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Abstract

We consider the approximation of fourth-order problems derived, e.g., by the Kirchoff plate model and the hetero-

geneous coupling between a fourth-order problem and a reduced second-order one, describing, e.g., a plate-membrane

model. This paper is devoted to the analysis of an iteration by subdomain method, the so-called Dirichlet/Neumann

method, which is used to solve both homogeneous and heterogeneous couplings. Numerical results obtained by the

spectral element method are shown.
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1. Introduction

Fourth-order, linear elliptic differential equations in bounded domains may arise in solid mechanics to

model the transversal displacements of elastic plates, or in fluid mechanics to model the stream-functions

for the Navier–Stokes equations of incompressible fluids.
When coupled with second-order equations, they give rise to a heterogeneous fourth-order/second-order

model that can describe, e.g., the transversal displacement of a composite elastic structure which is made of

two different components, one behaving like a bending plate, the other like a membrane.

The convergence analysis of a domain decomposition approach to solve both fourth-order problem and

heterogeneous coupling represents the main goal of this work. Domain decomposition methods are today

largely used to reduce the computational complexity of numerical models arising from the modelling of sev-

eral problems of physics and engineering (see [16,15]). They also constitute a very interesting approach to
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solve numerically heterogeneous problems which reflect realistic situations in several applied sciences (see,

e.g., [15,6,17,5]).

In previous works [8,7], the domain decomposition approach to the fourth-order problem has been

reformulated as a Virtual Control Approach, for which the numerical solution is reached through the min-

imization of a suitable cost functional and the successive resolution of local differential subproblems with
Dirichlet conditions on the interface of the decomposition is required.

In this paper we propose and analyze the convergence of the so-called Dirichlet/Neumann method

[13,15] applied to both homogeneous fourth-order and heterogeneous fourth-order second-order couplings.

Through this method the solution of the primal problem is reduced to the successive solution of local sub-

problems with Dirichlet or Neumann conditions on the interface.

The numerical assessment of our theoretical results is carried out in this paper for both homogeneous

and heterogeneous coupling. The fourth-order equation has been rewritten in mixed form (see [3]) to solve

it numerically. A system of two second-order equations has to be solved instead of a fourth-order equation,
so that conformal spectral elements (only continuous and not C1) can be used for the approximation step.

Finally, a comparison with the Virtual Control Method is done for the heterogeneous coupling, in terms of

both computational efficiency and accuracy of the solution.

An outline of the paper is as follows: in Section 2 we describe the model problem and report the basic

theoretical results about the fourth-order problem. In Section 3 we introduce the multidomain formulation

for the fourth-order problem and the Dirichlet/Neumann iterative method, for which we prove the conver-

gence. In Section 4 we report the numerical results obtained with spectral element approximation.

Sections 5 and 6 are devoted to the multidomain formulation and to the numerical results for the hetero-
geneous coupling.
2. The model problem

We consider a 3D homogeneous, isotropic thin plate of uniform thickness h and whose middle surface at

equilibrium occupies a region X contained in the plane x3 = 0. Assume that the plate is subject to a volume

distribution of forces ð~f 1;
~f 2;

~f 3Þ whose resultants are fiðx1; x2Þ ¼
R h=2
�h=2

~f i dx3, for i = 1,2,3, and that the
mass density per unit volume q is constant. In the classical thin plate theory (Kirchoff model) the transverse

shear effects are neglected and this assumption leads, in small displacement theory, to the following bound-

ary value problem for the third component u of the displacement vector u(x1,x2) = [v(x1,x2),w(x1,x2),

u(x1,x2)]:
qhutt �
qh3

12
Dutt þ ~r2D2u ¼ f3 in X� ð0; T Þ;

u ¼ ou
on

¼ 0 on oX� ð0; T Þ;

8>><>>: ð1Þ
where ~r2 ¼ Eh3=ð12ð1� l2ÞÞ is the modulus of the flexural rigidity, E is the Young�s modulus, l 2 (0,0.5) is

the Poisson�s ratio and oÆ/on denotes the normal derivative on the boundary.

We shall refer to (1) as the Kirchoff plate model (see [11]). Boundary conditions u ¼ ou
on ¼ 0 correspond to

consider a clamped plate. Approximating the time derivatives, e.g. by a classical implicit finite difference

scheme with time-step Dt, one obtains the following fourth-order boundary value problem:
r2D2u� Duþ au ¼ f in X; ð2Þ

u ¼ ou
on

¼ 0 on oX; ð3Þ
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where X is a Lipschitz, bounded open set in R2 with boundary oX, r2 = a1Dt
2E/(q(1 � l2)), a1 2 R and

a = 12/h2. Function f takes into account the resultant f3 and other known terms.

In addition to (2) and (3) (hereafter called ‘‘homogeneous’’ problem), we will consider the following

‘‘heterogeneous’’ fourth-order second-order model:
�Du1 þ au1 ¼ f in X1

u1 ¼ 0 on C1

�
r2D2u2 � Du2 þ au2 ¼ f in X2;

u2 ¼ ou2=on ¼ 0 on C2;

(
ð4Þ
where X1 and X2 are two disjoint subdomains of X such that X1 [ X2 ¼ X, S :¼ oX1 \ oX2 is the interface of

the decomposition and, for i ¼ 1; 2; ui :¼ ujXi and Ci :¼ oX \ oXi (see Fig. 1). Model (4), which needs to be
supplemented by suitable transmission conditions on S, could, for instance, describe the transversal dis-

placement of a composite elastic structure which is made of two different components, one (corresponding

to X1) behaving like a membrane, the other (corresponding to X2) like a bending plate.

Our aim is to solve both problem (2) and (3) and problem (4) through domain decomposition methods

and, in particular, by the Dirichlet/Neumann iterations.

2.1. Weak formulation of the fourth-order problem and a priori estimates

A weak formulation of (2) and (3) reads as follows. Given f 2 L2(X), find u 2 H 2
0ðXÞ such that
r2ðDu;DvÞX þ ðru;rvÞX þ aðu; vÞX ¼ ðf ; vÞX 8v 2 H 2
0ðXÞ; ð5Þ
where (Æ, Æ)X denotes the L2 inner product in X and
H 2
0ðXÞ :¼ v 2 H 2ðXÞ : vjoX ¼ ov

on

����
oX

¼ 0

� �
:

Thanks to Lax–Milgram lemma, problem (5) has a unique solution. Moreover, if X is a convex polygon,

then u 2 H3(X) (see [10, Cor. 7.3.2.5]) and there exists a positive constant C1 such that
kukH3ðXÞ 6 C1kf kL2ðXÞ: ð6Þ
From now on, we will consider X rectangle.

The approximation of problem (5) by variational numerical methods, such as finite elements or spectral
elements, should require C1-continuity across the interfaces between the elements, thus the use of Hermite�s
elements, which are cumbersome to implement.

A classical alternative consists of using a mixed formulation for problem (5), by which the fourth-order

equation (2) is reformulated as a pair of second-order equations: find u, w such that, for r > 0
�rDu ¼ w;

�rDw� Duþ au ¼ f ;

�
ð7Þ
Γ1 Γ2Ω1 Ω2

S

nS

Fig. 1. A partition of X in two disjoint subdomains.
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the equalities holding in L2(X). We introduce the space:
H ¼ fv 2 L2ðXÞ : Dv 2 H�1ðXÞg; ð8Þ

which is a Hilbert space for the norm
kvkH ¼ kvk2L2ðXÞ þ kDvk2H�1ðXÞ

� �1=2
: ð9Þ
A possible weak formulation of (7) reads as follows: given f 2 L2(X), find u 2 H 1
0ðXÞ and w 2 H such that
ðw; vÞX þ rhDv; ui ¼ 0 8v 2 H;

rhDw; zi � ðru;rzÞX � aðu; zÞX ¼ �ðf ; zÞX 8z 2 H 1
0ðXÞ;

�
ð10Þ
where hÆ, Æi denotes the duality product between H�1(X) and H 1
0ðXÞ. The choice of space H is used, for

example, in [2] for the analysis of Navier–Stokes equations in vorticity-stream function formulation.

In order to prove existence and uniqueness for the solution of problem (10) we use the theory developed

by Brezzi for saddle-point problems [3].

To this aim we introduce some notations and preliminary results.

Let us take
V ¼ H; Q ¼ H 1
0ðXÞ;

aðw; vÞ ¼ ðw; vÞX 8v;w 2 V ;

bðv; zÞ ¼ rhDv; zi 8v 2 V ; 8z 2 Q;

cðu; zÞ ¼ ðru;rzÞX þ aðu; zÞX 8u; z 2 Q:
Then, let B : V! Q 0 and Bt : Q! V 0 be the linear operators defined by
Q 0 hBv; ziQ ¼ V hv;BtziV 0 ¼ bðv; zÞ; 8v 2 V ; 8z 2 Q ð11Þ
and
KerB ¼ fv 2 V : bðv; zÞ ¼ 0; 8z 2 Qg;

KerBt ¼ fz 2 Q : bðv; zÞ ¼ 0; 8v 2 V g:

Finally, we introduce two linear functionals F 2 Q0 : Q 0 hF; ziQ ¼ ð�f ; zÞX and G 2 V 0 : V 0 hG; viV ¼

ð0; vÞX. With these notations, problem (10) reads: given G 2 Q0 and F 2 V 0, find w 2 V and u 2 Q such

that:
aðw; vÞ þ bðv; uÞ ¼ V 0 hG; viV 8v 2 V ;

bðw; zÞ � cðu; zÞ ¼ Q 0 hF; ziQ 8z 2 Q:

(
ð12Þ
Lemma 2.1. The following results hold.

1. a(Æ, Æ) is a bilinear continuous form, positive semidefinite, symmetric and invertible on KerB.
2. c(Æ, Æ) is a bilinear continuous form, positive semidefinite and symmetric.

3. KerBt = {0}, b(Æ, Æ) is a bilinear continuous form and there exists a positive constant b such that
sup
v2V

bðv; zÞ
kvkH

P bkzkH1
0
ðXÞ: ð13Þ
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Proof
1. The form a is bilinear, symmetric, continuous and aðw;wÞ ¼ kwkL2ðXÞ P 0; 8w 2 V . Moreover,

kwkL2ðXÞ ¼ kwkH for any w 2 KerB ¼ fv 2 H : Dv ¼ 0g, so that a is coercive on KerB with coerciveness

constant equal to one.

2. The form c is bilinear, symmetric, continuous and there exists a positive constant C = C(a):
cðu; uÞ ¼ kruk2L2ðXÞ þ akuk2L2ðXÞ P CðaÞkukH1ðXÞ.

3. By easy calculation it holds that KerBt = {0}. The form b is bilinear and continuous. Moreover, for any

z 2 Q, choose v 2 V such that v = �z, then
bðv; zÞ ¼ �bðz; zÞ ¼ �rhDz; zi ¼ rkrzk2L2ðXÞ:
Now,
kDzkH�1ðXÞ ¼ sup
f2H1ðXÞ

hDz; fi
kfkH1ðXÞ

¼ sup
f2H1ðXÞ

ðrz;rfÞX
kfkH1ðXÞ

6 krzkL2ðXÞ
and, for v = �z,
kvk2H ¼ kvk2L2ðXÞ þ kDvk2H�1ðXÞ 6 kzk2L2ðXÞ þ krzk2L2ðXÞ 6 ðC2
X þ 1Þkrzk2L2ðXÞ;
being CX the constant in the Poincaré inequality.

Therefore, bðv; zÞ P rðC2
X þ 1Þ�1=2kvkHkrzkL2ðXÞ P r=ðC2

X þ 1ÞkvkHkzkH1ðXÞ and the inf–sup condition

(13) is satisfied with b ¼ r=ðC2
X þ 1Þ. h

The following result, whose proof is a consequence of Lemma 2.1 and Theorem II.1.2 in [3], holds true.

Theorem 2.1. For every f 2 L2(X), problem (10) has a unique solution ðw; uÞ 2 H� H1
0ðXÞ. Moreover there

exists a positive constant C2 such that
kukH1ðXÞ þ kwkH 6 C2kf kL2ðXÞ: ð14Þ
Remark 2.1. The solution u of (12) is also in H 2
0ðXÞ \ H 3ðXÞ, w 2 H1(X) and problem (10) is equivalent to

problem (5).

As a matter of fact, let us rewrite the first equation in (10) for any v 2 C1ðXÞ, since u 2 H 1
0ðXÞ, we have:
0 ¼ ðw; vÞX þ rhDv; ui ¼ ðw; vÞX � rðrv;ruÞX:

By density arguments, it holds
rðru;rvÞX ¼ ðw; vÞX 8v 2 H 1ðXÞ ð15Þ
and in particular (15) holds for any v 2 H 1
0ðXÞ. Then, since X is a convex polygon and w 2 L2(X), the func-

tion u 2 H 1
0ðXÞ, solution of the above problem, is also in the space H2(X) [10].

By integrating by parts we have
ðw; vÞX ¼ rðrv;ruÞX ¼ �rðDu; vÞX þ r
Z
oX

ou
on

vds 8v 2 H 1ðXÞ;
which means w = �rDu in L2(X) and ou/on = 0 on oX, i.e. u 2 H 2
0ðXÞ.

Now, by integrating by parts the second equation of (10), it holds
rhDw; zi ¼ ð�f � Duþ au; zÞX 8z 2 H 1
0ðXÞ ð16Þ
and, by density arguments, we obtain �rDw � Du + au = f in L2(X).
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By taking now, (16) with z 2 C1
0 ðXÞ, by integrating by parts twice, replacing w by �rDu and finally by

density results, we obtain problem (5). Then problem (10) is equivalent to problem (5), u 2 H3(X) and

w 2 H1(X). h

By the fact that w 2 H1(X), the mixed formulation (10) is equivalent to the following one: find

w 2 H1(X), and u 2 H 1
0ðXÞ such that
ðw; vÞX � rðrv;ruÞX ¼ 0 8v 2 H 1ðXÞ;
rðrw;rzÞX þ ðru;rzÞX þ aðu; zÞX ¼ ðf ; zÞX 8z 2 H 1

0ðXÞ:

(
ð17Þ
Our aim is now to write a multidomain formulation for problem (17). To do this, we have to generalize

problem (17) by taking non homogeneous boundary data on a side of the domain.

We denote by Cj (for j = 1, . . . , 4) the sides of X and by V j ¼ Cj�1 \ Cj (for j = 1, . . . , 4, where C0 = C4 for

convenience) the vertexes of X. Moreover we denote by sj the unit vector tangential to Cj, orthogonal to the

outward unit normal vector nj to Cj.
For any function v 2 Hs(X) (with s = 2,3), we denote by c2j : v 7! ðvjCj ; ðonjvÞjCj

Þ the trace operator of

order one on Cj and by c(2) the trace operator fromHs(X) to the spaceWs;2ðoXÞ :¼
Q4

j¼1

Q1

k¼0H
s�1=2�kðCjÞ such

that cð2Þv ¼ fc21v; c22v; c23v; c24vg.
It is well known that the image fWs;2

ðoXÞ of Hs(X) through the operator c(2) is a subspace of Ws;2ðoXÞ,
characterized by suitable compatibility conditions at the vertexes Vj of the domain (see [10,1]), and that if

we endow fWs;2
ðoXÞ by a suitable norm (see [1] for the details) then there exists a continuous extension oper-

ator from fWs;2
ðoXÞ to Hs(X).

From now on and until the end of this section, let S denotes a side of X, C = oXnS, nS the outward nor-

mal vector to S and sS the unit vector tangential to S. We introduce the space
K :¼ k ¼ ðk1; k2Þ : k1 2 H 3=2ðSÞ; k2 2 H 1=2ðSÞ : k1joS ¼ 0; k2joS ¼ 0;
ok1
osS

����
oS

¼ 0

� �

and the norm k Æ kK that is the restriction to S of the norm given on fW2;2

ðoXÞ. Then, we introduce the sub-
space K0 � K:
K0 :¼ k ¼ ðk1; k2Þ : k1 2 H 5=2ðSÞ; k2 2 H 3=2ðSÞ : k1joS ¼ 0; k2joS ¼ 0;
ok1
osS

����
oS

¼ 0;
ok2
osS

����
oS

¼ 0

� �
:

For any (k1,k2) 2 K, let us set
gj1 :¼
k1 if S ¼ Cj

0 otherwise

�
gj2 :¼

k2 if S ¼ Cj

0 otherwise

�
j ¼ 1; . . . ; 4
and let
~g be an extension to X of g11; g
1
2

� �
; . . . ; g41; g

4
2

� �� 	
: cð2Þ~g ¼ g11; g

1
2

� �
; . . . ; g41; g

4
2

� �� 	
: ð18Þ
As a consequence of the results given in [1], if k 2 K (resp. if k 2 K0), then ~g 2 H 2ðX) (resp. ~g 2 H 3ðXÞ),
moreover there exist two positive constants C3 and C4 such that
C3kkkK 6 k~gkH2ðXÞ 6 C4kkkK; 8k 2 K ð19Þ
and K is a Hilbert space.

For any subset R of oX, we set H 1
RðXÞ :¼ fv 2 H 1ðXÞ : vjR ¼ 0g.

Given k = (k1,k2) 2 K0, we define the fourth-order extension (wk,uk) of k to X the pair of functions

wk 2 H1(X), uk 2 H 1
CðXÞ with uk = k1 on S such that
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ðwk; vÞX � rðrv;rukÞX ¼ �r
R
S k2vds 8v 2 H 1ðXÞ;

rðrwk;rzÞX þ ðruk;rzÞX þ aðuk; zÞX ¼ 0 8z 2 H 1
0ðXÞ:

(
ð20Þ
Proposition 2.1. For any k = (k1,k2) 2 K0, there exists a unique solution (wk, uk) of (20). Moreover, there

exists a positive constant C5 such that
kukkH1ðXÞ þ kwkkH 6 C5kkkK: ð21Þ
Proof. Let us consider an extension ~g 2 H 3ðXÞ of k to X, and introduce the function ~u ¼ uk � ~g. By replac-

ing uk with ~uþ ~g in (20) and by integrating by parts, problem (20) reads: find ~u 2 H 1
0ðXÞ, wk 2 H1(X) such

that
ðwk; vÞX � rðrv;r~uÞX ¼ �rðv;D~gÞX 8v 2 H 1ðXÞ;
rðrwk;rzÞX þ ðr~u;rzÞX þ að~u; zÞX ¼ ðD~g � a~g; zÞX 8z 2 H 1

0ðXÞ;

(
ð22Þ
that is, find ~u 2 H 1
0ðXÞ, wk 2 H such that
ðwk; vÞX þ rhDv; ~ui ¼ �rðv;D~gÞX 8v 2 H;

rhDwk; zi � ðr~u;rzÞX � að~u; zÞX ¼ ð�D~g þ a~g; zÞX 8z 2 H 1
0ðXÞ:

�
ð23Þ
Problem (23) is of the same type of problem (12), with V 0 hG; viV ¼ �rðv;D~gÞX and

Q0 hF; ziQ ¼ ð�D~g þ a~g; zÞX. We remark that both G and F are well defined, since ~g 2 H 3ðX). Applying

again Lemma 2.1, Theorem II.1.2 of [3] and (19) the thesis follows. h

Remark 2.2. By the same argument of Remark 2.1 and regularity results for elliptic problems with non-

homogeneous Dirichlet data [10], we can prove that uk 2 H 2
CðXÞ \ H 3ðXÞ and wk 2 H1(X), where

H 2
CðXÞ :¼ fv 2 H 2ðXÞ : vjC ¼ ou

on jC ¼ 0g.
3. Multidomain formulation for the homogeneous problem

We decompose the computational domain in two disjoint subdomains X1 and X2, such that X ¼ X1 [ X2.

Moreover we ask that Xi (i = 1,2) be rectangles (see Fig. 1). We define the interface S = oX1 \ oX2, the

external boundaries Ci = oXinS for i = 1,2 and the spaces:
K0 ¼ fk 2 H 5=2ðSÞ : k ¼ vjS for a suitable v 2 H 2
0ðXÞ \ H 3ðXÞg;

K ¼ fl 2 H 1=2ðSÞ : l ¼ vjS for a suitable v 2 H 1ðXÞg:
ð24Þ
For i = 1,2, denote by Ri any possible extension operator from K to H1(Xi) that satisfies ðRilÞjS ¼ l and

by R0
i any possible extension operator from K0 to H 2

Ci
ðXiÞ \ H 3ðXiÞ that satisfies ðR0

i kÞjS ¼ k.
The multidomain formulation of problem (17) reads for i = 1,2: find wi 2 H1(Xi) and ui 2 H 1

CðXiÞ such
that
ðwi; viÞXi
� rðrvi;ruiÞXi

¼ 0 8vi 2 H 1
SðXiÞ; i ¼ 1; 2;

rðrwi;rziÞXi
þ ðrui;rziÞXi

þ aðui; ziÞXi
¼ ðf ; ziÞXi

8zi 2 H 1
0ðXiÞ; i ¼ 1; 2;

u1 ¼ u2;w1 ¼ w2 on S;X2
i¼1

½ðwi;RilÞXi
� rðrRil;ruiÞXi

� ¼ 0 8l 2 K;

X2
i¼1

½rðrwi;rR0
i kÞXi

þ ðrui;rR0
i kÞXi

þ aðui;R0
i kÞXi

� ¼
X2
i¼1

ðf ;R0
i kÞXi

8k 2 K0:

ð25Þ
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Remark 3.1. The three last equations in (25) are the transmission conditions for the mixed formulation of

the fourth-order problem (2) and (3).

We could write them in a formal way as follows:
u1 ¼ u2 on S;

w1 ¼ w2 on S;

r
ou1
onS

¼ r
ou2
onS

on S;

ou1
onS

þ r
ow1

onS
¼ ou2

onS
þ r

ow2

onS
on S:

ð26Þ
We note that, in view of the third condition in (26), the last one can be rewritten as r ow1

onS
¼ r ow2

onS
. Trans-

mission conditions (26) guarantee that the multidomain problem (25) is equivalent to the monodomain one

(17), as stated by Lemma 3.1.

Lemma 3.1. Problem (17) is equivalent to problem (25) in the sense that if w and u are the solutions to (17),

then wi :¼ wjXi and ui :¼ ujXi for i = 1,2 are the solutions of (25) and vice versa, if wi and ui (for i = 1,2) are the

solutions of (25), then w and u, such that wjXi ¼ wi and ujXi ¼ ui, are the solutions to (17).

Proof. We begin by proving that if (w,u) is a solution of (17), then wi ¼ wjXi and ui ¼ ujXi (for i = 1,2) are

the solutions of (25).

By construction, ui, wi 2 H1(Xi), ui = 0 on Ci, u1 = u2 on S and w1 = w2 on S. If we consider in (17) the test
functions z 2 H1

0ðXÞ such that zjX1
2 H 1

0ðX1Þ, zjX2
¼ 0 and v 2 H1(X) such that vjX1

2 H1
SðX1Þ, vjX2

¼ 0, by

putting z1 ¼ zjX1
and v1 ¼ vjX1

the first two equations of (25) hold for i = 1 (the proof is similar for i = 2).

Now, for any l 2 K and k 2 K0, we set
z :¼ R0
1k in X1;

R0
2k in X2;

(
v :¼

R1l in X1;

R2l in X2:

�

By definition of R0
i and Ri (for i = 1,2), we have z 2 H 1

0ðXÞ and v 2 H1(X), so that the last two equations of

(25) are satisfied too.

Vice versa, let be wi and ui (for i = 1,2) the solutions of (25), we set
u :¼
u1 in X1;

u2 in X2;

�
w :¼

w1 in X1;

w2 in X2:

�

Since wi 2 H1(Xi), for i = 1,2 and since they share the same trace on S, we have w 2 H1(X). By the same

argument we have u 2 H 1
0ðXÞ.

We take v 2 H1(X) and z 2 C1
0 ðXÞ, we have that l :¼ vjS 2 K and k :¼ zjS 2 K0, so that ðvjXi

�RilÞ 2
H1

SðXiÞ and ðzjXi
�R0

i kÞ 2 H 1
0ðXiÞ, for i = 1,2. Therefore,
ðw; vÞX � rðrv;ruÞX ¼
X2
i¼1

wjXi ; vjXi �Ril
� �

Xi
� r rðvjXi �RilÞ;rujXi

� �
Xi

h
þ wjXi ;Ril
� �

Xi
� r rRil;rujXi

� �
Xi

i
¼ 0 8v 2 H 1ðXÞ;
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rðrw;rzÞX þ ðru;rzÞX þ aðu; zÞX ¼
X2
i¼1

r rwjXi ;r zjXi �R0
i k

� �� �
Xi
þ rujXi ;r zjXi �R0

i k
� �� �

Xi

h
þ a ujXi ; zjXi �R0

i k
� �

Xi
þ r rwjXi ;rR0

i k
� �

Xi
þ rujXi ;rR0

i k
� �

Xi

þ a ujXi ;R
0
i k

� �
Xi

i
¼
X2
i¼1

f ; zjXi �R0
i k

� �
Xi
þ
X2
i¼1

f ;R0
i k

� �
Xi
¼ ðf ; zÞX 8z 2 C1

0 ðXÞ:
By density argument, r($w,$z)X + ($u,$z)X + a(u,z)X = (f,z)X holds also for any z 2 H 1
0ðXÞ. h
3.1. Iterations by subdomains: the Dirichlet/Neumann method

In order to solve problem (25), we can use an iteration by subdomains algorithm that reads as follows.

Given k0 ¼ ðk01; k
0
2Þ 2 K0, for kP 1, we look for wk

i 2 H 1ðXiÞ and uki 2 H 1
Ci
ðXiÞ (for i = 1,2) such that:
wk
1; v1

� �
X1

� r rv1;ruk1
� �

X1
¼ 0 8v1 2 H 1

SðX1Þ;

r rwk
1;rz1

� �
X1

þ ruk1;rz1
� �

X1
þ a uk1; z1
� �

X1
¼ ðf ; z1ÞX1

8z1 2 H 1
0ðX1Þ;

uk1 ¼ kk�1
1 on S;

wk
1;R1l

� �
X1

� r rR1l;ruk1
� �

X1
¼ �r

R
S k

k�1
2 lds 8l 2 K;

wk
2; v2

� �
X2

� r rv2;ruk2
� �

X2
¼ 0 8v2 2 H 1

SðX2Þ;

r rwk
2;rz2

� �
X2

þ ruk2;rz2
� �

X2
þ a uk2; z2
� �

X2
¼ ðf ; z2ÞX2

8z2 2 H 1
0ðX2Þ;

wk
2 ¼ wk

1 on S;P2
i¼1

r rwk
i ;rR0

i k
� �

Xi
þ ruki ;rR0

i k
� �

Xi
þ a uki ;R

0
i k

� �
Xi

h i
¼
P2
i¼1

f ;R0
i k

� �
Xi

8k 2 K0

ð27Þ
and
kk1 ¼ ð1� hÞkk�1
1 þ huk2jS ; kk2 ¼ ð1� hÞkk�1

2 þ h
ouk2
onS

����
S

; ð28Þ
where h 2 (0,1) is a suitable relaxation parameter.

Method (27) and (28) belongs to the family of Dirichlet/Neumann methods, since it provides a sequence

of problems in X1 with Dirichlet conditions on S for u1 and problems in X2 with Neumann conditions on S

for u2.
In order to prove that the Dirichlet/Neumann method yields the solution of (25), we reformulate the

multidomain problem (27) and (28) as a Steklov–Poincaré equation on the interface.

3.2. The Steklov–Poincaré equation

For i = 1,2 we denote by w�
i 2 H 1ðXiÞ and u�i 2 H 1

0ðXiÞ the solution of the following problem:
ðw�
i ; viÞXi

� rðrvi;ru�i ÞXi
¼ 0 8vi 2 H 1ðXiÞ;

rðrw�
i ;rziÞXi

þ ðru�i ;rziÞXi
þ aðu�i ; ziÞXi

¼ ðf ; ziÞXi
8zi 2 H 1

0ðXiÞ:

(
ð29Þ
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We denote by K 0 the dual space of K and we formally define the local Steklov–Poincaré operators

Si : K ! K0: for any k 2 K0
Sik :¼
r
owk;i

oni

����
S

þ ouk;i
oni

����
S

ð�1Þirwk;ijS

264
375; ð30Þ
where (wk,i,uk,i) is the fourth-order extension of k to Xi, namely the solution of
ðwk;i; viÞXi
� rðrvi;ruk;iÞXi

¼ ð�1Þir
R
S k2vi ds 8vi 2 H 1ðXiÞ;

rðrwk;i;rziÞXi
þ ðruk;i;rziÞXi

þ aðuk;i; ziÞXi
¼ 0 8zi 2 H 1

0ðXiÞ;

(
ð31Þ
with uk,i = k1 on S (for i = 1,2) and where ni (i = 1,2) denotes the outward unit normal vector on the inter-

face S, with respect to Xi. In particular n1 = nS = �n2.

Denoting by K0 h�; �iK the duality pairing between K 0 and K and by (wg,i,ug,i) the fourth-order extension of
g to Xi (for i = 1,2), we set
K0 hSik; giK :¼ r rwk;i;rR0
i g1

� �
Xi
þ ruk;i;rR0

i g1
� �

Xi
þ a uk;i;R

0
i g1

� �
Xi

þ ð�1Þir
Z
S
wk;ijSg2 ds 8g ¼ ðg1; g2Þ 2 K0: ð32Þ
Moreover we define vi 2 K 0 as follows:
K0 hvi; giK :¼ f ;R0
i g1

� �
Xi
� r rw�

i ;rR0
i g1

� �
Xi
� ru�i ;rR0

i g1
� �

Xi
� a u�i ;R

0
i g1

� �
Xi

� ð�1Þir
Z
S
w�

i jSg2 ds; 8g 2 K0 ð33Þ
and we set
S ¼ S1 þS2; v ¼ v1 þ v2: ð34Þ
The following Lemma holds.

Lemma 3.2. Let (w,u) be the solution of problem (17) and let us set K ¼ ðujS ; ouon jSÞ, then K 2 K0 is the solution

of the Steklov–Poincaré equation
K0 hSk; giK ¼ K0 hv; giK 8g 2 K0: ð35Þ
Conversely, if k 2 K0 is the solution to (35), then the solution (w,u) of (17) is such that
wjXi ¼ w�
i þ wk;i; ujXi ¼ u�i þ uk;i; i ¼ 1; 2: ð36Þ
Proof. By Remark 2.1, u 2 H3(X), then k is well defined and it belongs to K0. By the equivalence between

problems (17) and (25), if k is the trace of order one of u on S, then the restriction of the solution of (17) to

Xi is
wjXi ¼ w�
i þ wk;i; ujXi ¼ u�i þ uk;i; i ¼ 1; 2:
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We have
k0 hSk; giK ¼
X2
i¼1

r rwk;i;rR0
i g1

� �
Xi
þ ruk;i;rR0

i g1
� �

Xi
þ a uk;i;R

0
i g1

� �
Xi

h i
þ
X2
i¼1

ð�1Þir
Z
S
wk;ijSg2 ds

¼
X2
i¼1

r rwjXi ;rR0
i g1

� �
Xi
þ rujXi ;rR0

i g1
� �

Xi
þ a ujXi ;R

0
i g1

� �
Xi

h i

�
X2
i¼1

r rw�
i ;rR0

i g1
� �

Xi
þ ru�i ;rR0

i g1
� �

Xi
þ a u�i ;R

0
i g1

� �
Xi

h i

þ
X2
i¼1

ð�1Þir
Z
S
wjXig2 ds� ð�1Þir

Z
S
w�

i jSg2ds

 �

ðby both third and last equations in (25)Þ

¼
X2
i¼1



f ;R0

i g1
� �

Xi
� r rw�

i ;rR0
i g1

� �
Xi
� ru�i ;rR0

i g1
� �

Xi

�a u�i ;R
0
i g1

� �
Xi
� ð�1Þir

Z
S
w�

i jSg2ds
�
¼ K0 hv; giK:
Conversely, let us take the solution k to (35) and set
wi ¼ w�
i þ wk;i; ui ¼ u�i þ uk;i for i ¼ 1; 2;
where ðw�
i ; u

�
i Þ and (wk,i,uk,i) are the solutions to (29) and (31), respectively.

The first two equations and the fourth equation of (25) follow by both (29) and (31). Moreover, from
0 ¼ K0 hSk; giK � K0 hv; giK

¼
X2
i¼1

r rwi;rR0
i g1

� �
Xi
þ rui;rR0

i g1
� �

Xi
þ a ui;R

0
i g1

� �
Xi
� f ;R0

i g1
� �

Xi

h i
þ
X2
i¼1

ð�1Þir
Z
S
wijSg2 ds;
the last equation in (25) holds and w1 = w2 on S.

Finally, since u�1 ¼ u�2 ¼ 0 on S and uk,1 = uk,2 on S, then u1 = u2 on S. By the equivalence between

problem (17) and (25) the thesis follows. h

Remark 3.2. In the special case where we replace R0
i g1 by uig and Ril by wi

g in definitions (32) and (33)
(ðwi

g; u
i
gÞ is the solution to (31) and l denotes the trace of wi

g on S), thanks to the first equation in (31) with

wg,i instead of vi, we obtain
K0 hSik; giK ¼ ðwk;i;wg;iÞXi
þ ðruk;i;rug;iÞXi

þ aðuk;i; ug;iÞXi
ð37Þ
and
K0 hvi; giK ¼ ðf ; ug;iÞXi
� ðw�

i ;wg;iÞXi
� ðru�i ;rug;iÞXi

� aðu�i ; ug;iÞXi
: ð38Þ
In this case the operators Si, for i = 1,2, are symmetric and it can be proved that they are continuous

and coercive, as stated in the following section.
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3.3. Convergence analysis

Lemma 3.3. The operators Si are linear, symmetric, continuous and coercive, for i = 1,2.

Proof. The linearity and symmetry follow by both definition (30) and (37).

Continuity. By formula (37) and by applying the a priori estimate (21) we have:
jK0 hSik; giKj 6 kwk;ikL2ðXiÞkwg;ikL2ðXiÞ þ CðaÞkuk;ikH1ðXiÞkug;ikH1ðXiÞ

6 Cða; rÞðkwk;ikL2ðXiÞ þ kuk;ikH1ðXiÞÞðkwg;ikL2ðXiÞ þ kug;ikH1ðXiÞÞ

6 KðiÞ
2 kkkKkgkK;
with KðiÞ
2 ¼ KðiÞ

2 ða; r;XiÞ > 0.

Coercivity. First of all we observe that for any k 2 K0, with k 5 0 it holds
K0 hSik; kiK ¼ kwk;ik2L2ðXiÞ þ kruk;ik2L2ðXiÞ þ akuk;ik2L2ðXiÞ > 0: ð39Þ
Then we set
wk :¼
wk;1 in X1;

wk;2 in X2;

�
uk :¼

uk;1 in X1;

uk;2 in X2:

�

By Remark 2.2 the functions uki (for i = 1,2) belong to H 2

Ci
ðXiÞ and, since uk,1 and uk,2 share the same trace

of order one on S, then uk 2 H 2
0ðXÞ. The following estimate takes sense, thanks also to the fact that

kDvk2L2ðXÞ þ kvk2H1ðXÞ ¼ kvk2H2ðXÞ for any v 2 H 2
0ðXÞ (see [4]):
K0 hSk; kiK ¼
X2
i¼1

kwk;ik2L2ðXiÞ þ kruk;ik2L2ðXiÞ þ akuk;ik2L2ðXiÞ

h i
P CðaÞ kwkk2L2ðXÞ þ kukk2H1ðXÞ

� �
¼ CðaÞ r2kDukk2L2ðXÞ þ kukk2H1ðXÞ

� �
P Cða; rÞkukk2H2ðXÞ P Cða; r;XÞkkk2K:
Since S1 and S2 are two operator of the same nature and they are positive by (39), then the previous

inequality implies that they are coercive too, that is there exist two positive constants KðiÞ
1 ¼ KðiÞ

1 ða; r;XiÞ
(for i = 1,2) such that
K0 hSik; kiK P KðiÞ
1 ða; r;XiÞkkk2K 8k 2 K0: �
By simple calculations, we can reformulate the Dirichlet/Neumann method (27) and (28) as a precondi-
tioned Richardson iteration for the Steklov–Poincaré equation (35):
given k0 2 K0;

kk ¼ ð1� hÞkk�1 þ hS�1
2 v�S1k

k�1
� �

k P 1:
ð40Þ
Remark 3.3. Note that, as a consequence of their coercivity on K and thanks to Lax–Milgram lemma, both

S1 and S2 are invertible on ImðS1Þ ¼ ImðS2Þ and S�1
2 S1k 2 K0 for any k 2 K0.

We introduce the S2-scalar product
ðk; gÞS :¼ K0 hS2k; giK 8k; g 2 K0:

2
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The corresponding S2-norm
kkkS2
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk; kÞS2

q
8k 2 K0 ð41Þ
is equivalent to the norm k Æ kK, for any function k 2 K0. Actually, it satisfies the two-side inequality
Kð2Þ
1 kkk2K 6 kkk2S2

6 Kð2Þ
2 kkk2K 8k 2 K0; ð42Þ
where Kð2Þ
1 and Kð2Þ

2 are introduced in Lemma 3.3.

Given a relaxation parameter h, consider the following operator:
T h : K0 ! K0; k 7! T hk :¼ ð1� hÞk� hS�1
2 S1k: ð43Þ
Then, (40) reads
given k0 2 K0;

kk ¼ T hk
k�1 þ hS�1

2 v k P 1:
ð44Þ
In order to prove the convergence of the sequence kk to the solution of (35), it is sufficient to prove that

Th is a contraction with respect to the S2-norm.

Theorem 3.1. There exist two positive constants ~h 2 ð0; 1� and Kh 2 (0,1) such that
kT hkkS2
6 KhkkkS2

8k 2 K0; 8h 2 ð0; ~hÞ ð45Þ
i.e. Th is a contraction.

Proof. We remark that
T hk ¼ ð1� hÞk� hS�1
2 S1k ¼ k� hS�1

2 Sk:
By the definition (41) we obtain
kT hkk2S2
¼ K0 hS2k; kiK � hK0 hSk; kiK � hK0 S2k;S

�1
2 Sk


 �
K
þ h2K0 Sk;S�1

2 Sk

 �

K
;

then, by setting l ¼ S�1
2 Sk and recalling that S2 is symmetric, we can write
kT hkk2S2
¼ kkk2S2

� 2hK0 hSk; ki þ h2K0 hSk; liK:
From Lemma (3.3) and (42) it follows that
klkK ¼ kS�1
2 SkkK 6

1

Kð2Þ
1

kSkkK 6
Kð1Þ

2 þ Kð2Þ
2

Kð2Þ
1

kkkK;

K0 hSk; liK 6 Kð1Þ
2 þ Kð2Þ

2

� �
kkkKklkK 6

Kð1Þ
2 þ Kð2Þ

2

� �2
Kð2Þ

1

� �2 kkk2S2
;

and
�2hK0 hSk; k; iK 6 �2h Kð1Þ
1 þ Kð2Þ

1

� �
kkk2K 6 �2h

Kð1Þ
1 þ Kð2Þ

1

Kð2Þ
2

kkk2S2
:

Therefore,
T hkk kS2
6 KhkkkS2

8k 2 K0;
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with
Table

Homo

N

4

5

6

7

8

Numb

N = 1.
Kh ¼ h2
Kð1Þ

2 þ Kð2Þ
2

Kð2Þ
1

 !2

� 2h
Kð1Þ

1 þ Kð2Þ
1

Kð2Þ
2

þ 1
and the thesis follows if
0 < h < ~h ¼ 2
Kð1Þ

1 þ Kð2Þ
1

Kð2Þ
2

Kð2Þ
1

Kð1Þ
2 þ Kð2Þ

2

 !2

: �
4. Numerical approximation

In order to approximate the solution of the boundary-value problems in (27) we use the conformal quad-

rilateral spectral element method (see e.g. [14,12,9]). This approach corresponds to a Generalized Galerkin

formulation of the continuous problem.
The linear systems in Xi (i = 1,2) are solved by Bi-CGStab algorithm [18], preconditioned by an incom-

plete LU factorization.

In order to test the convergence of our Dirichlet/Neumann (D/N) algorithm we check that
max
i¼1;2

wk
iH; ukiH

� �
� wk�1

iH ; uk�1
iH

� ��� ��
H1ðXiÞ

wk
iH; ukiHð Þk kH1ðXiÞ

" #
6 10�12; ð46Þ
where k is the D/N iteration counter, fðwk
iH; ukiHÞg (for i = 1,2, k P 0) denotes the spectral element approx-

imation of the sequence fðwk
i ; u

k
i Þg and
kðw; uÞkH1ðXÞ ¼ kwk2H1ðXÞ þ kuk2H1ðXÞ

� �1=2
8w; u 2 H 1ðXÞ:
First of all we have analyzed the convergence of the D/N method (27) for different values of the coeffi-

cient r. The symbols N and H stand for the spectral polynomial degree and the element diameter of the
mesh, respectively.

We have taken X = (�1,1)2, while the right-hand side and the boundary data are constructed so that the

exact solution is u(x,y) = (x2 � 1)ey + (y2 � 1)ex, a = 0. Moreover we have considered X1 = (�1,0) · (�1,1)

and X2 = (0,1) · (�1,1).

In Table 1 we report the number of D/N iterations to satisfy the stopping criterion (46) with h = 0.5 and

various values of the coefficient r.
1

geneous coupling

r H r

1 10�1 10�2 10�3 10�4 1 10�1 10�2 10�3 10�4

4 4 5 4 4 1/5 5 5 5 4 4

5 4 4 4 5 1/10 5 5 4 4 5

5 5 5 5 5 1/15 5 4 4 4 5

5 5 5 5 5 1/20 5 4 4 4 4

5 5 5 5 4 1/25 5 4 4 4 4

er of D/N iterations, with h = 0.5, needed to satisfy the stopping criterion (46). At left H = 1/2 has been considered, at right
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Fig. 2. Homogeneous coupling, L1-norm of the jumps on the interface and the error in H1-norm versus different values of the

polynomial degree N, with H = 1/2. At left (resp. at right) the results for r = 1 (resp. r = 10�3) are shown.

P. Gervasio / Comput. Methods Appl. Mech. Engrg. 194 (2005) 4321–4343 4335
In Fig. 2 we show the L1-norm of the jumps on the interface of the normal derivative of discrete solu-

tion, that is
½ouH=onS �S :¼ ðou1H=onS � ou2H=onSÞjS sdu :¼ k½ouH=onS�SkL1ðSÞ;

½owH=onS �S :¼ ðow1H=onS � ow2H=onSÞjS sdw :¼ k½owH=onS �SkL1ðSÞ
and the relative errors between the numerical solution and the exact one in the H1-norm, for two different

values of r. The L1-norms of the jumps ½uH�S :¼ ðu1H � u2HÞjS ; ½wH�S :¼ ðw1H � w2HÞjS are not shown,

being less than 10�13 for all values of N, H and r considered.

We verify that the convergence rate of the D/N method is independent of N, H and r and that the con-

vergence of the spectral element solution to the exact one is of exponential type.
5. The heterogeneous coupling

We consider now the heterogeneous problem (4). In this section we will give a weak formulation of it and

will formulate an iteration by subdomains algorithm to find its solution.

Using the same notations introduced for both definition of the trace operator c(2) and space K in Section

2.1, we introduce here the trace operator of order zero: c(1) from Hs(X) (with s = 2,3) to Ws;1ðoXÞ :¼Q4

j¼1H
s�1=2ðCjÞ, the space
K ¼ k 2 H 3=2ðSÞ : kjoS ¼ 0
� 	
and we denote by k Æ kK the restriction to S of the norm given on fW2;1
ðoXÞ in [1]. Moreover we introduce

the subspace K0 of K:
K0 ¼ k 2 H 5=2ðSÞ : kjoS ¼ 0
� 	

:

For any k 2 K we denote by uk;1 2 H 1
C1
ðX1Þ the second-order extension of k to X1, namely the solution of
ðruk;1;rz1ÞX1
þ aðuk;1; z1ÞX1

¼ 0 8z1 2 H 1
0ðX1Þ;

uk;1 ¼ k on S;

(
ð47Þ
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while for any k 2 K0 we denote by ðwk;2; uk;2Þ 2 H 1ðX2Þ � H 1
C2
ðX2Þ the fourth-order extension of

k = (k,0) 2 K0 (in analogy with (31)) to X2:
ðwk;2; v2ÞX2
þ rðruk;2;rv2ÞX2

¼ 0 8v2 2 H 1ðX2Þ;
rðrwk;2;rz2ÞX2

þ ðruk;2;rz2ÞX2
þ aðuk;2; z2ÞX2

¼ 0 8z2 2 H 1
0ðX2Þ;

uk;2 ¼ k on S;

8<: ð48Þ
finally, R1 is any possible continuous extension operator from K0 to H 2
C1
ðX1Þ, while R2 is any possible con-

tinuous extension operator from K0 to H 2
C2
ðX2Þ \ H 3ðX2Þ.

The weak formulation of the heterogeneous problem (4) reads: find u1 2 H 1
C1
ðX1Þ and

ðw2; u2Þ 2 H 1ðX2Þ � H 1
C2
ðX2Þ such that
ðru1;rz1ÞX1
þ aðu1; z1ÞX1

¼ ðf ; z1ÞX1
8z1 2 H 1

0ðX1Þ;

ðw2; v2ÞX2
� rðrv2;ru2ÞX2

¼ 0 8v2 2 H 1ðX2Þ;

rðrw2;rz2ÞX2
þ ðru2;rz2ÞX2

þ aðu2; z2ÞX2
¼ ðf ; z2ÞX2

8z2 2 H 1
0ðX2Þ;

u1 ¼ u2 on S;

rðrw2;rR2kÞX2
þ
P2
i¼1

rui;rRikð ÞXi
þ a ui;Rikð ÞXi

h i
¼
P2
i¼1

f ;Rikð ÞXi
8k 2 K0:

ð49Þ
Remark 5.1. Transmission conditions of (49) can be formally written as
u1 ¼ u2 on S;

0 ¼ r
ou2
onS

on S;

ou1
onS

¼ r
ow2

onS
þ ou2
onS

on S

ð50Þ
and they are deduced from (26), by putting r = 0 in X1. Note that, in view of the second equation, the last

one reads also
ou1
onS

¼ r
ow2

onS
.

Remark 5.2. System (49) can be solved by an iteration by subdomains algorithm, similar to the Dirichlet/

Neumann method (27) and the existence and uniqueness of solution for problem (49) will be a consequence

of the convergence of such iterations.
5.1. Iterations by subdomains: the Dirichlet/Neumann method for the heterogeneous problem

Given f 2 L2(X) and a function k0 2 K0, for kP 1, we look for uk1 2 H 1
C1
ðX1Þ, wk

2 2 H 1ðX2Þ and

uk2 2 H 1
C2
ðX2Þ such that:
ruk1;rz1
� �

X1
þ a uk1; z1
� �

X1
¼ ðf ; z1ÞX1

8z1 2 H 1
0ðX1Þ;

uk1 ¼ kk�1 on S;

wk
2; v2

� �
X2

� r rv2;ruk2
� �

X2
¼ 0 8v2 2 H 1ðX2Þ;

r rwk
2;rz2

� �
X2

þ ruk2;rz2
� �

X2
þ a uk2; z2
� �

X2
¼ ðf ; z2ÞX2

8z2 2 H 1
0ðX2Þ;

r rwk
2;rR2k

� �
X2

þ
P2
i¼1

ruki ;rRik
� �

Xi
þ a uki ;Rik
� �

Xi

h i
¼
P2
i¼1

f ;Rikð ÞXi
8k 2 K0;

ð51Þ
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with
kk ¼ ð1� hÞkk�1 þ huk2jS ; ð52Þ
and being h 2 (0,1) a suitable relaxation parameter.

As done for the homogeneous coupling, we reformulate the Dirichlet/Neumann method in terms of the

Steklov–Poincaré operator.

We denote by u�1 2 H 1
0ðX1Þ the solution of the problem:
ru�1;rz1
� �

X1
þ aðu�1; z1ÞX1

¼ ðf ; z1ÞX1
8z1 2 H 1

0ðX1Þ; ð53Þ
and by ðw�
2; u

�
2Þ 2 H 1ðX2Þ � H 1

0ðX2Þ the solution of problem (29) for i = 2.

We formally define the local Steklov–Poincaré operators Se
i : K ! K0: for any k 2 K0
Se
1k :¼ ouk;1

onS

����
S

; Se
2k :¼ � r

owk;2

onS

����
S

þ ouk;2
onS

����
S

� �
: ð54Þ
Denoting by hhÆ, Æii the duality pairing between K 0 and K, we set
hhSe
1k; gii :¼ ðruk;1;rR1gÞX1

þ aðuk;1;R1gÞX1
; 8g 2 K0;

hhSe
2k; gii :¼ rðrwk;2;rR2gÞX1

þ ðruk;2;rR2gÞX2
þ aðuk;2;R2gÞX2

; 8g 2 K0

ð55Þ
and we define the linear functionals v1 and v2 2 K 0: for any g 2 K0
hhv1; gii :¼ ðf ;R1gÞX1
� ðru�1;rR1gÞX1

� aðu�1;R1gÞX1
;

hhv2; gii :¼ ðf ;R2gÞX2
� rðrw�

2;rR2gÞX2
� ðru�2;rR2gÞX2

� aðu�2;R2gÞX2
:

ð56Þ
Finally we set
Se ¼ Se
1 þSe

2; v ¼ v1 þ v2: ð57Þ

In the following Lemma we rewrite the heterogeneous multidomain problem (49) in terms of the Stek-

lov–Poincaré operators (55), in order to interpret the Dirichlet/Neumann algorithm as a preconditioned

Richardson method and to prove the convergence of the iterations.

Lemma 5.1. Let u1 and (w2,u2) the solutions of (49) and let us set k = u1jS = u2jS, then k 2 K0 is the solution of

the Steklov–Poincaré equation
hhSek; gii ¼ hhv; gii 8g 2 K0: ð58Þ

Conversely, if k 2 K0 is the solution to (58), then the solutions u1 and (w2,u2) of (49) are given by
u1 ¼ u�1 þ uk;1;

u2 ¼ u�2 þ uk;2 w2 ¼ w�
2 þ wk;2;
where u�1 is the solution of (53), uk,1 is the solution of (47), ðw�
2; u

�
2Þ is the solution of (29) and (wk,2, uk,2) is the

solution of (48).

Proof. The proof follows the same steps of the proof of Lemma 3.3. h

Remark 5.3. By regularity results for the solution of second order elliptic problem in convex domains and

trace inequality for polygonal domains ([1] and (19)), for any k 2 K0 the solution uk,1 of (47) is in H 2
C1
ðX1Þ

while the solution (wk,2,uk,2) of (48) is in H 2
C2
ðX2Þ \ H 3ðX2Þ, then, taking into account definition (54), the

interface conditions imposed in the heterogeneous problem (49) and the equivalence between (49) and

the Steklov–Poincaré equation (58), it follows that ImðSe
1Þ ¼ ImðSe

2Þ.
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In the special case where we take as extension operator R1g ¼ ug;1 (the solution of (47)) and R2g ¼ ug;2
(the second component of the solution of (48)), the Steklov–Poincaré operators Se

i are symmetric. As a

matter of fact, we have
hhSe
1k; gii ¼ ðruk;1;rug;1ÞX1

þ aðuk;1; ug;1ÞX1
;

hhSe
2k; gii ¼ rðrwk;2;rug;2ÞX2

þ ðruk;2;rug;2ÞX2
þ aðuk;2; ug;2ÞX2

ðby the first equation in (48)Þ
¼ ðwk;2;wg;2ÞX2

þ ðruk;2;rug;2ÞX2
þ aðuk;2; ug;2ÞX2

:

ð59Þ
In this case the following lemma holds.

Lemma 5.2. The operator Se
1 is linear, symmetric, continuous and positive. The operator Se

2 is linear,

symmetric, continuous and coercive.

Proof. The linearity and symmetry follow by definition (54) and (59). By definition (59) and trace inequal-
ities, there exists a positive constant Kð1Þ

2;e such that
hhSe
1k; gii ¼ ðruk;1;rug;1ÞX1

þ aðuk;1; ug;1ÞX1
6 Ckuk;1kH1ðX1Þkug;1kH1ðX1Þ 6 Kð1Þ

2;ekkkKkgkK:
Moreover, for any k 2 K with k 5 0
hhSe
1k; kii ¼ kruk;1k2L2ðX1Þ þ akuk;1k2L2ðX1Þ > 0;
that is, Se
1 is positive.

The continuity of Se
2 can be proved following the same steps of the proof of Lemma 3.3, with k = (k, 0),

while the coercivity of Se
2 on K is a consequence of the coercivity of S2 on K. h

As done for the homogeneous case, the Dirichlet/Neumann method (51) and (52) can be reviewed as a

preconditioned Richardson scheme for the Steklov–Poincaré equation (58):
given k0 2 K0;

kk ¼ ð1� hÞkk�1 þ h Se
2

� ��1
v�Se

1k
k�1

� �
k P 1:

ð60Þ
By Remark 5.3 and Lemma 5.2, for any k 2 K0, the element ðSe
2Þ

�1
Se

1k belongs to K0. Then, given a

suitable relaxation parameter h 2 (0,1), we can introduce the iteration operator
T h : K0 ! K0; T hk ¼ ð1� hÞk� hðSe
2Þ

�1
Se

1k; ð61Þ

and the convergence of the Dirichlet/Neumann iterations is ensured by proving that Th is a contraction, as
stated in the following theorem.

Theorem 5.1. There exist two positive constants ~h 2 ð0; 1� and Kh 2 (0,1) such that,
kT hkkK 6 KhkkkK; 8k 2 K0; 8h 2 ð0; ~hÞ;

i.e. the iterative scheme (51) (or equivalent (60)) is convergent.

Proof. We introduce the Se
2-scalar product ðk; gÞSe

2
:¼ hhSe

2k; gii, for any k, g 2 K0. By Lemma 5.1, this

scalar product induces a norm equivalent to the norm k Æ kK.
The proof follows the same steps of proof of Theorem 3.1, by proving that Th is a contraction with

respect to the Se
2-norm. Note that the coercivity of Se

2 and the positivity of Se
1 are sufficient to guarantee

the coercivity of Se.
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In particular
Table

Test ca

N

4

5

6

7

8

Hetero

chosen
~h ¼ 2
ðKð2Þ

1 Þ3

Kð2Þ
2 ðKð1Þ

2;e þ Kð2Þ
2 Þ2

: �
Finally, the following theorem, that ensures the well position of the heterogeneous problem (49), is a

consequence of Theorem 5.1 and Lemma 5.1.

Theorem 5.2. Given f 2 L2(X), there exist a unique solution u1 2 H1
C1
ðX1Þ and a unique solution

ðw2; u2Þ 2 H 1ðX2Þ � H1
C2
ðX2Þ of (49).
6. Numerical results for the heterogeneous coupling

Test case #1

We consider the computational domain X = (�1,1)2, and the following data: u = (x2 � 1)ey + (y2 � 1)ex

on oX, ou/on = o((x2 � 1)ey + (y2 � 1)ex)/on on oX and f = ex((r2 � 1)y2 + 3r2 � 1) + ey((r2 � 1)x2 +

3r2 � 1), a = 0.

We analyze the convergence rate of the Dirichlet/Neumann method for different values of r and for

various discretization and we chose the relaxation parameter h dynamically so as to minimize the interface

error at each step.

In Table 2 the number of Dirichlet/Neumann iterations are shown for a decomposition of X in
X1 = (�1,0) · (�1,1) and X2 = (0,1) · (�1,1). The rate of convergence is independent of the space discret-

ization, but strongly depends on r, as expected.
We denote by s/ ¼ k½/�SkL1ðSÞ the L1-norm of the jump on the interface S of the flux, that is
½/�S ¼ ð/1 � /2ÞjS ¼
ou1H
onS

� ou2H
onS

� r
ow2H

onS

� �� �����
S

: ð62Þ
In view of Remark 5.1, [/]S = 0 if and only if the second transmission condition on S (see (50)) is satisfied.

In Fig. 3 we show the behavior of s/ and the relative error in H1-norm between the numerical solution and

the solution of the global fourth-order problem, versus r and for two different values of N. Both the jump
and the error tend to zero when r vanishes. The jump of the solution u at the interface is not shown, being

less than 1.e�13 in all the situations.

Moreover, when N grows, the norm of the jump s/ tends to zero with spectral accuracy, with a lower

bound which depends on the magnitude of r as we can see in Fig. 4.
2

se #1

r H r

1 10�1 10�2 10�3 10�4 1 10�1 10�2 10�3 10�4

12 18 10 6 5 1/10 12 18 9 6 5

12 18 11 6 5 1/15 12 18 10 6 5

12 19 12 6 5 1/20 12 18 11 6 5

12 19 13 7 5 1/25 12 18 12 6 5

12 19 14 7 5

geneous coupling. Number of D/N iterations needed to satisfy the stopping criterion (46). The relaxation parameter h has been

dynamically. At left H = 1/2 has been considered, at right N = 1.
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Fig. 4. Test case #1. Heterogeneous coupling, jump on the interface of the flux / versus the spectral interpolation degree N.
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In Table 3 we show the number of D/N iterations for different values of r versus the position xS of the

interface S of the decomposition. In particular we have considered X1 = (�1,xS) · (�1,1) and

X2 = (xS, 1) · (�1,1).
Table 3

Test case #1

xS r

1 10�1 10�2 10�3 10�4

�0.50 13 21 15 13 13

�0.25 11 19 14 11 11

0.0 12 18 11 6 5

0.25 11 18 10 11 11

0.5 13 17 12 13 13

Heterogeneous coupling. Number of D/N iterations for N = 5 and H = 0.5, versus the position of the interface S.
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Test case #2

We consider now the membrane-plate heterogeneous coupling (49) with a uniform external load f � �1

in X = (0,2) · (0,1), homogeneous boundary data on oX, a = 1. The computational domain is decomposed

in X1 = (0,xS) · (0,1) and X2 = (xS, 2) · (0,1), the spectral polynomial degree is N = 5.

In Fig. 5 we show the numerical solution for xS = 0.5 and r = 0.5 (at left), r = 2 (at right), while in Table 4

we report the number of Dirichlet/Neumann iterations for various positions of the interface S and different

values of r. The discretization used for the results of this table has N = 5 and H = 0.25 in both X1 and X2.

6.1. Comparison with the virtual control approach

We compare now the results obtained by the Dirichlet/Neumann method on the heterogeneous coupling

with those obtained by the virtual control approach (see [8,7]).

To solve problem (4) by the Virtual Control means to look for the solution of the minimization problem
inf
k1;k2

Jðk1; k2Þ; ð63Þ
where
Jðk1; k2Þ :¼
1

2

Z
S

ou1
onS

� ou2
onS

þ r
ow2

onS

� �2

þ r
ou2
onS

� �2
" #

ds ð64Þ
and u1, and (w2,u2) are the solutions of the Dirichlet problems
�Du1 þ au1 ¼ f in X1;

u1 ¼ 0 on oX1 n S;
u1 ¼ k1 on S;

8><>:
r2D2u2 � Du2 þ au2 ¼ f in X2;

u2 ¼ ou2=on ¼ 0 on oX2 n S;
u2 ¼ k1; ou2=onS ¼ k2 on S:

8><>:

We denote by uDN and uVC the solution of the Dirichlet/Neumann method and Virtual Control Ap-

proach, respectively and by uex the solution of the global fourth-order problem considered in the previous

subsection. In Fig. 6 we compare the norm of the jump on the interface of the flux / (62) and the relative

errors kuex � uDNk1;X=kuexkH1ðXÞ and kuex � uVCk1;X=kuexkH1ðXÞ. By comparing the errors with respect to the

exact solution, the methods can be considered equivalent. This is not the case when we compare the com-
putational effort. In order to solve numerically the minimum problem (63) we have used the Bi-CGStab

algorithm [18] on the linear system $J = 0. At each Bi-CGStab iteration we have to compute two ma-

trix-vector products (that means to solve two differential subproblems in X1 and two differential subprob-

lems in X2) and evaluate the gradient $J two times (that means to solve other two differential subproblems

in X1 and two differential subproblems in X2). It follows that the computational effort for one iteration of



Table 4

Test case #2

xS r

1 10�1 10�2 10�3 10�4

0.5 9 15 12 7 5

1.0 9 15 12 6 5

1.5 9 15 12 7 5

Heterogeneous coupling. Number of D/N iterations versus the position of the interface S.
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error DN

error VC

σ

Fig. 6. Test case #1. Heterogeneous coupling: comparison between the solution of the Dirichlet/Neumann method (DN) and the

solution of the Virtual Control Approach (VC): the jump of the flux on the interface and the H1-norm error between numerical

solution and global fourth-order solution.

Table 5

Test case #1

N r

1 10�1 10�2 10�3 10�4

4 65 32 19 20 20

5 188 75 29 28 31

6 387 137 41 35 34

7 >500 272 57 44 45

8 >500 >500 74 55 54

Heterogeneous coupling. Number of iterations needed to the Bi-CGStab algorithm to converge to the solution of the minimum

problem (63).
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Bi-CGStab is equivalent the computational effort of four Dirichlet/Neumann iterations. In Table 5 we re-

port the number of iterations for the Virtual Control methods needed to satisfy the stopping criterion (46).

By comparing Table 5 with the left subtable in Table 2, we see that the Virtual Control method is more

expensive than the Dirichlet/Neumann method. In order to reduce the computational effort of the Virtual

Control method it seems mandatory to precondition the system $J = 0.
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