzione reale di variabile reale de	finita da	
		$\int (x+1)^2$	se $x \le -1$
	$f(x) = \langle$	$(x+1)\log^2(x+1)$	se $-1 < x < 2$
		$\begin{cases} (x+1)^2\\ (x+1)\log^2(x+1)\\ \frac{1}{x} \end{cases}$	se $x \ge 2$.
	Determinare il dominio di f ed eventuali si Risposta: (punti 1)		
	Determinare eventuali asintoti per f e clas Risposta: (punti 1)	sificarli.	
	Discutere la continuità di f sul suo domini Risposta: (punti 3)	o.	
	Calcolare la funzione derivata prima di f e Risposta: (punti 2)	e discutere la presenz	a di eventuali punti di non derivabilità.
mas	Studiare la crescenza e decrescenza di f , ca simo/minimo assoluto per f . Risposta:(punti 3)	ulcolando, qualora esi	stano, punti di massimo/minimo relativo e punti di
	Calcolare la funzione derivata seconda di ti di flesso per f . Risposta: (punti 2)	f e studiare la conc	avità e la convessità di f , calcolando gli eventuali
7.	Calcolare il limite	$\lim_{x \to 0} \frac{(\cosh^2 x - 1) \tan x}{\sin(3x) - 3x + \sin x}$	$\frac{\tan(3x)}{\sinh(x^4)}$
	Risposta [punti 3]:		

Analisi Matematica A	9 gennaio 2006	FOGLIO A
Anansi Matematica A	9 gennaio 2000	FUGLIU A

~	
Cognome e nome	Firma

Corso di Laurea: \Diamond CIVL; \Diamond AMBL. Matricola

Istruzioni. 1. COMPILARE la parte precedente queste istruzioni, in particolare, scrivere cognome e nome (in stampatello), firmare, segnare il proprio corso di laurea ed il proprio numero di matricola.

- 2. SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
- 3. I PUNTEGGI attribuiti per la risposta esatta sono indicati alla fine di ogni quesito.
- 4. PROIBITO usare libri, quaderni, calcolatori, telefoni cellulari.
- 5. CONSEGNARE questo foglio e tutti i fogli di protocollo.
- 6. TENERE il foglio B come promemoria delle risposte date.
- 7. TEMPO a disposizione: 150 min.

1. Determinare inf A, sup A ed eventualmente min A, max A, essendo $A = \{(-1)\}$	$n^n e^{1+\frac{3}{n}}, \ n \in \mathbf{Z}^+$.
---	---

Risposta [punti 3]:

2. Calcolare in **C** tutte le soluzioni della seguente equazione $(z^2 + 2iz + 15)(z - 2 + 6i)^2 = 0$.

Risposta [punti 3]:

3. Determinare il luogo geometrico degli
$$z \in \mathbb{C}$$
 tali che $z^2(\overline{z}+6) - 6z(z+1) = 0$.

Risposta [punti 3]:

4. Calcolare il limite della successione

$$\lim_{n \to +\infty} \frac{\sqrt{3n^2 + 3n} - \sqrt{2n^2 + 6n}}{\log 4^n - \log 3^n}.$$

......

Risposta [punti 3]:

5. Calcolare il limite della successione

$$\lim_{n \to +\infty} \frac{n^{\alpha} \sin(n^{-2}) + \frac{\sin(n^{\alpha})}{e^n}}{\log(n+2) - \log n}$$

al variare di $\alpha \in \mathbf{R}^+$.

Risposta [punti 3]:

6. Sia f la funzione reale di variabi	le reale definita da		
	$\int x+2$	se $x \leq -2$	
	$f(x) = \begin{cases} x+2\\ (x+2)\log^2(x+2)\\ -\arctan x \end{cases}$) se $-2 < x < 0$	
	$-\arctan x$	se $x \ge 0$.	
Determinare il dominio di f ed ϵ Risposta: (punti 1)	eventuali simmetrie.		
Determinare eventuali asintoti p Risposta:(punti 1)	er f e classificarli.		
Discutere la continuità di f sul s Risposta: (punti 3)	suo dominio.		
Calcolare la funzione derivata pr Risposta:(punti 2)	ima di f e discutere la preser	nza di eventuali punti di non derivabilità.	
Studiare la crescenza e decrescen massimo/minimo assoluto per f . Risposta:(punti 3)	$egin{array}{llllllllllllllllllllllllllllllllllll$	sistano, punti di massimo/minimo relativo e pu	inti di
Calcolare la funzione derivata se punti di flesso per f . Risposta: (punti 2)	econda di f e studiare la cor		 ntuali
7. Calcolare il limite	$\lim_{x \to 0} \frac{5x - \sinh(5x)}{(\cos^2 x - 1)}$	$+\tan(x^4) \over \sin(5x)$	
Risposta [punti 3]:	· · · · · · · · · · · · · · · · · · ·		

Analisi Matematica A	9 gennaio 2006	FOGLIO A
Anansi Matematica A	9 gennaio 2000	FUGLIU A

Corso di Laurea: \Diamond CIVL; \Diamond AMBL. Matricola

Istruzioni. 1. COMPILARE la parte precedente queste istruzioni, in particolare, scrivere cognome e nome (in stampatello), firmare, segnare il proprio corso di laurea ed il proprio numero di matricola.

- 2. SCRIVERE, in modo incontrovertibile, la risposta nello spazio lasciato dopo ogni quesito; in caso di correzione, barrare la risposta errata e scrivere accanto la nuova risposta.
- 3. I PUNTEGGI attribuiti per la risposta esatta sono indicati alla fine di ogni quesito.
- 4. PROIBITO usare libri, quaderni, calcolatori, telefoni cellulari.
- 5. CONSEGNARE questo foglio e tutti i fogli di protocollo.
- 6. TENERE il foglio B come promemoria delle risposte date.
- 7. TEMPO a disposizione: 150 min.

1.	Determinare $\inf A$, $\sup A$ ed eventualmente $\min A$, $\max A$, essendo	$A = \left\{ (-1)^n e^{\frac{n+5}{n}}, \ n \in \mathbf{Z}^+ \right\}.$
----	--	--

Risposta [punti 3]:

2. Calcolare in C tutte le soluzioni della seguente equazione $(z^2 + 2iz + 35)(z - 3 + 5i)^2 = 0$.

Risposta [punti 3]:

3. Determinare il luogo geometrico degli $z \in \mathbb{C}$ tali che $z^2(\overline{z}+5) - 5z(z+1) = 0$.

Risposta [punti 3]:

4. Calcolare il limite della successione

$$\lim_{n \to +\infty} \frac{\log 5^n - \log 4^n}{\sqrt{2n^2 + 4n} - \sqrt{n^2 + 5n}}$$

Risposta [punti 3]:

5. Calcolare il limite della successione

$$\lim_{n \to +\infty} \frac{n^{\alpha} \sin(n^{-2}) + \frac{\sin(n^{\alpha})}{e^{n}}}{\log(n+3) - \log n}$$

al variare di $\alpha \in \mathbf{R}^+$.

Risposta [punti 3]:

6.	Sia f la funzione reale di variabile n	reale defi	nita da		
				se $x \le -3$	
	f	$f(x) = \begin{cases} 1 & \text{if } x \in \mathbb{R}^n \\ 1 & \text{if } x \in \mathbb{R}^n \end{cases}$	$(x+3)\log^2(x+3)$	se $-3 < x < 0$	
	,		$-(x+3)$ $(x+3)\log^2(x+3)$ $\frac{1}{x+1}$	se $x \ge 0$.	
	Determinare il dominio di f ed even Risposta: (punti 1)				
	-				
	Determinare eventuali asintoti per Risposta:(punti 1)	f e classi	ficarli.		
	Discutere la continuità di f sul suo Risposta: (punti 3)	dominio			
	Calcolare la funzione derivata prima Risposta:(punti 2)	a di f e d	discutere la presenza	a di eventuali punti di non deri	vabilità.
mas	Studiare la crescenza e decrescenza simo/minimo assoluto per f . Risposta:(punti 3)	di f , calc	colando, qualora esis	tano, punti di massimo/minim	o relativo e punti di
····	Calcolare la funzione derivata seco ti di flesso per f . Risposta: (punti 2)	\dots onda di f	e studiare la conca	avità e la convessità di f , calc	olando gli eventuali
7.	Calcolare il limite	$\frac{1}{x}$	$\lim_{x \to 0} \frac{(\cosh^2 x - 1) \tan x}{\sin(7x) - 7x + \sin x}$	$\frac{\ln(7x)}{\sinh(x^4)}$	
	Risposta [punti 3]:				