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Abstract

A Chebyshev optimization approach can be employed
effectively for the determination of the (reference) com-
mand input to be applied to a feedback PID control system
in order to achieve a minimum-time output transition sub-
ject to constraints on both the control variable and the sys-
tem output. The resulting command input function is given
in polynomial form, for which a practical implementation
can be difficult. In this paper we propose a method for
the determination of a stable low-order filter whose step
response approximates the open-loop command signal so
that a standard two degree-of-freedom controller results.
Simulation examples show that the technique is effective
and yields a stable transfer function which can be easily
implemented into a DCS control system.

1 Introduction

It is well-known that Proportional–Integral–Derivative
(PID) controllers are the most widely adopted controllers
in industry owing to the advantageous cost/benefit ratio
they are able to provide. In order to help the operator to
select the controller gains to address given control speci-
fications, many tuning formulas have been devised in the
past [9] and autotuning functionalities are almost always
available in commercial products [2, 7].
In any case, the typical problem that has to be tackled
in finding the controller parameters is addressing the set-
point following and the load disturbance rejection perfor-
mance at the same time. In this context, the use of a two
degree-of-freedom controller is an effective solution and
the use of the well-known set-point weighting strategy [1]
falls in this framework. In general, the two degree-of-
freedom control strategy consists in tuning the feedback
PID controller in order to achieve a satisfactory load dis-
turbance rejection performance and then implementing a
feedforward controller to recover the set-point following
performance. In this context, many methodologies have
been devised for the design of the feedforward controller

[5, 6, 14]. In particular, a methodology for the determina-
tion of minimum-time feedforward control to be applied
to a PID control loop where both actuator limits as well
as constraints on the maximum overshoot and undershoot
are taken into account has been proposed in [11]. In other
words, the command input to be applied to the closed-loop
system is determined in order to provide a minimum-time
rest-to-rest transition from an equilibrium state to another
(corresponding to a process output transition from a set-
point value to another) subject to minimum and maximum
constraints for the manipulated variable as well as for the
process output.
A Chebyshev approach is employed for this purpose [4]-
[15], namely, the state variables and the control variable
are parameterized by Chebyshev series. In this way the
system dynamics is transformed into a system of algebraic
equations and therefore the minimum-time control prob-
lem is reduced into a constrained optimization problem.
However, the determined command signal is in polyno-
mial form and therefore its implementation in a practical
context, namely, by means of a Distributed Control Sys-
tems (DCS) can be difficult. Thus, we propose a technique
for the design of a (stable and low-order) filter whose
response to a step signal approximates a polynomial in-
put command and can therefore be implemented easily
with standard DCS blocks (for example, lead/lag or lag
blocks). In particular, the input function is rewritten into a
monomial form and it is compared by the monomial gen-
erated by the Chebyshev approximation of the Laplace in-
verse transform of a rational stable transfer function with
a given number of real poles and zeros.
It is worth noting that applying the standard inverse
Laplace transform operator to the polynomial function ob-
tained from the Chebyshev optimization is not a viable so-
lution because the resulting filter is a high-order integrator
and it is therefore unstable (this fact also prevents from the
application of model-order reduction techniques such as,
for example, balanced truncation (see [3, 13]).
The paper is organised as follows. In Section 2 we re-
view the Chebyshev approach for the determination of the
command function to be applied to the closed-loop sys-
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Figure 1. The control scheme for the Cheby-
shev approach.

tem in order to minimise the output transition time subject
to constraints both on the manipulated and on the process
variable. In Section 3 we present the methodology for the
determination of the filter whose step response approxi-
mates the command input. Practical issues are addressed
in Section 4. Illustrative examples are shown in Section 5
whereas conclusions are drawn in Section 6.

2 Chebyshev technique for minimum-time
process variable transition

In this section we briefly review the Chebyshev ap-
proach for the determination of the command signal r(t)
that provides a minimum-time process variable transition
subject to constraints on both the manipulated and the pro-
cess variable. Details can be found in [11].

2.1 Problem formulation
We consider the unity-feedback control loop shown

in Fig.1, where the process to be controlled (assumed to
be self-regulating) is modelled as a first-order-plus-dead-
time (FOPDT) transfer function

P (s) =
K

Ts + 1
e−Ls (1)

where the dead time is approximated by a first-order Padè
approximation, i.e. we consider:

P̃ (s) =
K

Ts + 1

−L
2 s + 1

L
2 s + 1

. (2)

This is a typical choice in industrial practice, since this
model can describe well the dynamics of many industrial
processes. The feedback controller is of (output-filtered)
PID type, whose transfer function is:

C(s) = Kp

(
1 +

1

Tis
+ Tds

)
1

Tfs + 1
(3)

where Kp is the proportional gain, Ti is the integral time
constant, Td is the derivative time constant and Tf is the
time constant of a first-order filter that makes the transfer
function proper. The value of Tf can be selected, once the
other parameters are determined, such that the filter dy-
namics does not influence the dynamics of the PID con-
troller and the effects of the measurement noise are re-
duced as much as possible.

An approach based on Chebyshev polynomials can be em-
ployed for a command signal generator in order to de-
termine the signal r(t), to be applied to the closed-loop
system when a transition from an equilibrium point cor-
responding to a process output value y0 to another equi-
librium point corresponding to a process output value y1

is required. In particular, a minimum-time (rest-to-rest)
transition is required subject to given limits on the con-
trol variable and on the process variable. In the following,
without loss of generality, we consider y0 = 0 and y1 = 1.
The considered time-optimal feedforward constrained
control problem can be therefore expressed as follows:

min
r(t)

tf (4)

subject to:

dx(t)
dt

= Ax(t) + br(t) 0 ≤ t ≤ tf
y(t) = cx(t)

(5)

x(0) = x0 x(tf ) = xf (6)

umin ≤ u(t) ≤ umax 0 ≤ t ≤ tf (7)

ymin ≤ y(t) ≤ ymax 0 ≤ t ≤ tf (8)

where (A,b, c) is minimal state-space realization of the
closed-loop system dynamics

H(s) :=
C(s)P̃ (s)

1 + C(s)P̃ (s)
, (9)

x0 and xf are the initial and final conditions associated
to the output value y0 and y1 respectively, and umin,
umax and ymin, ymax are evidently the constraints for the
control variable and the process variable respectively.

2.2 Optimization based on Chebyshev polynomials
The Chebyshev polynomials of the first kind are a set of

orthogonal polynomials defined as the eigenfunctions of a
singular Sturm-Liouville problem [12] and denoted T̄i(τ).
They are normalized such that T̄i(1) = 1, i = 0, 1, . . . and
in their trigonometric form they are expressed as:

T̄i(τ) = cos(i · arccos(τ)) τ ∈ [−1, 1]. (10)

They can be also defined by the recurrence relation:

T̄0(τ) = 1
T̄1(τ) = τ
T̄i+1(τ) = 2τ T̄i(τ) − T̄i−1(τ) i > 1.

(11)

The methodology based on the Chebyshev polynomials
consists in first applying the following time transforma-
tion:

t = t(τ) =
tf
2

(1 + τ), (12)

which allows a change from the time domain t ∈ [0, tf ]
to the reference domain τ ∈ [−1, 1]. Then, the state of
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the system x and the command input r can be approxi-
mated by a truncated Chebyshev series of order h, and,
by applying the properties of the Chebyshev polynomi-
als, the minimum-time control problem is converted into a
constrained optimization problem that can be solved with
standard optimization tools [11]. Eventually, the signal
r(t) = r(t(τ)) = r̃(τ) that minimises the transition time
is approximated by

r̃h(τ) =
h∑

i=0

βiT̄i(τ) (13)

where β := (β0, β1, . . . , βh) are coefficients found by the
optimization procedure. Note that this signal can be ex-
pressed simply in the time domain variable t by inverting
formula (12), namely by applying the expression

τ = τ(t) =
2t

tf
− 1. (14)

Indeed, the determined command function rh(t) = r̃h(τ)
has to be applied in the time interval t ∈ [0, tf ], after
which the steady-state value 1/H(0) has to be selected.
Summarising, the command signal that has to be applied
to the closed-loop system in order to attain the minimum-
time process variable transition is:

r(t) =

{
rh(t) for 0 ≤ t ≤ tf
1/H(0) for t > tf

(15)

3 Determination of filter transfer function

The purpose of the method described in this paper is
to find a transfer function of a filter F such that its step
response approximates the determined command signal
rh(t), in order to implement the devised technique by
means of a standard two degree-of-freedom controller (see
Fig.2). It is worth stressing at this point that F (s) cannot
be found by simply applying the inverse Laplace trans-
form operator to rh(t) because this would yield an un-
stable transfer function with h poles at the origin of the
complex plane.

3.1 Expression of the step response with truncated
Chebyshev series

For the purpose of finding a (low-order) asymptotically
stable transfer function, it is convenient to consider again
the reference domain τ ∈ [−1, 1] and to rewrite the com-
mand function r̃h(τ) in monomial form as follows:

r̃h(τ) = [ξ0, ξ1, . . . , ξh]

⎡
⎢⎢⎢⎣

τ0

τ1

...
τh

⎤
⎥⎥⎥⎦ . (16)

The vector
Ξ := [ξ0, ξ1, . . . , ξh] (17)

can be expressed as

Ξ = (ΓβT )T (18)

where

Γ =

⎡
⎢⎢⎢⎢⎢⎣

1 0 γ1,3 · · · γ1,h+1

0 1 γ2,3 · · · γ2,h+1

0 0 γ3,3 · · · γ3,h+1

...
...

...
. . .

...
0 0 γh+1,3 · · · γh+1,h+1

⎤
⎥⎥⎥⎥⎥⎦

(19)

and where each column γi =
[γ1,i, γ2,i, · · · , γh+1,i, ]

T
(i = 1, · · · , h + 1) can be

recursively evaluated by means of the relation

γi = 2γ̄i − γi−2 (20)

with

γ̄i = [0, γ1,i−1, γ2,i−1, · · · , γh,i−1]
T

i = 3, · · · , h+1.
(21)

Then, we consider a filter transfer function which contains
only real poles and zeros, namely,

F (s) = k

∏m

j=1(s − zj)∏n

j=1(s − pj)
, n ≥ m. (22)

Since all poles and zeros are real, the Laplace transform
Rs(s) of the response rs(t) of the filter F (s) to a step
signal of amplitude y1 = 1, after having applied a partial
fraction expansion, can be written as

Rs(s) =
1

s
F (s) =

a0

s
+

n∑
j=1

aj

s − pj

. (23)

where the vector of coefficients a = [a0, a1, · · · , an],
which depends on the filter parameters

v = (k, p1 . . . pm, z1 . . . zn) , (24)

can be easily computed by solving a linear system.
The inverse Laplace transform of (23) can be computed as

rs(t) = L−1
{

a0

s
+

∑n

j=1
aj

s−pj

}
= a0 +

∑n

j=1 aje
pjt

(25)

At this point, it is convenient to rewrite the step response
(25) into the reference domain by applying (12) and this
yields

rs(t) = rs(t(τ)) = r̃s(τ) = a0 +
∑n

j=1 aje
pj(

tf
2

(1+τ))

= a0 +
∑n

j=1 bje
pj

tf
2

τ

(26)
where

bj = aje
pj

tf
2 , j = 1, . . . , n. (27)

By approximating the exponential terms of (26) by means
of truncated Chebyshev series we obtain:

r̃s(τ) � r̃s,h(τ) = a0 +

n∑
j=1

bj

h∑
i=0

ψjiT̄i(τ) (28)
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where the coefficients ψj = (ψj1, ψj2, · · · , ψjh) are the
coefficients of the h-degree Chebyshev projection poly-
nomials which fits the exponential response generated by
pole j. Chebyshev projection is performed as follows:

ψjk =
2

πck

h∑
i=0

epj

tf
2

τi T̄k(τi)wi , (29)

where

ck =

{
2 k = 0, h
1 k = 1, . . . , h − 1

(30)

and τi and wi are the Chebyshev Gauss-Lobatto nodes and
weights, respectively, i.e. [12]:

τi = cos
πi

h
, i = 0, . . . , h (31)

wi =

⎧⎨
⎩

π
2h

i = 0, h

π
h

i = 1, . . . , h − 1
(32)

By applying a similar reasoning as in (16), the step re-
sponse (28) can be written in monomial form as

r̃s,h(τ) = a0 +
∑n

j=1 bj

(
ΓψT

ji

)T
τ j

= [ω0 + a0, ω1, · · · , ωh]

⎡
⎢⎢⎢⎣

τ0

τ1

...
τh

⎤
⎥⎥⎥⎦

(33)

where the coefficients (ω0, ω1, · · · , ωh) can be computed
as

ωi =

⎛
⎝ n∑

j=1

bjψij

⎞
⎠Γ

T , i = 1, . . . , h , (34)

and they depend on v.

3.2 Optimization
The polynomial r̃s,h(τ) depends on the choice of poles,

zeros and of the gain k of the filter (22), i.e., r̃s,h(τ) =
r̃s,h(τ ;v). An optimization algorithm has been devised
in order to find the vector v (see (24)) such as r̃s,h(τ ;v)
is the best approximation of r̃h(τ) with respect to a suit-
able norm. Formally, the optimization problem can be ex-
pressed as follows:

min
v∈Rn+m+1

‖r̃h − r̃s,h‖ (35)

We set

Ω =

⎡
⎢⎢⎢⎣

ω0 + a0

ω1

...
ωh

⎤
⎥⎥⎥⎦ ∈ R

h (36)

and

‖α‖w :=

⎛
⎝ h∑

j=0

α2
j

j!

⎞
⎠

1
2

∀α ∈ R
h (37)

A viable way to solve (35) is to consider the following
performance index J(v):

J(v) = ‖Ξ − Ω‖
2
w

= (ξ0 − (ω0 + a0))
2

+
∑h

j=1
(ξj−ωj)

2

j!

(38)

where the factorial used in the denominator penalises
high-order coefficients which can be very different (caus-
ing high values of J(v)) but they have a negligible effect
on the shape of polynomial r̃s,h(τ ;v).
Eventually, the optimization problem can be posed as:

min
v∈Rn+m+1

J(v) (39)

subject to the inequality constraints

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−∞
−∞

...
−∞
−∞

...
−∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

k
p1

...
pm

z1

...
zn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

<

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

+∞
0
...
0

+∞
...

+∞

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(40)

and to the equality constraint

k

∏m

j=1 zj∏n

j=1 pj

− μ = 0 (41)

where μ is the gain of the filter which corresponds to the
value of the polynomial rh(τ) evaluated for τ = 1.
Optimization problem (39)-(41) can be solved using a se-
quential quadratic programming (SPQ) method, such as
the one implemented in the function “fmincon” of Mat-
lab [8]. Initial conditions are selected so that one pole
is equal to −5/tf (namely, it corresponds to a first-order
system whose settling time is tf ) and then the other poles
are slower. The zeros are selected so that one (negative)
zero is closer to the imaginary axis than the poles (so that
an overshoot is allowed) and another zero is positive (to
address the presence of an apparent dead time in the re-
sponse). Note that other (global) optimization methods,
such as genetic algorithms, could be also effectively ap-
plied.
Remark 1. It is evident that the devised method can be em-
ployed with any polynomial signal, namely, in a context
which is different than its application to a PID feedback
control loop. Here we address this specific case because
of its relevance in the industrial process control context.

4 Practical considerations

While practical considerations related to the Cheby-
shev optimization are addressed in [11], here we discuss
the technique for the determination of the feedforward fil-
ter transfer function. The effectiveness of the proposed
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Figure 2. Standard two degree-of-freedom
control scheme.

methodology depends on the shape of the polynomial sig-
nal rh(τ) to be approximated. Indeed, the more regu-
lar and smooth is the signal, the higher will be the ac-
curacy of the approximation provided by the (low-order)
filter F (s) determined by means of the optimization pro-
cedure described in the previous section. In fact the solu-
tion of the time-optimal control problem represents a gen-
eralized bang-bang, namely, the time-optimal control is
characterized by the fact that either the manipulated input
or the controlled process output saturates during the tran-
sient [10]. Thus, in case of a sluggish tuning of the PID
controller, the command signal will assume bigger values
trying to set the control and controlled variables on their
limit values. On the contrary, an aggressive tuning of the
controller implies that a smooth command signal, which
is easier to approximate as a step response, results. In any
case, as already mentioned, the standard design strategy
for a two degree-of-freedom control scheme is to tune the
feedback controller aggressively in order to obtain a better
performance in the load disturbance rejection task and to
recover the set-point tracking performance by smoothing
the set-point step signal. Thus, the overall methodology is
well suited for a two degree-of-freedom control scheme,
providing a minimum-time response by taking into ac-
count process input and output constraints.
Further, it is worth stressing that the higher is the number
of poles n and zeros m of F (s), the higher is the accu-
racy of the methodology, and the higher is the order h of
the polynomial rh(τ), the better will be the approximation
since the order h affects the number of points where the
performance index (38) is evaluated. On the other hand,
increasing n, m, and h increases the complexity of the op-
timization problem and of the implementation of the filter.

5 Illustrative Results

5.1 Example 1
With the aim of showing the effectiveness of the pro-

posed method we consider the following FOPDT system

P (s) =
1

5s + 1
e−s (42)

A process output transition from y0 = 0 to y1 = 1 is
required. The constraints for the control variable are se-
lected as umin = 0 and umax = 1.8, while those on
the process variable are selected as ymin = −0.01 and
ymax = 1.01.
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Figure 3. Minimum-time polynomial trajec-
tory (dashed-line) and step response of the
fourth-order filter with two zeros (solid-line)
(43).

The parameters chosen for the PID controller (3) are
Kp = 6, Ti = 5, Td = 0.2, Tf = 0.04. This is an ag-
gressive tuning (the corresponding phase margin is 32.8
degrees) which results in the (smooth) polynomial trajec-
tory plotted as a dashed-line in Fig.3 (note that h = 15
has been selected). By selecting a filter structure with two
zeros (m = 2) and four poles (n = 4), the filter trans-
fer function F (s) which results by applying optimization
procedure is:

F (s) =
−0.097(s + 0.38)(s − 10.1)

(s + 0.51)(s + 0.59)(s + 0.79)(s + 1.55)
(43)

The resulting process and control variables are plotted in
Fig.4, where the dashed line refers to the use of rh(t) and
the solid line to the use of rs,h(t).
In order to understand better the relationship between
the effectiveness of the approximation and the tuning
of the PID controller, in Fig.5 we show, for system
(42), the approximation error ‖e‖∞ = ‖r̃h − r̃s‖∞ =
supτ∈[−1,1] ‖r̃h(τ)− r̃s(τ)‖ for different PID parameters
which yields different phase margins φm. It appears that
the approximation error, as mentioned in Section 4, de-
creases when the phase margin decreases.

5.2 Example 2
As a second example we consider the system [11]

P (s) =
1

(s + 1)8
(44)

for which a FOPDT model has been derived, by applying
the area method [2], as

P (s) =
1

3s + 1
e−5s (45)

5



0 2 4 6 8 10 12 14 16 18

0

0.2

0.4

0.6

0.8

1

time

pr
oc

es
s 

va
ria

bl
e

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

time

co
nt

ro
l v

ar
ia

bl
e

Figure 4. Process and control variables re-
sulting by applying the minimum-time poly-
nomial trajectory (dashed-line) and by the
step response of the fourth order filter with
two zeros (43) (solid-line) to the closed-loop
system.

Again, a process output transition from y0 = 0 to y1 = 1
is required. The constraints for the control variable are se-
lected as umin = 0 and umax = 2, ymin = −0.01 and
ymax = 1.01.
By selecting the PID parameters as Kp = 0.7, Ti = 10,
Td = 0.1, Tf = 0.1, the Chebyshev optimization (h =
15) yields the polynomial trajectory plotted as a dashed-
line in Fig.6. By selecting again a filter structure with two
zeros (m = 2) and four poles (n = 4), the filter trans-
fer function F (s) which results by applying optimization
procedure is:

F (s) =
−0.064(s + 0.055)(s − 1.02)

(s + 0.31)(s + 0.30)(s + 0.29)(s + 0.13)
(46)

The resulting process and control variables are plotted in
Fig.7, where, as before, the dashed line refers to the use
of rh(t) and the solid line to the use of rs,h(t).

6 Conclusions

In this paper we have addressed the problem of imple-
menting a two degree-of-freedom control scheme which
provides a minimum-time rest-to-rest transition subject to
constraints on the process and control variables. We have
proposed a technique for the design of a stable filter whose
step response approximates a polynomial command func-
tion which yields the optimal transition. Practical issues
have been addressed and therefore the overall method ap-
pears to be suitable to implement in industrial settings by
means of Distributed Control Systems.
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Figure 5. Behavior of the error ‖e‖∞ depend-
ing on the phase margin φm.
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Figure 6. Minimum-time polynomial trajec-
tory (dashed-line) and step response of the
filter (46).
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