Criterio del rapporto

Sia a_n una successione e sia $\overline{n} \in \mathbb{N}$ t.c. $a_n > 0$ per ogni $n \geq \overline{n}$.

Sia
$$q=\lim_{n\to\infty}\frac{a_{n+1}}{a_n}.$$

Se $q<1$ allora $\lim_{n\to\infty}a_n=0,$

se
$$q>1$$
 allora $\lim_{n\to\infty}a_n=+\infty$,

se q=1 allora non posso concludere nulla.

Esercizi

$$\lim_{n \to \infty} \sqrt[n]{n}$$

$$\lim_{n \to \infty} \sqrt[n]{2^n + 3^n}$$

$$\lim_{n \to \infty} \frac{n^n}{n!}$$

$$\lim_{n \to \infty} \frac{n^n}{n!}$$

$$\lim_{n \to \infty} \frac{n^{n}}{n!}$$

$$\lim_{n \to \infty} \frac{n^{2n}}{2n^{-2} \cdot \log(n+7)}$$

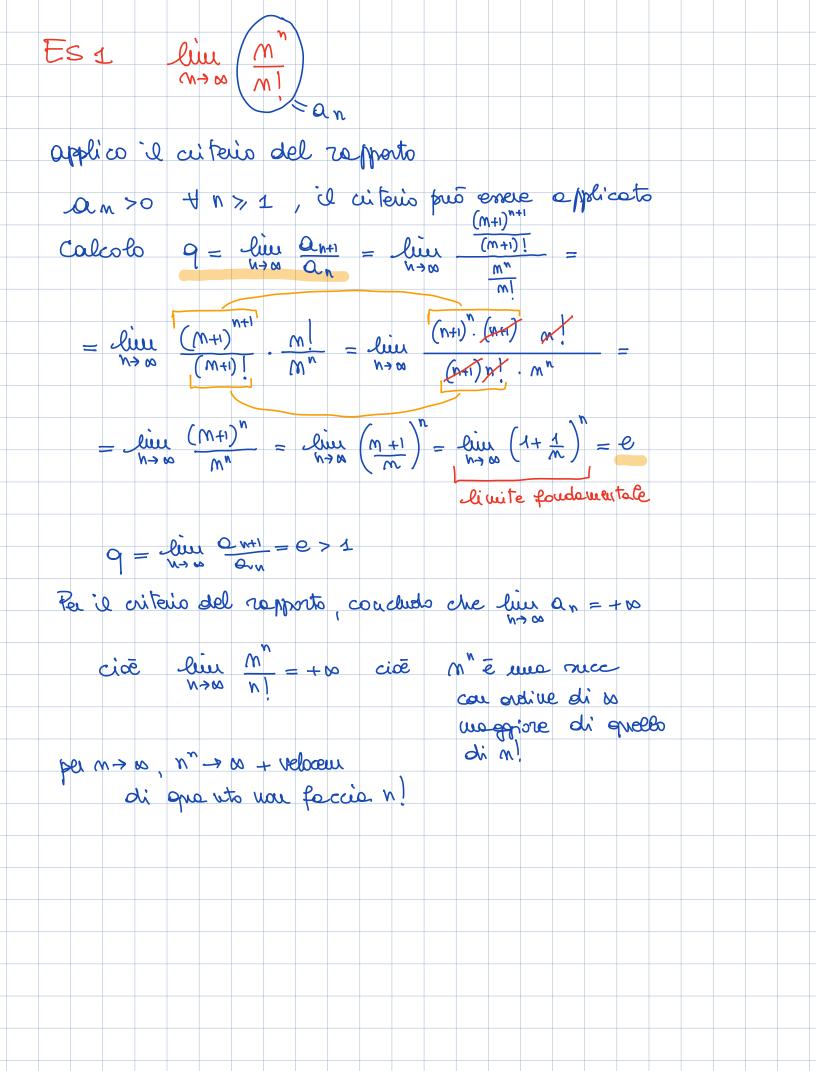
$$\lim_{n \to \infty} \frac{n^{2n}}{(2n)!}$$

$$\lim_{n\to\infty} \frac{3^{n-1}}{n^3}$$

$$\lim_{n\to\infty} \frac{n^n}{n!}$$

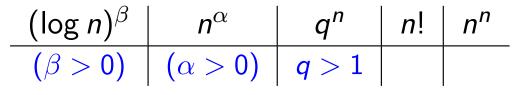
$$\lim_{n\to\infty}\frac{n^{2n}}{(2n)!}$$

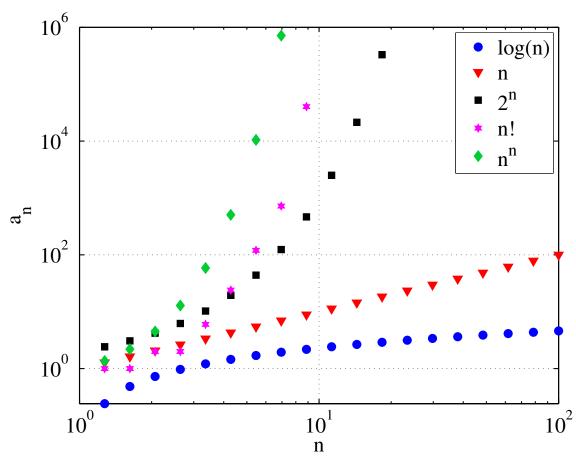
 M^{N} , M, 9^{N}

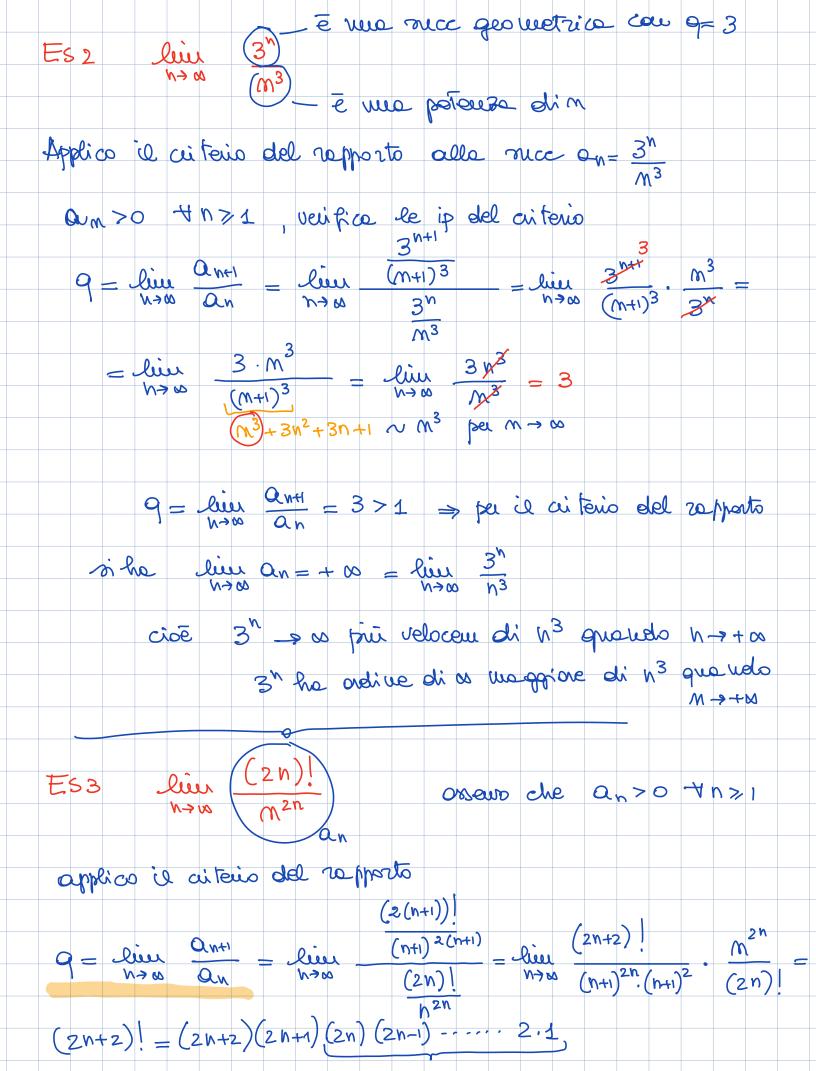


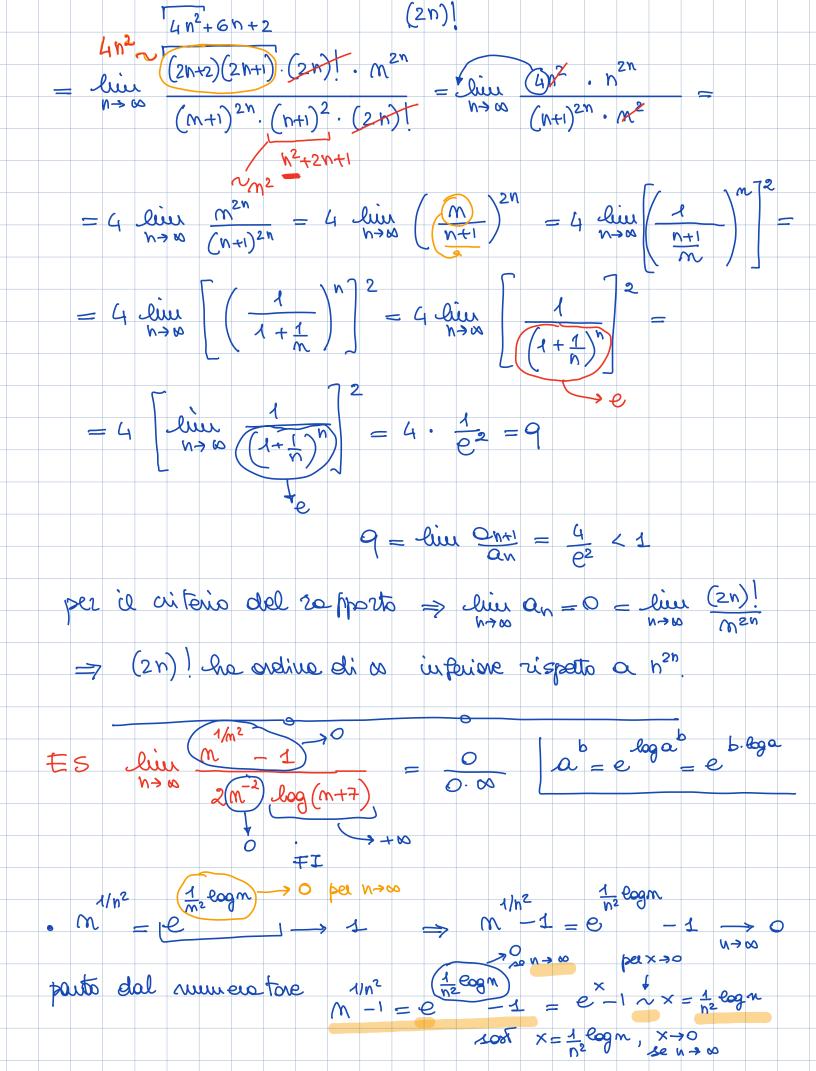
Confronto riassuntivo sugli ordini di infinito

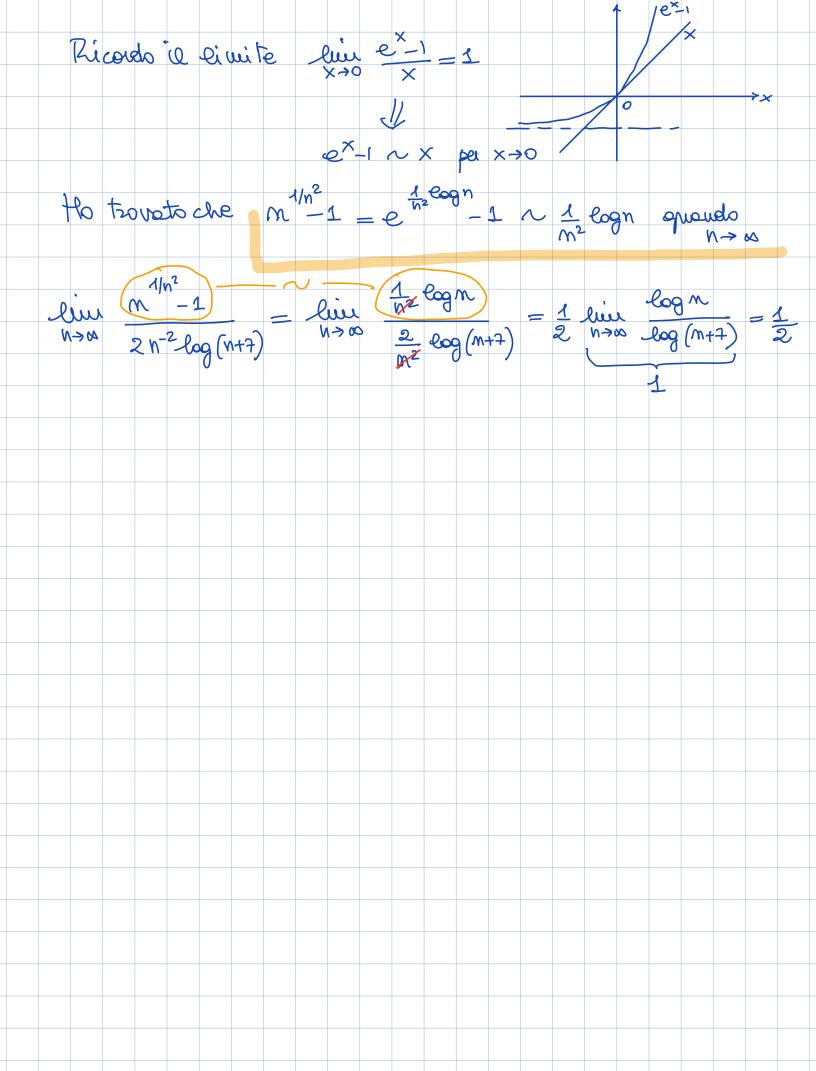
Le seguenti successioni sono ordinate, in ordine crescente, da sinistra a destra riguardo al loro ordine di infinito.











Ordini di infinitesimo

 $\lim_{n \to \infty} \frac{a_n}{b_n} = \frac{0}{0}$

Siano a_n e b_n due successioni infinitesime.

1. Se $\lim_{n\to\infty}\frac{a_n}{b_n}=0$ diciamo che a_n ha ordine di infinitesimo maggiore di quello di b_n .

Esempio: $\lim_{n\to\infty} \frac{2^{-n}}{1/n} = 0$,

2. Se $\lim_{n\to\infty}\frac{a_n}{b_n}=\ell\in\mathbb{R},\ \ell\neq 0$ diciamo che a_n e b_n hanno lo stesso ordine di infinitesimo e scriviamo $a_n \sim \ell b_n$ per $n \to \infty$

Esempio: $\lim_{n\to\infty} \frac{\sin(1/n)}{1/n} = \lim_{x\to 0} \frac{\sin(x)}{x} = 1$ $\lim_{x\to 0} \frac{\sin x}{x} = 1$

3. Se $\lim_{n\to\infty} \frac{a_n}{b_n} = \infty$ diciamo che a_n ha ordine di infinitesimo minore di quello di b_n .

Esempio: $\lim_{n\to\infty} \frac{\sin(1/n)}{1/n^2} = \infty$

