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Several classical fractional step schemes are proposed for the spectral approximation of
advection-diffusion equation in two-dimensional geometries. Suitable boundary condi-
tions are studied in order to preserve the accuracy of the schemes at each step. An
example is given about the application of the fractional step schemes to solve problems
with large Péclet number.

1. Introduction

The fractional step schemes are based on the idea of splitting a differential operator
into the sum of terms of simpler form, in order to reduce the resolution of the
original equation to a sequence of simpler subproblems.

These schemes are considered in order to either reduce two or three dimensional
steady problems to a sequence of one-dimensional ones (as the Alternating Direction
Iterative method -ADI- 8, 2) or to split differential operators, reflecting complex
situations, in terms of simpler model problems. The idea is to subdivide each time
step in two or more substeps so that intermediate solutions are computed by the
resolution of a single part of the original problem (see for example 1%, ¢ 5). The
splitting of the differential operator can be done either at differential or at algebraic
level. In the first case the problem is reformulated as a sequence of well-definite
differential subproblems with their boundary conditions, each of them will then
be discretized in space. In the second case the splitting is done on the algebraic
structure, obtained after a suitable spatial discretization.

In this work we will focus our attention on the differential approach, in particular
we propose boundary conditions which can be imposed at the intermediate substeps
without loss of accuracy.

The idea is to modify the bilinear forms associated to the suboperators by suitable
terms on the Neumann boundary. These terms don’t change the nature of the
problem but, at a fractional time level, they balance the natural boundary condition
of the complete operator. More precisely, among the boundary terms arising from



integration by parts we treat implicitely only those which garantee the well-pose-
deness of the problem at hand.

The advection-diffusion equation is considered and the splitting proposed separates
the diffusive term from the advective one. The potential numerical instability,
occuring for the cases when equations are dominated by first order transport terms,
can be avoided by the successive resolution of pure diffusive and advective problems.
The spectral methods are used for the spatial discretization and the generalized
Galerkin formulation is used in order to solve the elliptic and first order advective
problems. We observe that this splitting is relevant only for the stability analysis
of the schemes and not for their accuracy.

In this paper we focus our attention on two topics: the accuracy and the stability
of the examined fractional step schemes. The analysis of the accuracy can be carried
out on a large area of test problems: with constant and variable coefficients and
with different boundary condition types. The analysis of the stability gives clear
conclusions if “simple” model problem are considered, such as homogenous Dirichlet
boundary conditions and constant coefficients (in this particular case the absolute
stability of the scheme is ensured). In the more general case of variable coefficients
or non homogeneous Dirichlet boundary conditions, our numerical results don’t
allow any clear conclusion about stability condition on the time-step.

An outline of this paper is as follows.

In section 2 we recall the Peaceman-Rachford, Douglas-Rachford and #-method (or
Strang method) fractional step schems as they are known in literature when they are
applied to an algebraic operator splitting. The basic concept related to the accuracy,
consistency and stability are recalled. In section 3 the advection diffusion problem,
its variational formulation and its differential splitting are presented. In section
4, after a brief recalling of the basic definitions of spectral methods, the spectral
generalized Galerkin formulation is given for the model elliptic and pure advective
problems. In section 5 the approaches, used to impose the boundary conditions at
the substeps, are presented and they are applied to the Peaceman-Rachford scheme;
a convergence analysis is carried out. In section 6 numerical results are presented.
The first tables proove the theoretical accuracy results exposed in Section 5; the
following ones show the spectral radius of the step-operator matrices versus the
time-step At, the interpolant degree N and the other parameters of the problem.
Finally a problem with large Péclet number is approximated and solved by fractional
step schemes, showing that fractional step schemes on the splitting of the advection
diffusion problem can give succesfull results.

2. Operator Splitting and Fractional Step Methods

Let us consider the following parabolic equation:

vt € (0,1) look for u(t):



g—::—l—ﬁu:f in Q x (0,%) (2.1)

with initial condition u = ug in © x {0} and suitable boundary conditions on
09 x (0,7). f is a suitable given function and £ is a linear elliptic differential
operator.

Let us introduce a discretization of the interval [0,7], say to = 0, t, = to+n-At,

. i
withn = 1, ..., nypee and npqe = [—] — 1, and let us denote u™ = u(t,), vt =

At
u(t, + o - At) with o € (0, 1].

We denote by L the matrix that arises from a consistent space discretization of
the differential operator £ in (2.1); now we intentionally preserve general notations,
and we refer to Section 4 for a detailed description of the space discretization used
in this paper. Therefore we define an algebraic splitting for L so that L = L, +
Lo+ ...+ L, with M > 2.

In this Section we present the fractional step schemes on the algebraic operator

splitting, as they are more known in literature.
After we have presented the spectral approximation (Section 4), we will deal with
the fractional step schemes on the differential operator splitting. However we point
out that, if homogeneous Dirichlet boundary conditions are imposed in (2.1), the
algebraic splitting is equivalent to the differential one.

An example of fractional step scheme applied to problem (2.1) is the following

one (see 7):
forn =0, ..., Dmae look for u?*1:
u® = ug
nt1l/M _ n
i T L =0

(2.2)

un+1_27;-}-](‘2/1—1)/M LMun+(M—1)/M = fr.

This fractional step scheme has M steps, and the intermediate solution at step
n+ ]M is computed by solving an implicit problem on the matrix L;.

In order to study the convergence of the solution of a fractional step scheme to
the exact solution of the original problem we need to study the stability and the
consistency of the scheme itself. We will deal with these topics in the following
subsections.

2.1. Stability and Convergence Analysis
Let At > 0 be a time step, and n = 0, .., N4, such that
u™ = u(ty) = u(to + nAt). (2.3)

We introduce the following discretization in time for the problem (2.1):



0 (2.4)

ut = Tu* + aAt F* n=0,.. Nmae
u- = up,

where the linear operator 7' is said step operator, o is a real positive parameter and
7 = Sf" is the image of the source term f™ by the linear source operator S.

We observe that every fractional step scheme can be written as (2.4) by elimi-
nating the fractional solutions. The choice of the operators T" and S characterize
completely the fractional step scheme, hence the study of the fractional step scheme
can be reduced to the study of the scheme (2.4).

The scheme (2.4) is said stable if there exist two positive constants Cy and Cy
such that

lullv < Culluglly +Ca - _max Py (23)
The conditions

(|7 < 1 and [|S|| < C, (2.6)
where || || is a suitable norm for the discrete operators 7" and S and C'is a positive

constant, are sufficient conditions to ensure the bound (2.5).
In practice to check the condition (2.6) is reduced to check that the spectral radius
p(T) of the discrete operator T is less than 1. The scheme (2.4) is said absolutely
stable if the condition (2.5) is satisfied for every At > 0, otherwise the scheme is
conditionally stable and, in general, the stability region depends from the space
discretization.
A fractional step scheme is said consistent if the corresponding scheme (2.4) is
consistent in the classical meaning. Moreover the order of accuracy of (2.4) is also
the order of accuracy of the corresponding fractional step scheme.

We introduce now the fractional step schemes that we will use in the following
sections and we analyze their stability, consistency and accuracy.

2.2. The Peaceman-Rachford scheme (PR)

The Peaceman-Rachford scheme reads:

wnti/2_yn

Az T Lyut? 4 Lyu® = frtl/?

nt1l_, nt1/2
At/2

u

+L2un+1 4 Llun+1/2 — fn+1/2

The step operator associated to the PR scheme is

Top= (2141 - 2 o)V (21 - 217 (2.8)
PR =\ At 2 At Y\ At ! At 2) '

If the eigenvalues of L; and L, are non-negative and L; and L, have a common
system of eigenvectors, the PR scheme is absolutely stable (7).



Under these assumptions, denoting by /\(]) = a(“ + zﬁ(J) the eigenvalues of the
matrix L;j, j = 1,2, the eigenvalues of Tpg are:

e, = [ 2 42® (2 o AD (2 o 9.9
PR =\ Ay Al At+ Atk (2:9)

and

[ApR,| = . (2.10)

The condition a( 9)
k,and p(Tpr) < 1.

> 0 for j = 1,2 is sufficient in order to have |Apg, | < 1 for each

About the accuracy, by eliminating u"*1/2 from the two steps of the scheme we
obtain:
urtl oy 1 At? untl —
— + —L(u"t! M=t Ly [ ——— 2.11
A Tt A= 4 v At (2.11)

which is equivalent to the Crank-Nicolson scheme up to a term of second order in

At.

2.3. The Douglas-Rachford scheme (DR)
The Douglas-Rachford scheme reads:

un+1£2t_un + Ll’un+1/2 + Lou™ = fn+1/2
(2.12)
un+1_Autn+1/2 + Lg‘un'H _ Lzu”
The step operator associated to the DR scheme is
1 e !

If the eigenvalues of L; and L, are non-negative and L; and L, have a common
system of eigenfunctions, the DR scheme is absolutely stable (M.

Again, denoting by )\g) (J) + zﬁ(]) the eigenvalues of the matrix L;, j = 1,2,
the eigenvalues of Tpgr are:

-1 -1
ADR = 1 _|- (2) i i + )\(1) L _ )\(2) + )\(2)
* At At \ At k At k k

(2.14)




and

2 ? 2 ?
Ao | = At\/ (2 +al) + <ﬁ,£”>2\/ (2;+af) +@

2
At\/@ﬂ?)) (a2 + (P .15

At

The condition ag) > 0 for j = 1, 2 is sufficient in order to have |Apg,| < 1 for each k.

By eliminating u”*!/2 from the two steps of the scheme one obtains:

n+l _ ,n n+l _ ,n
% 4 Lurt! = 2 AL L (%) (2.16)

which is equivalent to the implicit first order Euler scheme up to a term of second
order in At.

2.4. The 0-method

The #-method, with 6 € <0, %), reads:

nt6_ . n
u 9Atu +L1,un+9 +L2un — fn+€

un6+11_—;9_)17;+0 + L2un+1—€ + Llun+9 — fn+9 (217)

ntl_, nt1-6
At

u

1
ith ¢ = .
wi € <0, 2)

The step operator associated to the §-method is the following one:

= (141 NN L 41 o
T oAt ' oAt ?) \(1=20)At ?

V(e (s
(1—20)At AN ! oAt *)

The absolute stability is ensured if the real part of the eigenvalues of L; and L,
are non negative and if L; and L, have a common system of eigenfunctions. We

2
(L B A;;)) < I A;ﬂn)
\o, — AT (1= 20)A1 2.19)

1 2 1
- )\(1) /\(2)
<0At+ k ) <(1—20)At+ k

+L1un+1 +L2un+1—€ — fn+1

(2.18)

have:




and

1 2 ) 5 ‘
<@ j a?)) 8 ’(“1))2] \Km - a?f") +(B)?
i (2.20)

1 2 1 2
<E + aggl)) + (ﬁl(cl))2‘| \/<(1 ——QH)At + af)) + (61&2))2

are less than one for each value of At if a;cj) >0 forj=1,2.

Ifo=1- - the scheme is second order accurate in At, otherwise it is only a

first order scheme in At (3).

3. The Advection-Diffusion Problem

3.1. Problem statement

In this Section we present the non-stationary advection-diffusion problem:

g—'z—kﬁ'u:f’ in Q x (0,7%)

u=yg on 99, x (0,1)

ou A 50 0.7 (3.21)
o, - on 092, x (0,%)

u = ug in Q x {0}

where T > 0, Q is an open subset of Rz, 0 is the boundary of Q, 02, and 09,
provide a partition of 9Q such that 9Q, N 9Q, = 0 and 9Q, U IQ,, = 9Q. The
functions g, h, ug are prescribed from data, and £ is the following differential
operator:

Lu = — div(yVu) + div(bu) + bou (3.22)

where v|g > 0 is the kinematic viscosity, b = (b, bz)T is a given vector field and by
is a non-negative absorbing coefficient. We take v, b1, by and by in L*®(Q) and we
assume that they are constant in time. The term

Jdu

On,

=vVu-n—b nu on 0R2 (3.23)

is the conormal derivative associated to the operator £, and n represents the unit
outward vector to 09Q.

Given an open and not empty subset X of 982, we denote by 7,, the trace operator
from H*(Q) to H'/?*(X) and by Ey the extension operator from H/*(X) to H'(Q)
(see 9).

We define:
Vy i ={ue H(Q): Yo, U = g}, (3.24)



L20,%X) == {u:(0,1) = X : /0 [lu(®)]> < oo}, (3.25)

and by C°((0,%); X) the space of the functions u : (0,7) — X such that the map
t :— u(t) is continuous.

Then we assume that: f € L?(Q x (0,7)), ¢ € L?(0Q, x (0,1)), h € L?(89,, x
(0,1)) and uo € L*(Q). Following ° (pag. 364), the weak formulation of problem
(3.21) formally reads

find u € C°([0,7]; L%(Q)) N L*(0,7; V,) such that
Yt € (0, T, (u(t) — EaQDg(t)) € Vp and
i/ u(t)vdQ + a(u(t),v) :/ F(t)vdQ +/ h(t)vdoQ Yv eV
dt Ja @ oty (3.26)
u(0) = ug,
where
a(u,v) = / I/V'U-V’UdQ—/(b'u)~V'UdQ—|—/ bouvdS2 Yu,v € HY(Q) (3.27)
Q Q Q

is the bilinear form associated to the differential operator £. The term (3.23) is the
natural Neumann boundary condition associated to the formulation (3.26).
Remark. Instead of (3.21) we can consider the problem

Ou ) -
E—i—ﬁu_f in Q x (0,7)
u=y on 0, x (0,%)
(3.28)
u _ h o, x (0,%)
Vo = he on 99, :
u = ug in Q x {0},

which differs from (3.21) for the Neumann boundary condition. The bilinear form
associated to the operator £ formally reads

a(u,v) = /VVU -Vv dQ + /(div(bu) + bou)v dQ2 Yu,v € HY(Q). (3.29)
Q Q

3.2. Operator splitting
The advection-diffusion operator £ is split as £ = £ + Lo with

Liu = —div(vVu) (3.30)

and

Lou = div(bu) + bou. (3.31)



The operator £, is a pure diffusive operator, while the operator L5 is an ad-
vective operator. The splitting we have choosen is quite simple and natural; the
advection-diffusion problem is seen as the sum of its two basic components.

Inside the problem (3.21) the bilinear form associated to the operator £; and
Lo are:

a(u,v) = / vVu - Vod§2 (3.32)
Q

and

as(u,v) = —/bu Vv dQ + /bouv dQ Yu,v € HY(Q), (3.33)
Q Q

while inside the problem (3.28) we have:

dy(u,v) = a(u,v) (3.34)
and
as(u,v) = /(div(bu) + bou)v dQ Yu,v € HY(Q). (3.35)

We observe that, when in the fractional step scheme we advance with the oper-
ator £, we have to solve an elliptic problem, otherwise when we advance with the
operator L2 we have to solve a hyperbolic problem.

For the advective problem we define the inflow boundary 0%, as

0 = {x € 0Q : b(x) -n(x) < 0} (3.36)

and the outflow boundary 0,y := 0Q\0Q;,. On 9, an inflow boundary condi-
tion is enforced, while on 9€Q,,; no boundary conditions are considered.

Remark. We observe that a priori there are no relations between 002, and
0Q;yn, since the original problem is an advection-diffusion problem with Dirichlet
and/or Neumann boundary conditions. Nevertheless, in the context of the operator
splitting, the hyperbolic problem must be well defined, in particular it must have
well definite inflow conditions on 9€;,. To this aim two ways can be followed.
The first way consists of assigning on 9€;,, the solution of the previous step, that is
possible even if 0€;, is not a subset of 9Q, but the temporal discretization scheme
becomes a first order scheme, even if its theoretical accuracy is grater than one.
The second alternative consists of requiring that 9Q;, C 0Q, and, in this way, the
formal accuracy order of the scheme is not degraded.

4. Spectral Approximation

We introduce now the basic notations of spectral methods in order to discretize the
spatial differential operator £. On the reference domain Q* = (—1,1)? we define

the LGL nodes {(¢&;, nj)}gfj;l) as the (N + 1)? zeros of the polynomial (1 — ¢%)(1 —



7?)L (§)L,(n), where L’ (£) is the derivative of the Legendre polynomial of degree
N defined on (—1,1) (*). The weights associated to the LGL nodes (&;, ;) are

Wi = = <N(A3 1) L;f(&)) (N(Af Y L;@)) (4:37)

fori,j=1,.., N+1, where v; , 7; are the weights associated to the one-dimensional
Legendre-Gauss-Lobatto quadrature formulas (?). The L%(Q*) inner product is
approximated by the Gaussian quadrature formulas and, given two integrable func-
tions u, v on %, it reads:

N+1

(u,v)nqr = Z u(&;, mj)v(&i, nj)wij ~ /ﬂ* u(é, n)v(€,n) dQ. (4.38)

i,j=1

It is well known that the Legendre-Gauss-Lobatto formulas, on N 4 1 nodes, are
exact for polynomials up to degree 2N — 1 (see ?).

If we consider a generic quadrilateral domain Q C R? the LGL nodes (&, m5) €
Q* are mapped in © by a one-to-one affine map F (whose jacobian is denoted Jr)
and such that F(&,m;) = (2i,y;) € Q (see *). The quadrature formula on 2 reads :

N+1
(w,v)na = Y ulzi, yp)v(zs, vy )wig|detJp (&, my)|- (4.39)
i,j=1

Therefore, for u,, v, € Q_ we define the discrete bilinear form a , approxi-
mation of a, as:

ay(uy,vy) = @Vu, —bu,, Vv, )na + (bouy, vy )N a Yu,, v, €Q,.
(4.40)
If we set

)N (UN: UN) = (VVUN: VUN)N,Q’

4.41
AN (UN: UN) = _(buN’ VUN)N,Q + (bOUN: 'UN)N,Q: ( )

then a,, and a,, are the discrete approximation of the bilinear forms a; and as,
respectively.
The forms @; and @s, defined in (3.33) and (3.35) are approximated by a,,, and

a,, , respectively, where
C:luv (uNavN) a, (uNa N) = (VVUN¢VUN)N,Q (4.42)
azm( N’UN) (leI ( ')+b0uN’vN)N7Q'

Here, for all v € C%(Q), I,v € Q,, () denotes the interpolant of degree less than or
equal to N in each variable of the function v at the Legendre Gauss-Lobatto nodes
(#:,y;) = F(&,nj) on Q.

We set VI =V, N Q,(Q)and V,, = VIS; the spectral approximation to problem
(3.21) reads:



Vit € (0,1] find uy (t) € VI (uy(t) — I (Eaq,g(t)) €V, :

d

{ Tlun O 00+ a0y (0,0) = (O v)va Vo €V (g
uy (0) = I, ug.

Remark. At each step of a fractional step scheme we have to approximate time-

independent elliptic adjoint problems and hyperbolic problems. To this aim we

briefly present the approximation of these problems by the generalized Galerkin
spectral methods.

4.1. Spectral approzimation of the elliptic problem

Let us consider the following elliptic self-adjoint problem on a quadrilateral domain

Qc R%:

—div(vVu)+au=f inQ
u=yg on 9%
o b (4.44)
=h on 09,

V— =
on
whose variational formulation reads:

find u € V;, (see definition (3.24)) such that

/ vVu - VodQ2 +/ auvdQ :/ fvdQ —i—/ hvd(09) Yo € Vg, (4.45)
Q Q Q a0,

Using the notation introduced at the beginning of this section the problem (4.45)
is approximated by the generalized Galerkin spectral method as follows
find u,, € V¢ such that

(Vvuf\ﬂ VUN)Nyﬂ + (auN: UN)N,Q = (f7 UN)N,Q + (h¢ /UN)N,(I’QN Vv, € V.
(4.46)
4.2. Spectral approzimation of the first-order advection problem

The model problem we consider reads:

find u € H'(Q) such that

div(bu) + bou = f in Q U 0Qpuz
{ u=yg on 0Q;n (4.47)
where 0Q;,, is the inflow boundary introduced in the previous section.
A possible variational formulation of this problem reads:
find u € Ly(Q) such that
— fﬂ bu - VudQ + fﬂ bouvdQ = fﬂ fvdQ — faﬂm b - ng vdoQ (4.48)

Vv € HY(Q),



Its generalized Galerkin spectral approximation is:

find u,, € Q_(Q) such that

—(bu,, Vv, )na+ (bouy,vy)va = (fvy)va — (b-ng, v, )N o0, (4.49)
Yo, € Q (Q). :

If we consider the bilinear form a- instead of as the variational formulation of
(4.47) reads: find u € H1(2) such that ysq,, u = g and

/ﬂ(div(bu) + bp)udQ = /vadQ Vv € Ly(Q). (4.50)

The associated spectral approximation is:

find u,, € Q_(Q) such that

{ (divIy(buy) +bouy,vy)nva = (f,oy)vae Yo, € Q(Q)
(4.51)

Uy =g at the LGL nodes on 0€;,.

Remark. In the space Q (Q) we can consider the basis of Lagrange functions
{pi(z, y)}gff'lf defined on the LGL nodes {x; = (z;,,4:,)}; t'_, and we set N, =

21,22

(N +1)%. This basis is orthogonal with respect to the discrete inner product (4.39)
and every function v,, € Q _(Q) can be expanded as:

Ny
UN(]:J y) = ZUN,HOZ'(]:: y) (452)
i=1
where v, . = v (@i, Yi,)-
Therefore we can denote by M the diagonal mass matrix

Mij = (S’DJ’,S’DZ')]\QQ i,j = 1, ..,Nt, (453)
and we set:

(Al)ij = alN(‘le’cpi)’ (AQ)ij = a2N(90j¢90i)= t,jg=1,.., Ny
(4.54)

(Al)i]' = alN(SDJVSOi)’ (AZ)ZJ = a2N(30j’30i)’ t,j=1,.., N

5. Spectral Fractional Step Schemes

In this paragraph the differential splitting on the advection diffusion problem is
considered. Some approaches for the imposition of the boundary conditions are
proposed and the accuracy of the resulting schemes are studied. The generalized
Galerkin spectral discretization is considered. In view of the last remark of section
3 we suppose that 9€;, C 0Q,.



First of all we consider the elliptic steps (we name “elliptic” the steps which
are implicit on the matrix L; and “hyperbolic” the steps which are implicit on the
matrix Ls).

We denote by ki, ko and k3 three subsequent fractional time levels and we set
11 = (k2 — k1)At and 7, = (ks — k2)At. For example at the first step of the scheme
PR we have k1 = n, ks = n + 3 and k3 = n+ 1 withm =m = %; while for the
first and second steps of the #-method we have k1 =n, ks =n+0,ks=n+1-20,
71 = 0At and 7 = (1 — 20)At.

Two approaches (R1 and R2) are proposed for the approximation of the problem
(3.21), which are based on the bilinear forms a1, e as,. Two other (DN and D)
are proposed for the problem (3.28), this time based on the bilinear forms a;,, and
ElzN.

Inside the Peaceman-Rachford and the Douglas-Rachford schemes there is one ellip-
tic step and one hyperbolic step, while inside the #—method there are two elliptic
steps and one hyperbolic. In the following approaches we propose the boundary
conditions for the two basic problems. Both the elliptic steps of the §—method
have to be solved by the same scheme.

We impose the boundary conditions at the final time level for the elliptic steps, and
at the initial time level for the hyperbolic ones. It can be shown that equivalent ac-
curate schemes can be obtained by imposing the boundary conditions at the initial
time level for the elliptic steps, and at the final time level for the hyperbolic ones.
Approach R1

Elliptic step

1
;(Uﬁ? _ UZI,UN)N,Q + alN(uf\f’ UN) =

(fk2= UN)N,Q - a‘2N(u’}i]1’ UN) + (hk2= vN)N,aQN

u*2 = g on 0Q,,

(5.55)
Hyperbolic step
1
;(uﬁfa - uf\?: UN)N,Q + agN(uﬁ;”, UN) + (b 'nu’ifa’ UN)N,aQOM

Huk>
= (fk2’IUN)N,Q - (b ! ngka’ UN)N,BQM - alN(uﬁ‘?’ UN) * (V ag ’UN)
N,89

,0Q

The approaches R1 and R2 differ for the treatment of the boundary conditions on
the elliptic step. In the approach R1 the boundary condition on 9€2,, at the elliptic
step is a natural condition for the complet bilinear form a,, evaluated at the final
time level (k2). As we will see in the next paragraph, this approach is first order
accurate in At and, when applied to second order schemes like PR or f#-method, it
drops the accuracy of these schemes to the first order in At.

In the approach R2 the terms (b~nu’}f‘?, vN)N’aQN and (b~nu§1, UN)N)aQN, evaluated

at the elliptic step, have been subtracted respectively from the left and the right



hand sides of the equation in order to obtain both the natural condition for the
problem (3.21) at the time level ¢;, and the natural boundary condition for the
bilinear form as, at the time level ¢;,. This technique is introduced in order to
preserve the theoretical accuracy of the fractional step scheme used. In both the
approaches, at the hyperbolic step, the natural boundary condition for the bilinear
form as,, is enforced at the time level #,.

Approach R2

Elliptic step

1
;(uiﬁ — UZI,UN)N)Q + alN(uﬁf, vy)—(b- nu’}f‘?, UN)N)EQN =
(fk2)vN) - azN(uf.\fl’vN) + (hkzﬂvN)N,BQN - (b .nuivlﬂvN)N,BQN
u’]ff =g on 09Q,
(5.56)
Hyperbolic step

1
_(u];;a - uif2"UN)N,Q + azN(ui;’, UN) + (b : nu’;a, Un)no9,, —

On

Huk>
= (fkla'UN)N,Q - (b ) ngkaa uN)N,an - alN(uf\rZJ'UN) + (V = "UN)
N,8Q

The two following approaches are proposed for the approximation in time of the
problem (3.28). In this case the boundary treatment at the elliptic step is the same
for both approaches; the difference is about the hyperbolic step.

In the DN approach the inflow condition is imposed weakly, while in the D approach
the inflow condition is imposed strongly, following the formulations (4.49) and (4.51)
respectively.

Approach DN

Elliptic step

1 ~
;(Uiﬁ _ u’;lij)N)Q =+ alN(ui?’ UN) =

= (fk2’vN)N,Q - a2N(ui‘1’vN) + (h’§2’ vN)N,aQN
u’}f‘? =g on 09,

(5.57)
Hyperbolic step

1 ~
—(uif’ - ui?,vN)N)Q + agN(uif’, vy)— (b ~nu’;3, Uy non,, =

B Ou*=
= (fk2=vN)N,Q - (b ’ ngka’ UN)N,an - alN(u’;\?’ UN) + (V ar]: ﬂvN) :
N,oQ



Approach D

Elliptic step
1

;(u? - UZI:UN N,Q + alN(ufj’ UN) =

= (fk2 ) 'UN)N,Q - aQN(ui-l ) 'UN) + (hléz: 'UN)N,@QN
ui? =g on 09,
Hyperbolic step

1 -
;(ul;s - uiﬁ’ UN)N,Q + agN(uﬁf’, UN) + (uﬁ;aa UN)N,aQ

in

5.1. Application to the PR scheme: accuracy analysis

B IThE
= (15 )+ (05, ), — 0 (052, 0,) (3—n ) |
N,8Q

(5.58)

In this paragraph we analyze the consistency and the accuracy of the PR scheme
when the approaches R1, R2, DN or D are considered in order to impose the

boundary conditions on the subproblems.
stability analysis of the schemes.

We refer to the next section for the

The approaches R1, R2, DN and D, exposed in the previous paragraph are used

here inside the Peaceman-Rachford scheme, but the same analysis can be carried out
on the other fractional step schemes as the Douglas-Rachford scheme or #-method.

Scheme PR - approach R1
for n =0, .., nynae find u’;]“'l eV,:

2
E(urjff+1/2 - UT;]? UN)N,Q + alN(uT;f;+1/2a UN) =

= (]m+1/2a UN)N,Q - azN(uZﬂ UN) + (hn+1/2a UN)N,QQN

u’}fflﬂ = g(tht1/2) on 0L,

N N uN N )

At
= (fn+1/2vN)N,Q - (b : ngn+1, UN)

ounti/2
N
+ V—m > Un

— alN(uZ]-I-l/za UN)+

N,8%,

N,0Q

2
_(un~+1 - un-+1/2: 'UN)N,Q + a2N(' n+17 'UN) + (b : nun+1 'UN)N,aQoM =

(5.59)

The scheme PR-R1 (5.59) is consistent and it is first order accurate in A¢. In
fact, we first observe that the Dirichlet boundary condition, imposed at the first

step, doesn’t drop the accuracy of the scheme; therefore we sum the two steps of



the scheme (5.59) and, since h = I/g—u — b - nu, we have:
n

2
AT = v ) e 200 (P ) any (W ) 0y) =

— 9(fnt+1/2 9 3u§3+1/2
- (f ’UN)N,Q + v an » Un
N,8Q

_(b ! nurff;+1: UN)N,@Q - (b ' nuzf+1/2a UN)N,BQN .
By defining
ff] = (fn7UN)N,Qi
0p; .
<1/ﬂ,goi) if x; € 002,
Dij = on N2y
0 otherwise,
e (b - ny;, %)N,z ifx; €X with ¥ C 0Q
N 0 otherwise;
and
Li=A+D Ly = Ay + B,

the matrix form of the scheme (5.60) reads:

2
A Mt =)+ 2Lyl P2 4 Loy (u ) =

2f§+1/2 _ BaQNUZI+1/2 _ BaQNUZI.

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

(5.65)

By eliminating the intermediate solution, we obtain the following one-step sche-

me:
UJTIJ-H_U;:; 1 n+1 n n+1 n
M| 2x2 ) + - [Ll(uN +ul) 4+ Lo(ul) —|—uN)] =

2 untl — y?
f§+1/2—ATtL1M_1L2< N N N)+

At (21 . 00 L2 I
—T<E—M L1>B N~[uN—<E—M I

2upt M-, unt! — p-lmHl/2
Al T 2w = M ]

that is first order accurate 1in At.

By applying the approach R2 to the PR scheme we have:

(5.66)



Scheme PR - approach R2
for n =0, .., nypae find u’}f{“ eV,

2

E(UZ;H/E - u:;7UN)N,Q + alN(uZ;H/Ea UN) - (b ! nur;]+1/2’ UN)N,@QN =
= (fn+1/2a UN)N,Q - a2N(uT;f;: 'UN) + (hn+1/2 —b- nuzﬂ UN)N,BQN
UT;;H/Q = g(tn+1/2) on 92,
) (5.67)

E(UZJ-H - UZ;H/Q: UN)N,Q + GZN(UZ;-I-la UN) + (b : nuz;l-l: UN)N,aQoM =

= (fn+1/2a UN)N,Q - (b : ngn+1: 'UN)N,an - alN(qu-H/z’ UN)+

aun+1/2
N,0Q

The scheme PR-R2 (5.67) is consistent and it is second order accurate in At.
As below we sum the two steps of the scheme (5.67) and by using the matrices
L1, Ly, D and B?"! we obtain

n+l _ . n 1
M2 Lt Lot ) = 172, (5.68)
From the elliptic step we deduce:

2 2
TSP TP WP

we substitute it in (5.68) and then we substitute u’fff”z by

2 - 2 n |4
(EM+L1) [f:_+1/2 + (EM — LQ) UN:| . (5.70)
We have the following scheme:
M- N4 5 [Ll(uN+1 +ul ) + La(u +14 u?)] =

At N
, i . (5.71)
:f§+1/2_ ATtLlM_lLQ ('UN A; UN) ’

which is the Crank-Nicolson scheme up to a second order term in At.

We consider now the PR scheme jointly with the approaches DN and D.



Scheme PR - approach DN
forn =0, .., nmee — 1 find u’;]‘H eV,:

2 -
E(UT;]‘FUQ - u:,-a UN)N,Q + alN(uzf+1/2: UN) =

~ 1/2
= (fn+1/2a UN)N,Q - azN(qu’vN) + ( Z+ / ’UN)N,QQN

u’fff”z = g(tht1/2) on 0Q
E(UT;]—H - U?flm: UN)N,Q + a2N(uZ]+1? UN) - (b ’ nqul, UN)N,an =

= (fn+1/2a UN)N,Q - (b ! ngn+1’ UN)N,BQin - ElZN(uT;J+1/2’ UN)+

aun+1/2
N,oQ

(5.72)

The scheme PR-DN (5.72) is consistent and second order accurate in At. In
fact if we sum the two steps of the scheme, we eliminate the intermediate solution

and we use the matrices L1, Ly = 1‘12 and D we have:

[Ll('uz-}_l + u:{) + Lz(u"+1 + UT;])] =

N

S
1
N | —

At‘? un+1 _ un
= A L MLy [ A——2 )
s 4 ! ? At
It follows that the scheme PR-DN is second order accurate in At.
Finally we have the scheme
Scheme PR - approach D

for n=0,..,nmas — 1 find €V, :

2 ~
(U 0+ (W ) =

n ~ n n+1/2
= (f +1/2’ UN)N,Q - a2N(uN’ UN) + (he / ’UN)N,EQN

u’ff{"’l/z = g(tht1/2) on 09,
2 -
E(uz{-l-l - UZJ-H/Za UN)N,Q + aZN(uZ;-I-la UN) + (u:;-Ha UN)N,an =

= (fn+1/2a UN)N,Q + (gn+1:UN)N,an - (~11N(uz+1/2, vy )t

aun+1/2
+ (VgT’UN .
N,oQ

The scheme PR-D (5.74) is consistent and second order accurate in At.

(5.73)

(5.74)



Once again, if we sum the two steps of the scheme, we eliminate the fractional
solution and we consider the matrices L1, Ly and D we obtain:

uT;]‘I'l — ur;f 1 n+1 n n+1 n
M x5 —1—5 [Ll(uN +ul) + Lo(ul) —|—uN)] =
5.75
1/2 At? 1 ultt —u? 1)
= fr+i/2 _ LM~ Ly Z2—X
I TR ( = )

that is second order accurate in At.

The four approaches we have joint to the PR scheme can be applied also to
the #-method and the DR scheme. Since the DR scheme and the #-method, with

2 . . .
0+ 1— — ) are first order accurate in At, all the four approaches will be equivalent
from the accuracy view point.

The choice of one approach instead of another one could be suggested by the
stability properties of each approaches.

5.2. Stab:ility analysis

The splitting we have adopted on the advection-diffusion operator generates a ma-
trix A; symmetric and positive definite and a not symmetric matrix As whose
eigenvalues have a priori not positive real part. Moreover, if the coefficients v, b
and by are not constant and non homogeneous Dirichlet boundary conditions are
considered, a common system of eigenvectors for A; and A, (and then for L; and
Ls) is not ensured, so that the absolute stability for PR, DR and §—method is not
ensured (see Section 2).

In general we can say that the schemes PR-DN, PR-R1, PR-R2 and PR-D are
conditionally stable, and in some particular cases (for example if v, b and by are
constant and the eigenvalues of A; have positive real parts) they can be absolutely
stable.

We observe that the step operators of the scheme PR-DN and PR-R1 coincide, so
that the same stability analysis can be done. A comparison between the stability
of the four approaches can be done, by the analysis of the spectral radius of the
step operator Tpgr. In table 4 and in the following ones the spectral radius of the
matrix Tpg is shown versus At for the approaches R1, R2, DN e D and for different
choices of the viscosity and of the vector filed b.

First of all we observe that if homogeneous Dirichlet boundary conditions are con-
sidered the step operators of the approaches R1, R2 and DN coincide. In particular,
if the real part of the eigenvalues of As is not-negative (this property is ensured if

1
2 divb 4+ bg ] > 0), the numerical tests carry out that the schemes PR-R1, PR-

DN and PR-D are absolutely stable, while the PR-R2 scheme is conditionally stable.
On the contrary, if A is a not-definite matrix, only the schemes PR-R1 and PR-DN
seem to be absolutely stable.



Table 1. Accuracy for the PR scheme jointly with the four boundary conditions approaches.

At e”
PR-R1 PR-R2 PR-DN PR-D

.001 .1932e-3  .2554e-6  .2580e-6  .2752e-6
00316 | .6191e-3  .2478e-5 .2504e-5 .2506e-5
.005 .9906e-3  .6254e-5 .6315e-5 .6393e-5
.01 .2042e-2  .2794e-4  .2813e-4  .2948e-4
03162 | .7160e-2  .4472e-3  .4480e-3  .4825e-3
.05 .1206e-1 .1358e-2  .1359e-2  .1450e-2
1 .2759%e-1 .6865e-2  .6870e-2 .7T121e-1

Table 2. Accuracy for the DR scheme jointly with the four boundary conditions approaches.

At e”
DR-R1 DR-R2 DR-RDN DR-D

.001 .6406e-3 .5266e-3 .5163e-3 .5162e-3
.00316 .2235e-2 .1789e-2 .1768e-2 .1839¢-2
.005 .3927e-2 .3186e-2 .3165e-2 .3385e-2
.01 .9962e-2 .8486e-2 .8481e-2 .9261e-2
.03162 4756e-1 4344e-1 .4353e-1 .4629e-1
.05 .8432e-1 .7832e-1 .7849e-1 .8214e-1
1 .1830e+0  .1736e+4+0 .1739e+4+0 .1783e+4+0

For the numerical results we refer to the next section.

6. Numerical Results

In this section we present the results about the accuracy and the stability of the
fractional step schemes.
Let us define the error at time ¢,, as follows:

n o ey — el @)

||u(tn)||H1(Q) (6.76)

In table 1 we can read the errors e” at t, = 1 with t¢ = 0, N = 8 for the
schemes PR-R1, PR-R2, PR-DN and PR-D. The problem data are: Q = (0, 1)
v=1,b= (%,my)T, bo=0,00, ={(0,y), y € [0,1]}U{(1,y), y € [0,1]}. The
test solution is u(z,y,t) = e*+t¥+'. We read that the approcahes R2, DN and D
preserve the second order of accuracy of the PR scheme, while PR — R1 becomes
a first order accurate scheme.  In table 2 the accuracy of the Douglas-Rachford
scheme 1s shown. The test case is the same considered for the table 1 and all the
approaches mantain the first order of the DR scheme. The #-method is second
order accurate for § = 1 — 4 and in table 3 we show the accuracy of the scheme
for this particular value of #. The test case is the same considered for the table 1.
The considerations are the same as for the PR scheme.

Now we analyze the stability regions of the proposed fractional step schemes.



Table 3. Accuracy for the #-method, with § =1 — % jointly with the four boundary conditions

approaches.
At e”
g-R1 -R2 6-DN 68-D

.001 1126e-3  .2031e-6  .2017e-6  .2017e-6
.00316 | .3563e-3  .1915e-5 .1903e-5 .1902e-5
.005 .5634e-3  .4582e-5 .4553e-5  .4548e-5
.01 1228e-2  .1654e-4  .1642e-4  .1691e-4
.03162 | .3581e-2  .1242e-3  .1225e-3  .1217e-3
.05 5676e-2  .2659e-3  .2608e-3  .2588e-3
1 1143e-1  .8013e-3  .7761e-3  .7713e-3

Table 4. The spectral radius of the step operator on the PR scheme. N = 8, v = 1072, b; are
choosen as in (6.77), while by = 0.

R1-DN R2 D

At b: b, ba b; b, bs b; b, bs
.001 0.999 0.999 0999 | 0.999 0.999 0.999 | 0.999 0.999 0.999
.01 0.999 0.998 0.999 | 0.999 0.999 0.999 | 0.999 0.998 0.999

.1 0.996 0.994 0.998 | 0.999 1.004 0.999 | 0.996 0.994 0.998
1. 0.976 0.960 0.987 | 1.034 1.115 1.020 | 0.990 0.957 0.987
10. 0.862 0.877 0.900 | 2.003 4.540 1.402 | 0.943 0.819 0.892

100. 0.960 0.818 0.960 | 4.348 1.150 8.672 | 0.960 0.915 0.924
1000. | 0.995 0.973 0.995 | 31.075 1.014 1.053 | 0.995 0.989 0.954

We report the spectral radius of the step operator for the PR-R1, PR-R2, PR-DN
and PR-D approaches versus At, for some values of the viscosity and for different
choices of b. All the eigenvalue problems are solved on the domain Q = (0,1)%. In
table 4 the spectral radius of the step operator Tpg is shown, for three different

choices of the vector field b, with 2 divb 4+ by > 0 in Q. We have considered:

by = (¢ 4y, zy)” by = (7, e¥)7 bz = (log(z 4 1), log(y + 1))*. (6.77)

A Dirichlet condition is imposed on 9€2;, and a Neumann condition otherwise. We
observe that the approaches R1, DN and D are absolutely stable, while this is not
true for the R2 approach.

In table 5 we report the spectral radius of the step operator for the scheme
PR-R2, versus N and At, with b = by in order to have a stability condition on At
versus the polynomial degree N. We empirically find this stability condition:

At<C NP with p ~ 1.66. (6.78)

In table 6 and in the following ones the spectral radius of the step operator Tpg
with Aj not-definite is reported. We consider three different choices for the vector

field

b, = (cos(wx), sin(my))” by = (z—e", y—e¥)T bs = (—(z+y)/2,zy)".
(6.79)



Table 5. The spectral radius of the step operator for the scheme PR-R2 versus A¢ and the
polynomial degree N. b = by and by = 0.

At N

4 6 8 10 12 14
.001 | 0.993 0.997 0.999 0.999 0.999 0.999
.003 | 0.991 0.997 0.999 0.999 0.999 0.999
.01 0.991 0.998 0.999 0.999 0.999 0.999
.03 0.993 0.999 0.999 0999 0.999 1.000
.1 0.998 0.999 1.004 1.004 1.003 1.003
. 1.037 1.040 1.028 1.020 1.014 1.011
1. 1.383 1.194 1.115 1.078 1.063 1.052

Table 6. The spectral radius of the step operator on the PR scheme. N = 8, v = 102 for b;
exposed in (6.79).

R1-DN R2 D

At b; b: bs b, b: ba b, b: bs
.001 0.999 0999 0.999 | 0.999 0.999  0.999 0.999 0.999 0.999
.01 0.999 0999 0.999 | 0.999 0.999  0.999 0.999 0.999 0.999

.1 0.998 0.997 0.999 | 0.999 0.999  0.999 0.998 0.998 0.999
1. 0.990 0.983 0.998 | 1.018 1.035 1.008 1.231 0.991 0.998
10. 0.957 0.862 0.994 | 1.742 2.456 1.271 | 21.091 2.142 1.620

100. 0.917 0930 0.959 | 1.198 1.244  2.578 10.576  10.568  39.355
1000. | 0.991 0.993 0.968 | 1.088 1.023 38.270 1.095 1.164 2.410

In table 6 the spectral radius is shown versus At and we find that the approaches
R1 and DN are stable even if large values of At are considered.

In table 7 the spectral radius is shown versus At and N with b = b3 of (6.79). We
can see that the stability condition (6.78) is observed with a small perturbation due
to the rounding errors.

Finally in table 8 we show the spectral radius versus At and the viscosity v.
Again we obtain good results for the R1 and DN approaches, while the R2 approach
is conditionally stable with the following dependence on the viscosity v: At < C v,
for fix V.

6.1. Application to stationary problems

The fractional step schemes can also be applied to stationary problems. In this case
the fractional step schems are considered as iterative methods in order to converge
to the solution of the problem. The approximated problems has the following data:
v=10"%b=(-1,-1)% by =0, f = 0 and u = 0 on JQ. The problem we have
considered has been solved with the PR scheme with N = 24 and At = 1, the matrix
Ao has all the eigenvalues with not negative real parts, homogeneous Dirichlet
boundary conditions are given and no stability problems arise from the resolution
of this problem. In figure 1 we show the numerical solution of the stationary problem
presenting a boundary layer; the numerical solution hasn’t spurious oscillations and



Table 7. The spectral radius of the step operator for the scheme PR-R2 versus At and the
polynomial degree N and b = b of (6.79).

At N
4 6 8 10 12 14

.001 | 0.994 0.997 0.999 0.999 0.999 0.999
.003 | 0.991 0.997 0.999 0.999 0.999 0.999
.01 0.990 0.997 0.999 0.999 0.999 0.999
.03 0.990 0.997 0.999 0.999 0.999 0.999
1 0.991 0.998 0.999 0.999 0.999 0.999
3 0.992 0.998 0.999 1.000 1.000 0.999
1. 0.996 1.010 1.008 1.006 1.003 1.000
10. 2.838 1.706 1.271 1.149 1.082 1.052

Table 8. The spectral radius versus At for different values of the viscosity. The vector field is
b= (—(z+7v)/2,zy)T, bo = 0 and N = 10. The approaches R1-DN and R2 are considered on the

scheme PR.

R1, DN R2
At vr=1. v=10"2 v=10"*]v=1. »v=10"2 v=10.""
.001 0.999 0.999 0.999 0.999 0.999 0.999
.01 0.995 0.999 0.999 0.995 0.999 0.999
1 0.983 0.999 0.999 0.983 0.999 0.999
1. 0.951 0.995 0.999 0.957 0.997 1.011
10. 0.953 0.981 0.999 0.953 0.990 1.232
100. 0.995 0.872 0.995 0.995 4.805 1.860
1000. | 0.999 0.971 0.962 0.999 1.449 4.697
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Fig. 1. A boundary layer problem approximated by the PR scheme




the layer is captured very well.
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