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Abstract

We consider the approximation of fourth-order problems derived, e.g., by the Kirchoff plate model and the hetero-
geneous coupling between a fourth-order problem and a reduced second-order one, describing, e.g., a plate-membrane
model. This paper is devoted to the analysis of an iteration by subdomain method, the so-called Dirichlet/Neumann
method, which is used to solve both homogeneous and heterogeneous couplings. Numerical results obtained by the
spectral element method are shown.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Fourth-order, linear elliptic differential equations in bounded domains may arise in solid mechanics to
model the transversal displacements of elastic plates, or in fluid mechanics to model the stream-functions
for the Navier-Stokes equations of incompressible fluids.

When coupled with second-order equations, they give rise to a heterogeneous fourth-order/second-order
model that can describe, e.g., the transversal displacement of a composite elastic structure which is made of
two different components, one behaving like a bending plate, the other like a membrane.

The convergence analysis of a domain decomposition approach to solve both fourth-order problem and
heterogeneous coupling represents the main goal of this work. Domain decomposition methods are today
largely used to reduce the computational complexity of numerical models arising from the modelling of sev-
eral problems of physics and engineering (see [16,15]). They also constitute a very interesting approach to

E-mail address: gervasio@ing.unibs.it

0045-7825/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.cma.2004.10.009


mailto:gervasio@ing.unibs.it

4322 P. Gervasio | Comput. Methods Appl. Mech. Engrg. 194 (2005) 43214343

solve numerically heterogeneous problems which reflect realistic situations in several applied sciences (see,
e.g., [15,6,17.5]).

In previous works [8,7], the domain decomposition approach to the fourth-order problem has been
reformulated as a Virtual Control Approach, for which the numerical solution is reached through the min-
imization of a suitable cost functional and the successive resolution of local differential subproblems with
Dirichlet conditions on the interface of the decomposition is required.

In this paper we propose and analyze the convergence of the so-called Dirichlet/Neumann method
[13,15] applied to both homogeneous fourth-order and heterogeneous fourth-order second-order couplings.
Through this method the solution of the primal problem is reduced to the successive solution of local sub-
problems with Dirichlet or Neumann conditions on the interface.

The numerical assessment of our theoretical results is carried out in this paper for both homogeneous
and heterogeneous coupling. The fourth-order equation has been rewritten in mixed form (see [3]) to solve
it numerically. A system of two second-order equations has to be solved instead of a fourth-order equation,
so that conformal spectral elements (only continuous and not C') can be used for the approximation step.
Finally, a comparison with the Virtual Control Method is done for the heterogeneous coupling, in terms of
both computational efficiency and accuracy of the solution.

An outline of the paper is as follows: in Section 2 we describe the model problem and report the basic
theoretical results about the fourth-order problem. In Section 3 we introduce the multidomain formulation
for the fourth-order problem and the Dirichlet/Neumann iterative method, for which we prove the conver-
gence. In Section 4 we report the numerical results obtained with spectral element approximation.

Sections 5 and 6 are devoted to the multidomain formulation and to the numerical results for the hetero-
geneous coupling.

2. The model problem

We consider a 3D homogeneous, isotropic thin plate of uniform thickness /2 and whose middle surface at
equilibrium occupies a region Q2 contained in the plane x3 = 0. Assume that the plate is subject to a volume
distribution of forces (f,f,,f;) whose resultants are f;(x;,x,) = ffﬁz f.dx;, for i=1,2,3, and that the
mass density per unit volume p is constant. In the classical thin plate theory (Kirchoff model) the transverse
shear effects are neglected and this assumption leads, in small displacement theory, to the following bound-
ary value problem for the third component u of the displacement vector u(xi,x,) = [v(xy, X2), w(x1, X2),
u(x1, x)]:

ph’ ~0A2 :
phut,—EAu,,—ka Au=f; in Qx(0,7),

Ou
= — = 0

on
where &> = Eh’/(12(1 — 1i2)) is the modulus of the flexural rigidity, E is the Young’s modulus, x € (0,0.5) is
the Poisson’s ratio and 0-/0n denotes the normal derivative on the boundary.

We shall refer to (1) as the Kirchoff plate model (see [11]). Boundary conditions u = g—z = 0 correspond to

consider a clamped plate. Approximating the time derivatives, e.g. by a classical impiicit finite difference
scheme with time-step A¢, one obtains the following fourth-order boundary value problem:

(1)

u on 0Q x (0,7),

*ANu—Au+ou=f inQ, (2)
Ou
uf&fo on 0Q, (3)
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where Q is a Lipschitz, bounded open set in R? with boundary 9Q, o> = x;ArEl(p(1 — %)), oy € R and
o« = 12/I*. Function f takes into account the resultant f; and other known terms.

In addition to (2) and (3) (hereafter called “homogeneous™ problem), we will consider the following
“heterogeneous” fourth-order second-order model:

{ —Au1 -+ oy :f in .Ql O'2A2u2 — Auz + oy :f in Qz, (4)
up =0 on 'y | uy =0u/on=0 on I'y,

where Q, and Q, are two disjoint subdomains of Q such that Q; U Q, = Q, S := 0Q, N 9Q, is the interface of
the decomposition and, for i = 1,2, u; := u)o, and I'; := 0Q N 04; (see Fig. 1). Model (4), which needs to be
supplemented by suitable transmission conditions on S, could, for instance, describe the transversal dis-
placement of a composite elastic structure which is made of two different components, one (corresponding
to ;) behaving like a membrane, the other (corresponding to ;) like a bending plate.

Our aim is to solve both problem (2) and (3) and problem (4) through domain decomposition methods
and, in particular, by the Dirichlet/Neumann iterations.

2.1. Weak formulation of the fourth-order problem and a priori estimates
A weak formulation of (2) and (3) reads as follows. Given fe L*(Q), find u € H}(Q) such that
o (Au, Av), + (Vu, Vo), + a(u,v), = (f,0), Vv € Hi(Q), (5)

where (-,")o denotes the L, inner product in 2 and

) _0}'
00

H(Q) := H*(Q): =—
@)= {v e @) vpa =

Thanks to Lax—Milgram lemma, problem (5) has a unique solution. Moreover, if Q is a convex polygon,
then u € H(Q) (see [10, Cor. 7.3.2.5]) and there exists a positive constant C; such that

ulli@) < Crllf Nl 2 (6)

From now on, we will consider Q rectangle.

The approximation of problem (5) by variational numerical methods, such as finite elements or spectral
elements, should require C'-continuity across the interfaces between the elements, thus the use of Hermite’s
elements, which are cumbersome to implement.

A classical alternative consists of using a mixed formulation for problem (5), by which the fourth-order
equation (2) is reformulated as a pair of second-order equations: find u, w such that, for ¢ > 0

{aAuw,
—0Aw — Au+oau = f,

()

Fig. 1. A partition of Q in two disjoint subdomains.
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the equalities holding in L*(Q2). We introduce the space:

H={vel*’(Q):Ave H'(Q)}, (8)
which is a Hilbert space for the norm
ol = (IolEey + 1801 10) ©)
A possible weak formulation of (7) reads as follows: given f' € L*(Q), find u € H, o(Q) and w € # such that
(w,0)g + a(Av,u) =0 Yv e A,
{a(Aw,z) — (Vu,Vz), — a(u,2), = —(f,z), Vz € Hy(Q), (10)

where (,-) denotes the duality product between H '(Q) and H}(Q). The choice of space # is used, for
example, in [2] for the analysis of Navier—Stokes equations in vorticity-stream function formulation.

In order to prove existence and uniqueness for the solution of problem (10) we use the theory developed
by Brezzi for saddle-point problems [3].

To this aim we introduce some notations and preliminary results.

Let us take

V=2, 0=H|Q),
alw,v) = (w,v), Yo,weV,
b(v,z) = a{Av,z) Vv eV, VzeQ,

c(u,z) = (Vu,Vz), + a(u,z), Yu,z€ Q.
Then, let B: V— Q' and B': Q — V' be the linear operators defined by

0/(Bv,z), = v(0,B'z); = b(v,z), YweV, Vz€Q (11)
and

KerB={veV:b(v,z) =0, Vze 0},

KerB' ={z€ Q:b(v,z) =0, Yoe V}.

Finally, we introduce two linear functionals 7 € Q' : o(7,z), = (—f,2z)gand 4 € V' : y(%,v), =
(0,v),. With these notations, problem (10) reads: given ¥ € Q' an d F eV, findwe Vand ue Q such
that:

{a(w, v) +b(v,u) = (9,v), YvevV,

b(w,z) — c(u,z) = o(F,2), Vz€OQ. (12)

Lemma 2.1. The following results hold.
1. a(-,*) is a bilinear continuous form, positive semidefinite, symmetric and invertible on Ker B.
2. ¢(-,") is a bilinear continuous form, positive semidefinite and symmetric.

3. Ker B' = {0}, b(:,") is a bilinear continuous form and there exists a positive constant 8 such that

sup 29

velV || ||/f

= Pllll e (13)
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Proof
l. The form « is bilinear, symmetric, continuous and a(w,w) = [[w|;2q = 0, Vw € V. Moreover,
W20 = [wll, for any w € KerB = {v € # : Av = 0}, so that a is coercive on Ker B with coerciveness

constant equal to one.
2. The form c¢ is bilinear, symmetric, continuous and there exists a positive constant C= C(a):
2 2
cu,u) = || Vullp2g) + ollull2g) = C(2)[|ullyg)- o _
3. By easy calculation it holds that Ker B' = {0}. The form b is bilinear and continuous. Moreover, for any
z € Q, choose v € V such that v = —z, then

b(v,z) = —b(z,2) = —0(Az,2) = 0| Vz}2 g

Now,

(Az,0) (Vz, V()
1Azl 1) = sup T === sup . 2 <Vl
teH (Q) | |H1(Q) (eH (Q) |H1(Q)
and, for v = —z,
2 2 2 2 2 2
ol = ||U||L2(Q) + ||AU||H*1(Q) < ||Z||L2<Q) + ||VZ||L2(Q) < (sz + I)HVZHL?(Q)v

being Cgq the constant in the Poincaré inequality.
Therefore, b(v,z) > o(Ch + 1) ?|lu]l 4 IVzll 2, = 0/(Ch + DlIvll, |1zll1 g and the inf-sup condition
(13) is satisfied with § = o/(C3+1). O

The following result, whose proof is a consequence of Lemma 2.1 and Theorem I1.1.2 in [3], holds true.

Theorem 2.1. For every f€ L*(Q), problem (10) has a unique solution (w,u) € # x H}(Q). Moreover there
exists a positive constant C, such that

||”||Hl(g) + Il < C2||f||L2(Q)' (14)
Remark 2.1. The solution u of (12) is also in H}(Q) N H*(Q), w € H'(Q) and problem (10) is equivalent to
problem (5).

As a matter of fact, let us rewrite the first equation in (10) for any v € C*(Q), since u € H}(2), we have:
0= (w,v),+ a(Av,u) = (w,v), — a(Vov, Vu),.

By density arguments, it holds
a(Vu, Vo), = (w,0), Yve H'(Q) (15)

and in particular (15) holds for any v € H}(). Then, since Q is a convex polygon and w € L*(Q), the func-
tion u € H)(Q), solution of the above problem, is also in the space H*(Q) [10].
By integrating by parts we have

0
(w,0)g = a(Vv,Vu), = —a(Au,v), + a/ ivds Yo € H'(Q),

oQ

which means w = —gAu in L*(Q) and 0u/on =0 on 9Q, i.e. u € H2(RQ).
Now, by integrating by parts the second equation of (10), it holds

o(Aw,z) = (—f — Au+ow,z), Vz€ H(Q) (16)

and, by density arguments, we obtain —gAw — Au + ou = f in L}(Q).
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By taking now, (16) with z € C{°(2), by integrating by parts twice, replacing w by —sAu and finally by
density results, we obtain problem (5). Then problem (10) is equivalent to problem (5), u € H*() and
we H(Q). O

By the fact that we H'(Q), the mixed formulation (10) is equivalent to the following one: find
w € H'(Q), and u € H}(Q) such that

{ (w,0)g — (Vo,Va)y = 0 Vo € HY(Q),

X (17)
o(Vw,Vz)o + (Vu,Vz), + a(u,z)g = (f,2), Vz € Hy(Q).

Our aim is now to write a multidomain formulation for problem (17). To do this, we have to generalize
problem (17) by taking non homogeneous boundary data on a side of the domain

We denote by I'; (forj=1,...,4) the sides of Qand by V; =I',_; N T, (forj=1,...,4, where I'y = I', for
convenience) the vertexes of . Moreover we denote by 7; the unit vector tangentlal to I';, orthogonal to the
outward unit normal vector n; to I';.

For any function v € HS(Q) (w1th s =2,3), we denote by y 20 (o, (0,0) ) the trace operator of
order one on I';and by y( ) the trace operator from H*(Q) to the space W**(0Q) := ﬁ Lol 27K () such
that y®v = {vlv 730, Y30, 730}

It is well known that the image w (69) of H*(Q) through the operator y® is a subspace of W*?(3Q),
characterized by suitable compatibility conditions at the vertexes V; of the domain (see [10,1]), and that if

—~s2 . . . . .
we endow W (0Q) by a suitable norm (see [1] for the details) then there exists a continuous extension oper-
—~52 .
ator from W (0Q) to H'(Q).
From now on and until the end of this section, let .S denotes a side of Q, I' = 0Q\ S, ng the outward nor-
mal vector to S and 7 the unit vector tangential to S. We introduce the space

o
= {l = ()»1,/12) S H3/2(S),)»2 S HI/Z(S) : )bl\aS = 0,12‘35 = 0,—1 = 0}
615 as
and the norm || - ||, that is the restriction to S of the norm given on WZ‘Z(GQ). Then, we introduce the sub-
space Ay C A:
Gy o
Ag = {/1 = (J,42) : 7 € HY(S), 70 € HY(S) t dajas = 0, dopps = 0,2~ = 0,==| = 0}.
s 0ts] s
For any (4;,4;) € A, let us set
: i ifS=1T; , h ifS=1T;
0  otherwise 0  otherwise
and let
2 be an extension to Q of {(g1,83),---,(g}.&3)} :?g ={(g1.23),--. (¢.83) }- (18)

As a consequence of the results given in [1], if 4 € A (resp. if 4 € A), then g € H*(Q) (resp. § € H*(Q)),
moreover there exist two positive constants Cz and C, such that

Gl < lIgllirig) < Calldlly, VAEA (19)

and A is a Hilbert space.

For any subset X of 0Q, we set Hy(Q) := {v € H'(Q) : vy = 0}.

Given 4= (44,4,) € Ay, we define the fourth-order extension (w;,u;) of A to Q the pair of functions
w, € H(Q), u; € H}.(Q) with u; = 7, on S such that
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{ (ws,0)g — 0(V,Vu,) o = —0 [ vds Vv e H'(Q), (20)

a(Vwy, Vz) o + (Vuy, Vz) o + a(u;,2), =0 Vz € Hi(Q).

Proposition 2.1. For any A= (11,42) € Ay, there exists a unique solution (wj,u;) of (20). Moreover, there
exists a positive constant Cs such that

[l @) + Iwall e < CsllA]]4- (1)

Proof. Let us consider an extension g € H*(Q) of 4 to Q, and introduce the function & = u; — g. By replac-
ing u; with @ + g in (20) and by integrating by parts, problem (20) reads: find & € Hy(Q), w, € H 1(Q) such
that

{ (W1, 0) o — 6(Vo, Vi), = —a(v, AZ) Vo € H'(Q), )
o(Vw;, Vz), + (Vit, Vz), + (it z), = (Ag — 08,2), Vz€ Hy(Q),
that is, find & € H}(Q), w; € # such that
{ (W, 0)g + o({Av,it) = —a(v,Ag), Yv € A, 23)
a(Aw;,z) — (Vit,Vz), — a(it,2), = (—Ag + 0g,2), Vz € Hj(Q).

Problem (23) is of the same type of problem (12), with (%,0v), =—0o(v,Ag), and
0(7,2)p = (—Ag +0g,z)o. We remark that both ¢ and # are well defined, since g € H*(Q). Applying
again Lemma 2.1, Theorem II.1.2 of [3] and (19) the thesis follows. [

Remark 2.2. By the same argument of Remark 2.1 and regularity results for elliptic problems with non-
homogeneous Dirichlet data [10], we can prove that u; € HA-(Q)NH*(Q) and w; € H'(Q), where
H}(Q) :={ve H*(Q) : vy = 2|, =0}

3. Multidomain formulation for the homogeneous problem

We decompose the computational domain in two disjoint subdomains Q; and Q,, such that Q = Q, U Q,.
Moreover we ask that Q; (i = 1,2) be rectangles (see Fig. 1). We define the interface S = 0Q N 0Q,, the
external boundaries I'; = 0Q,\S for i = 1,2 and the spaces:

A° = {J € H*(S) : /. = v for a suitable v € H2(Q) N H*(Q)},
={pne H'*(S) : u=us for a suitable v € H'(Q)}.
For i = 1,2, denote by #; any possible extension operator from A to H'(Q,) that satisfies (%;u) s = nand
by #! any possible extension operator from A° to H? (Q)nH 3(Q)) that satisfies (jo/l)‘s = A

The multidomain formulation of problem (17) reads for i=1,2: find w; € H'(Q;) and u; € H! r(€;) such
that

(24)

(Wi, vi)g, — 6(Vvi, Vi) =0 Yy, € Hy(Q), i=1,2,
(VW”VZ,)Qi (Vu;, Vzi)o + (i zi) g = (f121)g, Vzi € Hy(Q), i=1,2,
Uy =u,wy =wy 0n S7

2
Z[(Wh %l.u)gl - G(V’%i.ua v”l’)gi] =0 VIM € A?

i=1

[0(Vwi, VAL o, + (Vuy, VAL g, + o(us, R Z(f, ) Vie A

i=1
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Remark 3.1. The three last equations in (25) are the transmission conditions for the mixed formulation of
the fourth-order problem (2) and (3).
We could write them in a formal way as follows:

u, =1u; on S,

wp =Wwy; O0n S,

6u1 6”2 (26)
=0c— onsS
@ns ¢ ans ’
6u1 an @uz aWQ
—4+0—=—4+0— onS.
Ong Ong  Ong Ong
We note that, in view of the third condition in (26), the last one can be rewritten as a% = aaﬂ Trans-

mission conditions (26) guarantee that the multidomain problem (25) is equivalent to the monodomam one
(17), as stated by Lemma 3.1.

Lemma 3.1. Problem (17) is equivalent to problem (25) in the sense that if w and u are the solutions to (17),
then w; := wiq, and u; := ujq, for i = 1,2 are the solutions of (25) and vice versa, if w; and u; (for i = 1,2) are the
solutions of (25), then w and u, such that wq, = w; and ujo, = u;, are the solutions to (17).

Proof. We begin by proving that if (w,u) is a solution of (17), then w; = wjo, and u; = ujo, (for i =1,2) are
the solutions of (25).

By construction, u;, w; € H' (), u; = 0 on I'y, u; = u» on S and w; = w» on S. If we consider in (17) the test
functions z € H}(Q) such that zjo, € H}(Q1), zj0, = 0 and v € H'(Q) such that vjo, € H}(Q)), vjo, = 0, by
putting z; = zjo, and v} = v), the first two equations of (25) hold for i =1 (the proof is similar for i = 2).

Now, for any pu € A and 4 € A°, we set

@?A in .Q]7 {%1/1 in .Ql,
= V=
%’gi in Q,, Rop In Q.

By definition of 22" and %; (for i = 1,2), we have z € H}(Q) and v € H'(®), so that the last two equations of
(25) are satisfied too.
Vice versa, let be w; and u; (for i = 1,2) the solutions of (25), we set

231 in .Ql, wi in .Q],
u .= . w = .
U, 1n Qz, wy 1 QQ.

Since w; € H'(Q,), for i = 1,2 and since they share the same trace on S, we have w € H'(Q). By the same
argument we have u € Hy(Q).
We take v € H'(Q) and z € C(Q), we have that :=uvs€ A and 1:=zg€ A°, so that (vjo, — Zipt) €

HY(Q;) and (zjg, — #77) € H}(Q:), for i = 1,2. Therefore,

2
(w,0)o — 6(Vo, Vu), Z { Wia,, Vg, — Zitt) o, — 0 (V(vi, — Zipt), Viuyo,) o,

i=1

+ (Wi in) g, — 7(VRt Vg, | =0 Vo€ H'(Q),
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MN

o(Vw,Vz), + (Vu,Vz), + a(u,z), = [ (VW‘Q‘., V(Z\Q, — '%?)“»Qi + (Vu‘gl, V(zmi — ,%?i))gi

1
(w0 210, — A7) + 0 (Vi VA 2) o + (Vug,, VAZ),

(1, A7) }

1

+ +

I
g[S

2
(f’Z\Q Q,+ fvg?o f, ) VZGCSC(Q)
i=1

i=1 i

By density argument, o(Vw,Vz)q + (Vu, Vz)o + a(u, 2)o = (f,2)q holds also for any z € H)(Q). O

3.1. Iterations by subdomains: the Dirichlet/ Neumann method

In order to solve problem (25), we can use an iteration by subdomains algorithm that reads as follows.
Given 2’ = (1], 43) € Ao, for k > 1, we look for w¥ € H'(Q;) and u* € H} (@) (for i = 1,2) such that:

(ks 02)g, — o(T1, Vi) = 0 o € H(E),

(9w, V1), + (Vi V), + 2 21), = (F 20 oy € 1Y),

uk = 5! on S,

(wl,ﬁl,u) - J(Vﬁ’l,u,Vu’f)Ql = —0 [, /5 'uds Yu e A,

(Wh,02) g, — 0(V02, Vi) o, = 0 W, € HL(Q)), (27)
a(Vnh, VZZ)Qz + (Vadh, sz) + a(uz,zz) =(f,22)q, Vzy € Hy(Q,),

k wh on S,

Wy =
2 2
S [o(Th, VR2), + (Vi VR2), +a(uh, #02), | = S, #02), Vi€ A

i=1 i=1
and

k_ k-1 k ol
K= (L= 02 0y, 2= (1= ) + 022

. (28)

where 0 € (0,1) is a suitable relaxation parameter.

Method (27) and (28) belongs to the family of Dirichlet/Neumann methods, since it provides a sequence
of problems in ©; with Dirichlet conditions on S for #; and problems in 2, with Neumann conditions on S
for u,.

In order to prove that the Dirichlet/Neumann method yields the solution of (25), we reformulate the
multidomain problem (27) and (28) as a Steklov—Poincaré equation on the interface.

3.2. The Steklov—Poincaré equation
For i = 1,2 we denote by w € H'(Q,) and u} € H}(£,) the solution of the following problem:

{ (Wj7 vi)Q, - O'(VU,‘, vuj)gl =0 VUI' € HI(QI-),
(

(29)
g VWT, VZI')Q[ + (Vu:‘, VZZ')Q[ + fx(u;ﬁ,Zl')Q[ = (,f’Zf)Q; VZI' € Hé(Q,)
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We denote by A’ the dual space of A and we formally define the local Steklov—Poincaré operators
i A— A forany 4 € A

aW)q[ au}u,‘
o W ,

Sid= | Ol Omlg |, (30)
(—1)'0w;_1,-‘s

where (w; ;,u; ;) is the fourth-order extension of A to €;, namely the solution of

{ (Wiir i), — a(Voi, Vi) g = (-1)'a s Z2v;ds Yo, € H' (), G1)

a(Vw,,, Vzi)gi + (Vuy,, Vz,-)gl + ot(uu,z,-)gl =0 Vze H(l)(Q[),
with u, ;= 4, on S (for i = 1,2) and where n; (i = 1,2) denotes the outward unit normal vector on the inter-
face S, with respect to Q,. In particular n; = ng = —n,.

Denoting by (-, ), the duality pairing between A’ and A and by (w,, ;, 1, ;) the fourth-order extension of
nto Q; (for i =1,2), we set
A/<yl}‘; ”>A = G(VW,‘LJ, v%?”’l)gl + (Vu;ﬂh V@?i’]l)Q’ + (X(u;l’,', %?7]1)9,

+ (—1)i0'/ Wiishads Vi = (1y,1,) € Ao. (32)
s

Moreover we define y; € A’ as follows:
A'<Xia 'l)/\ = (f’ e%)?”Il)gi - O-(szi vg?nl)gl - (vujv Vf@?’ﬁ)g, - OC(M; e@?171)91

_ (_l)ia/wf‘snzds, Vi € Ay (33)
N

and we set
S =S+ 1=+ Lk (34)
The following Lemma holds.

Lemma 3.2. Let (w,u) be the solution of problem (17) and let us set A = (us, g—z lg), then A € Ag is the solution
of the Steklov—Poincaré equation

NS D)y = a1 E Ao (35)
Conversely, if A € Ay is the solution to (35), then the solution (w,u) of (17) is such that

Wig, = Wi + wy, uo, =u; +uz;, =12 (36)
Proof. By Remark 2.1, u € H*(Q), then 4 is well defined and it belongs to A,. By the equivalence between
problems (17) and (25), if 4 is the trace of order one of « on S, then the restriction of the solution of (17) to

.Q,‘ is

* * .
Wig, = W; + Wiis U, = U; + u,;, 1= 172
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We have

2
[a(vm,i,vge?n,)gl + (Vs VRN ) + oc(u“,gf?m)gj} + Z(—l)’a /S w5t ds

1 i=1

-

).'<‘?la ">A =

1

[0(Twi0, VM) + (Vut, V) o + (0 2m,)

|
'M“

1

'Plﬂ~

(o (Vo, V) g, + (Vs V) + (i 2y, ]

1

[(—l)ia/innzds—(—l)ia/wfsnzds}
1 S N

(by both third and last equations in (25))

1

+
-

1

2
= [(f’ AMm) g, — (VW VAN, — (Vi VR,
i=1

(i, Ao, — (~1)'o / w;‘|si72dS] .

Conversely, let us take the solution 4 to (35) and set
wp = wi +w,, w=u; +u,; fori=1,2,

where (w},u}) and (w, ;u, ;) are the solutions to (29) and (31), respectively.
The first two equations and the fourth equation of (25) follow by both (29) and (31). Moreover, from

0= (74, '1>A — a1 '1>A

2 2
= Z [G(Vwi, V%?’h)gl. + (V“ia V’J??nl)gi + “(”w%?’h)gi - (fv ‘@?’71)9[} + Z(*l)iU/ w,~|s172ds,
i—1 S

i i=1
the last equation in (25) holds and w; = w, on S.

Finally, since uj =u5 =0 on S and u;; =u;, on S, then u; =u, on S. By the equivalence between
problem (17) and (25) the thesis follows. [

Remark 3.2. In the special case where we replace ,%?171 by u; and Z;u by wf] in definitions (32) and (33)
((wf17 u’,,) is the solution to (31) and i denotes the trace of wf7 on S), thanks to the first equation in (31) with
w,,; instead of v;, we obtain

AT Ay = (Wi, W), + (Vis, Vum‘)gzi + oy, i) g (37)

and

N sma = (f, “n.,i)g,- - (W;‘awmi)gz, - (Vu;‘,Vu,,_],»)Qi — oy, “mt‘)g,- (38)

In this case the operators &;, for i = 1,2, are symmetric and it can be proved that they are continuous
and coercive, as stated in the following section.
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3.3. Convergence analysis
Lemma 3.3. The operators &; are linear, symmetric, continuous and coercive, for i= 1,2.

Proof. The linearity and symmetry follow by both definition (30) and (37).
Continuity. By formula (37) and by applying the a priori estimate (21) we have:

I (Lidm) | < ||W/1z||L ||W'1«,fHL2(Q,) + C(“)H”A.i”fﬂ(Q,-)””n,iHHl(Q,-)
< C(o 0)(Iwaill 20 + Naill o) Uwaill 2o + lunill i)
K34l

w1thK2 — K N, 0,9Q;) > 0.
Coercivity. First of all we observe that for any 4 € Ay, with 4 # 0 it holds

2 2 2
w{Tih W)\ = Wil + 1IVuzillp ) + elluillpg) > 0 (39)
Then we set
Wil n Ql, U1 in Ql,
W) = . Uu; = .
W2 1M .Qz, u,» 1N .Qz.

By Remark 2.2 the functions u,, (for i = 1,2) belong to Hy 2 (Q,—) and, since u; ; and u,, share the same trace
of order one on S, then i € H3(Q). The following estlmate takes sense, thanks also to the fact that
1AVI[Z2(0) + N0ll7 (@) = Nell7e) for any v € HG(2) (see [4]):
2
2 2 2
SN Z {HWMHLZ(Q,») + ||V”2,iHL2(Q,) + OCHu/‘A«,iHLZ(Q;):|

2 2 2 2
> C@) (Wil + il @) = €@ (P Ausll g, + Nl
2 2
> C(,0)|uillip0) > Cla 0, Q)]

Since | and ., are two operator of the same nature and they are positive by (39), then the previous
inequality implies that they are coercive too, that is there exist two positive constants K (11) = Kﬁ”(oc, a,Q;)
(for i = 1,2) such that

AT dy = K (o,0, QA VAEA,. O
By simple calculations, we can reformulate the Dirichlet/Neumann method (27) and (28) as a precondi-
tioned Richardson iteration for the Steklov—Poincaré equation (35):
given A’ € A,,

40
F=1-02"+07" (x— 4 k=L o)

Remark 3.3. Note that, as a consequence of their coercivity on A and thanks to Lax—Milgram lemma, both
&1 and ¥, are invertible on Im(%;) = Im(%,) and y;lyll € Ay for any 4 € A,.

We introduce the .%;-scalar product

(j‘a ’1),9’2 = A'<"¢2}'a n>A VAW '1 S AO-
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The corresponding &>-norm

14, == 1/ (4,4)y, Vi€ Ag (41)
is equivalent to the norm || - ||, for any function A € Ay. Actually, it satisfies the two-side inequality
KPR < 1415, < KUY Vi€ Ao, (42)

where K 52) and K(Z2> are introduced in Lemma 3.3.
Given a relaxation parameter 0, consider the following operator:
To:Ag— Ay, A Toh:=(1—0)A— 09, Sk (43)
Then, (40) reads
iven 2° € Ao,
R (44)
AM=Tyd +09y k=1

In order to prove the convergence of the sequence A* to the solution of (35), it is sufficient to prove that
Ty is a contraction with respect to the &,-norm.

Theorem 3.1. There exist two positive constants 0e (0,1] and Ky € (0,1) such that
ITodll,, < KollAlly, VA€ Ao, VO € (0,0) (45)

i.e. Ty is a contraction.

Proof. We remark that
Toh=(1-0)A—09,'S1h=4—05,' LA
By the definition (41) we obtain
ITodll%, = (S 2k, W)y — O (SR AYy — OS2k, S SR+ O (S 2, S SR

then, by setting u = &, ' 4 and recalling that &, is symmetric, we can write

ITodll%, = 1A%, — 205 (LA, ) + O\ (A, ).
From Lemma (3.3) and (42) it follows that
1 K+ Kk
plla = |95 S, < — |74, < —=2——2||4]|,,
lully = 117574l 5 KD (BN K0 (41N
2
(1) (2) (K;l) + K(ZZ)) 2
b < (K4 KD Yl < S Al
(x7)
and
(1) (2)
1 5 K"+ K
~200( 82}y < =20(K1 + K )14 < <207 Al
2
Therefore,

1Todl,, < Koll2ll,, VA€ Ay,
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with

(1) @\ 2 (1) 2
Ky +K K7+ K
KU HZ( 2 2 > 20 1 1 1

2
K

and the thesis follows if

M) | @ 2) 2

- kWK K

0<0<i=2" T2 (2 )
KZ KZ +K2

4. Numerical approximation

In order to approximate the solution of the boundary-value problems in (27) we use the conformal quad-
rilateral spectral element method (see e.g. [14,12,9]). This approach corresponds to a Generalized Galerkin
formulation of the continuous problem.

The linear systems in Q; (i = 1,2) are solved by Bi-CGStab algorithm [18], preconditioned by an incom-
plete LU factorization.

In order to test the convergence of our Dirichlet/Neumann (D/N) algorithm we check that

||<Wfl’ui€7/)) - (:vfc;/)l’uf;l)HHl(Qx) < 107127 (46)
| (Wies “iyf)HHl(sz,-)

max

=12
where k is the D/N iteration counter, {(w*,,u*,)} (for i = 1,2, k > 0) denotes the spectral element approx-
imation of the sequence {(w*,u*)} and

)7

1/2
2 2
10,0l = (W) + i) W, € H'(Q).

First of all we have analyzed the convergence of the D/N method (27) for different values of the coeffi-
cient 0. The symbols N and H stand for the spectral polynomial degree and the element diameter of the
mesh, respectively.

We have taken Q = (—1, 1)?, while the right-hand side and the boundary data are constructed so that the
exact solution is u(x,y) = (x*> — 1)¢¥ + (¥ — 1)e¥, o = 0. Moreover we have considered Q; = (—1,0) x (—1, 1)
and Q, =(0,1) x(—1,1).

In Table 1 we report the number of D/N iterations to satisfy the stopping criterion (46) with 6 = 0.5 and
various values of the coefficient o.

Table 1
Homogeneous coupling
N 4 H o
1 107! 1072 107° 1074 1 107! 102 1073 1074
4 4 4 5 4 4 1/5 5 5 5 4 4
5 5 4 4 4 5 1/10 5 5 4 4 5
6 5 5 5 5 5 1/15 5 4 4 4 5
7 5 5 5 5 5 1/20 5 4 4 4 4
8 5 5 5 5 4 1/25 5 4 4 4 4
Number of D/N iterations, with § = 0.5, needed to satisfy the stopping criterion (46). At left H = 1/2 has been considered, at right
N=1.
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10°% E
10710 ’
1010f 3
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5 6 7 8 4 5 6 7 8

N N

Fig. 2. Homogeneous coupling, L®-norm of the jumps on the interface and the error in H'-norm versus different values of the
polynomial degree N, with H = 1/2. At left (resp. at right) the results for o = 1 (resp. ¢ = 107>) are shown.

In Fig. 2 we show the L*-norm of the jumps on the interface of the normal derivative of discrete solu-
tion, that is

[Ou [Ons]g == (Qury [Ons — Buay [Ons)lg  sau = ||[Otiye /Onislgl s

[awyf/ans]s := (OW1 4 /Ong — Oway [Onis)|g  Saw = ||[6W%’/ans]s||p°(s>

and the relative errors between the numerical solution and the exact one in the H'-norm, for two different
values of o. The L™ -norms of the jumps [uy]s := (u1r — thw)|s, [Wals := (Wi — way)|s are not shown,
being less than 10~'* for all values of N, H and ¢ considered.

We verify that the convergence rate of the D/N method is independent of N, H and ¢ and that the con-
vergence of the spectral element solution to the exact one is of exponential type.

5. The heterogeneous coupling

We consider now the heterogeneous problem (4). In this section we will give a weak formulation of it and
will formulate an iteration by subdomains algorithm to find its solution.

Using the same notations introduced for both definition of the trace operator y® and space A in Section
2.1, we introduce here the trace operator of order zero: y'V from H*(Q) (with s=2,3) to W (0Q) =
[}, H*"V2(I;), the space

A={LeH*S): Jps =0}
—~21
and we denote by || - || 4 the restriction to S of the norm given on W  (0Q) in [1]. Moreover we introduce
the subspace A, of A:
Ao = {4 € H*(S) : Jos = 0}.

For any 1 € A we denote by u;; € H‘F1 (Q)) the second-order extension of . to Q, namely the solution of

{ (VM/M, Vzl)gl + OC(M;,,th)Q] = O VZl c H(l)(.Ql), (47)

) =4 on S,
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while for any 7€ A, we denote by (w;,u;,) € H'(€;) x lez(92) the fourth-order extension of
A =(2,0) € Ay (in analogy with (31)) to Q,:

(Wi2,02)q, + 0(Vuya, Vin)g, =0 Vv, € H'(Q,),
a(Vwia, VZz)g2 (Viti2, Vza) g, + 0(uz2,22)g, =0 Vzo € Hy(2s), (48)
Uyp = A on S,

finally, £, is any possible continuous extension operator from A, to H7. ((€1), while %, is any possible con-
tinuous extension operator from A, to H% (@) N H(Q,).

The weak formulation of the heterogeneous problem (4) reads: find wu; € H lrl (2,) and
(Wz, I/Iz) € HI(QQ) X H} (Qz) such that

(Vur, Vzi)g + a(ur,z1)g, = (f,21)g, Vz; € Hi(Q)),

(w2, 02), — 0(Va, Viz) o, =0 Vv, € H'(Q,),

a(Vwa, V), + (Vuz, Vo) + oz, 22)g, = (f,22), Vzy € Hi(Q,), (49)
U = u on S,

2 2
o(Vw, Vhsi)g, + 3 (Y, VAA) g, + 0 Bi2)g | = S0 F, id)g, Vi € Ay,
i=1

i=1

Remark 5.1. Transmission conditions of (49) can be formally written as

Uy = up on S,
0= o—% on S
N 6ns ’ (50)
aul aW2 @u2
L e S
ans 7 6n5 + ans on
and they are deduced from (26), by putting ¢ = 0 in ;. Note that, in view of the second equation, the last
aul 6W2
one reads also — = g —.
ans 6n5

Remark 5.2. System (49) can be solved by an iteration by subdomains algorithm, similar to the Dirichlet/
Neumann method (27) and the existence and uniqueness of solution for problem (49) will be a consequence
of the convergence of such iterations.

5.1. Iterations by subdomains: the Dirichlet/ Neumann method for the heterogeneous problem

Given f€ L*(Q) and a function 2° € Ay, for k > 1, we look for ut € Hyp (2)), wh e H'(Q,) and
uf € Hy. (2,) such that:

(vull{7vzl) —|—O((M1721) (fazl) VZl EH&(Ql),

ub = ! on S,

(w4, 02)92 —(Vu,, Vug)gz =0 Yo, € H'(Q,), (51)
O-(VWIE,V22> + (Vu’z‘, VZQ)QZ + O((MIE,ZQ)Qz = (_f722)92 Vz, € H(l)(Qz),

2 2
o (T, V) o, + 3 | (Vi Vi2) o + (i 2:0) | = S f Ay, Vi€ Ao

i=1
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with
A= (1=0)2" + 0ud, (52)

and being 0 € (0, 1) a suitable relaxation parameter.

As done for the homogeneous coupling, we reformulate the Dirichlet/Neumann method in terms of the
Steklov—Poincaré operator.

We denote by u} € H(Q;) the solution of the problem:

(VMT,VZI)QI —i—oc(u’{,zl)gl = (f,Zl)g] Vz, € H(l)(Ql), (53)

and by (wh,u}) € H'(Q,) x Hy(£2,) the solution of problem (29) for i = 2.
We formally define the local Steklov—Poincaré operators ¢ : A — A’: for any 1 € Ay

S = — <0—6W“ ) (54)
S

ang
Denoting by (({-,")) the duality pairing between A’ and A, we set
(L12m) == (Vu 1, V&) o, + alusy, #in)g,, V11 € Ao,

Ouy Ou,»

S =

)
ans s s ans

e (55)
(L52,m) = a(VNwin, VRN g + (Vitzo, VRN o, + (10, Bal) g, VN € Ao
and we define the linear functionals y; and y, € A’: for any 5 € A,
(Qom) = (f, Ao, — (Vuy, VAR o, — iy, #11)g,, (56)

(Osm) = (f, Ran) g, — a(Nwy, VRN o, — (Vity, VRN o, — i3, Ban) g, -
Finally we set
S =L1+S5 =0+t (57)

In the following Lemma we rewrite the heterogeneous multidomain problem (49) in terms of the Stek-
lov—Poincaré operators (55), in order to interpret the Dirichlet/Neumann algorithm as a preconditioned
Richardson method and to prove the convergence of the iterations.

Lemma 5.1. Let uy and (wo, uy) the solutions of (49) and let us set /.= uy s = uy|s, then A € Ay is the solution of
the Steklov—Poincaré equation

(& 2m) = ((n) Vi€ Ao (58)
Conversely, if 1 € Ag is the solution to (58), then the solutions u, and (w,,u,) of (49) are given by

"
Uy =u; +u,

* *
Uy = Uy FUp Wy =W, + W0,

where u; is the solution of (53), u,, is the solution of (47), (w5, u3) is the solution of (29) and (w2, u; ) is the
solution of (48).

Proof. The proof follows the same steps of the proof of Lemma 3.3. [

Remark 5.3. By regularity results for the solution of second order elliptic problem in convex domains and
trace inequality for polygonal domains ([1] and (19)), for any 4 € A, the solution u; ; of (47) is in H%l ()
while the solution (w; ,u;5) of (48) is in H7 (Q,) N H?(Q,), then, taking into account definition (54), the
interface conditions imposed in the heterogeneous problem (49) and the equivalence between (49) and
the Steklov—Poincaré equation (58), it follows that Im(.%}) = Im(.%%).
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In the special case where we take as extension operator %, = u, (the solution of (47)) and %.n = u,»
(the second component of the solution of (48)), the Steklov—Poincaré operators .#’; are symmetric. As a
matter of fact, we have

(ZL14,m) = (Vur, Vg 1) g + o(uzr, 1) g,
(Z54.m) = a(Vwy, Vo) o, + (Vig, Vit 2) o, + 00,4y 2)g,
(by the first equation in (48))
= (W2, Wy2)o, T (Vitiz, Vi) g, + o2, y2) g, -
In this case the following lemma holds.
Lemma 5.2. The operator &% is linear, symmetric, continuous and positive. The operator &5 is linear,

symmetric, continuous and coercive.

Proof. The linearity and symmetry follow by definition (54) and (59). By definition (59) and trace inequal-
ities, there exists a positive constant K(Zle) such that

e 1
(S5 0m)) = (Vusy, Vit )g, + (g, ty1) g, < Cllwsally gyl allm o) < K324l

Moreover, for any 4 € A with 2 # 0
(S 2)) = ||V, Hiz(gl) + afluz, ||iz(§zl) >0,

that is, ] is positive.
The continuity of .95 can be proved following the same steps of the proof of Lemma 3.3, with 4 = (4,0),
while the coercivity of %5 on A is a consequence of the coercivity of &, on A. O

As done for the homogeneous case, the Dirichlet/Neumann method (51) and (52) can be reviewed as a
preconditioned Richardson scheme for the Steklov—Poincaré equation (58):

given 1° € A,,
k k—1 -1 k—1 (60)
F=1-0"40(75) (x—27") k=1
By Remark 5.3 and Lemma 5.2, for any 1 € A, the element (V‘;)*ly‘;i belongs to Ag. Then, given a
suitable relaxation parameter 0 € (0, 1), we can introduce the iteration operator
To:Ag— Ao, Toh=(1—0)4—0(5%) " 50, (61)

and the convergence of the Dirichlet/Neumann iterations is ensured by proving that T} is a contraction, as
stated in the following theorem.

Theorem 5.1. There exist two positive constants e (0,1] and Ky € (0,1) such that,
ITolll, < Koll2ll,, YA€ Ay, YO € (0,0),

i.e. the iterative scheme (51) (or equivalent (60)) is convergent.

Proof. We introduce the &5-scalar product (4,7) . := ((¥54,n)), for any 4, n € Ay. By Lemma 5.1, this
scalar product induces a norm equivalent to the norm |- 14

The proof follows the same steps of proof of Theorem 3.1, by proving that T, is a contraction with
respect to the .#5-norm. Note that the coercivity of %5 and the positivity of .| are sufficient to guarantee
the coercivity of &°.
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In particular
(2)43
i, (KD
2) (D) (2)y2°
K2 (K24€+K2 )

Finally, the following theorem, that ensures the well position of the heterogeneous problem (49), is a
consequence of Theorem 5.1 and Lemma 5.1.

Theorem 5.2. Given f€ L*(Q), there exist a unique solution u, EHIFI(QI) and a unique solution
(w2,u2) € H' (@) x H,(Qa) of (49).

6. Numerical results for the heterogeneous coupling

Test case #1

We consider the computational domain Q = (—1,1)%, and the following data: u = (x> — 1)e’ + (* — 1)e*
on 3Q, duldn=0((x*—1)e’ +(* — 1)e)/on on dQ and f=e"((c* — 1)y* + 30> — 1) + (6> — Dx* +
362 — 1), a=0.

We analyze the convergence rate of the Dirichlet/Neumann method for different values of ¢ and for
various discretization and we chose the relaxation parameter 6 dynamically so as to minimize the interface
error at each step.

In Table 2 the number of Dirichlet/Neumann iterations are shown for a decomposition of Q in
Q;=(-1,00x(—1,1) and Q, = (0,1) x (—1,1). The rate of convergence is independent of the space discret-
ization, but strongly depends on o, as expected.

We denote by s = ||[¢]]|,~(s) the L™-norm of the jump on the interface S of the flux, that is

(62)

ans B @ns 6ns

s
In view of Remark 5.1, [¢]s = 0 if and only if the second transmission condition on S (see (50)) is satisfied.
In Fig. 3 we show the behavior of s,4 and the relative error in H !_norm between the numerical solution and
the solution of the global fourth-order problem, versus ¢ and for two different values of N. Both the jump
and the error tend to zero when ¢ vanishes. The jump of the solution u at the interface is not shown, being
less than 1.e—13 in all the situations.

Moreover, when N grows, the norm of the jump s, tends to zero with spectral accuracy, with a lower
bound which depends on the magnitude of ¢ as we can see in Fig. 4.

Table 2
Test case #1
N o H o
1 107! 1072 1073 1074 1 107! 1072 1073 1074
4 12 18 10 6 5 1/10 12 18 9 6 5
5 12 18 11 6 5 1/15 12 18 10 6 5
6 12 19 12 6 5 1120 12 18 11 6 5
7 12 19 13 7 5 1125 12 18 12 6 5
8 12 19 14 7 5

Heterogeneous coupling. Number of D/N iterations needed to satisfy the stopping criterion (46). The relaxation parameter 6 has been
chosen dynamically. At left H = 1/2 has been considered, at right N = 1.
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Fig. 3. Test case #1. Heterogeneous coupling, jump on the interface of the flux ¢ and the error in H'-norm between the numerical
solution and the solution of the global fourth-order problem, versus different values of o, with H = 1/2. At left (resp. at right) the results
for N =5 (resp. N = 8) are shown.
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Fig. 4. Test case #1. Heterogeneous coupling, jump on the interface of the flux ¢ versus the spectral interpolation degree N.

In Table 3 we show the number of D/N iterations for different values of ¢ versus the position xg of the
interface S of the decomposition. In particular we have considered ;= (—1,xg)x(—1,1) and
QZ = (xSs 1) X (_1: 1)

Table 3
Test case #1
Xs g

1 107! 1072 1073 1074
—0.50 13 21 15 13 13
—0.25 11 19 14 11 11
0.0 12 18 11 6 5
0.25 11 18 10 11 11
0.5 13 17 12 13 13

Heterogeneous coupling. Number of D/N iterations for N =5 and H = 0.5, versus the position of the interface S.
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Fig. 5. Test case #2. Heterogeneous coupling: spectral element solution with ¢ = 0.5 (left) and ¢ = 2 (right). The interface is located in
Xg = 0.5.

Test case #2

We consider now the membrane-plate heterogeneous coupling (49) with a uniform external load f= —1
in 2 =(0,2) x(0,1), homogeneous boundary data on 02, « = 1. The computational domain is decomposed
in Q; =(0,xg5)x(0,1) and Q> = (xs,2) X (0, 1), the spectral polynomial degree is N = 5.

In Fig. 5 we show the numerical solution for xg = 0.5 and ¢ = 0.5 (at left), 0 = 2 (at right), while in Table 4
we report the number of Dirichlet/Neumann iterations for various positions of the interface S and different
values of ¢. The discretization used for the results of this table has N =5 and H = 0.25 in both ©; and Q.

6.1. Comparison with the virtual control approach
We compare now the results obtained by the Dirichlet/Neumann method on the heterogeneous coupling

with those obtained by the virtual control approach (see [8,7]).
To solve problem (4) by the Virtual Control means to look for the solution of the minimization problem

}nf J (21, 42), (63)
1,42
where
1 Ou; Oup ow, : Ou, :
PR I B | el B i 22) ld 64
S, 42) 2/S [<6ng 6n5+66n5> T\ %) | (64)

and u;, and (w,,u,) are the solutions of the Dirichlet problems

—Au1 =+ oy :f in .Ql, 02A2u2 — Au2 + ouy :f in Qz,

u =0 on 0Q; \ S, uy = uy /on =0 on 0, \ S,

up :;L] on S, uzzih@uz/@nsz/lz on S.

We denote by upn and uvyc the solution of the Dirichlet/Neumann method and Virtual Control Ap-
proach, respectively and by u.y the solution of the global fourth-order problem considered in the previous
subsection. In Fig. 6 we compare the norm of the jump on the interface of the flux ¢ (62) and the relative
errors |[ue — upn ||y of [[tex |l (o) and [[uex — uvcl|; o/ [[ttex |l 1 ()- By comparing the errors with respect to the
exact solution, the methods can be considered equivalent. This is not the case when we compare the com-
putational effort. In order to solve numerically the minimum problem (63) we have used the Bi-CGStab
algorithm [18] on the linear system VJ = 0. At each Bi-CGStab iteration we have to compute two ma-
trix-vector products (that means to solve two differential subproblems in ©Q; and two differential subprob-
lems in €2,) and evaluate the gradient VJ two times (that means to solve other two differential subproblems
in Q; and two differential subproblems in Q,). It follows that the computational effort for one iteration of
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Table 4
Test case #2
Xs 1

1 107! 1072 1073 1074
0.5 9 15 12 7 5
1.0 9 15 12 6 5
1.5 9 15 12 7 5

Heterogeneous coupling. Number of D/N iterations versus the position of the interface S.
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c

Fig. 6. Test case #1. Heterogeneous coupling: comparison between the solution of the Dirichlet/Neumann method (DN) and the
solution of the Virtual Control Approach (VC): the jump of the flux on the interface and the H'-norm error between numerical
solution and global fourth-order solution.

Table 5
Test case #1
N o
1 107! 1072 1073 1074
4 65 32 19 20 20
5 188 75 29 28 31
6 387 137 41 35 34
7 >500 272 57 44 45
8 >500 >500 74 55 54

Heterogeneous coupling. Number of iterations needed to the Bi-CGStab algorithm to converge to the solution of the minimum
problem (63).

Bi-CGStab is equivalent the computational effort of four Dirichlet/Neumann iterations. In Table 5 we re-
port the number of iterations for the Virtual Control methods needed to satisfy the stopping criterion (46).
By comparing Table 5 with the left subtable in Table 2, we see that the Virtual Control method is more
expensive than the Dirichlet/Neumann method. In order to reduce the computational effort of the Virtual
Control method it seems mandatory to precondition the system VJ = 0.
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