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Paola Gervasio†, Luca Dedè‡, Ondine Chanon§, Alfio Quarteroni¶

April 6, 2020

Abstract

In this paper, we carry out a systematic comparison between the theoretical properties of
Spectral Element Methods (SEM) and NURBS–based Isogeometric Analysis (IGA) in its basic
form, that is in the framework of the Galerkin method, for the approximation of the Poisson
problem, which we select as a benchmark Partial Differential Equation. Our focus is on their
convergence properties, the algebraic structure and the spectral properties of the corresponding
discrete arrays (mass and stiffness matrices). We review the available theoretical results for
these methods and verify them numerically by performing an error analysis on the solution of
the Poisson problem. Where theory is lacking, we use numerical investigation of the results to
draw conjectures on the behaviour of the corresponding theoretical laws in terms of the design
parameters, such as the (mesh) element size, the local polynomial degree, the smoothness of the
NURBS basis functions, the space dimension, and the total number of degrees of freedom involved
in the computations.

Keywords. isogeometric analysis, spectral element methods, rate of convergence, condition
number, computational comparison

1 Introduction

Spectral element methods (SEM) (see, e.g., [14]) and Isogeometric Analysis (IGA) (see, e.g., [15])
can be seen as two different paradigms for high order approximation of partial differential equations
(PDEs); as a matter of fact, albeit IGA was not originally introduced with this aim, employing
specific basis functions may lead to interpret it as an high order method. Apart from their different
use of basis functions, piecewise polynomials for SEM, B–spline or NURBS for IGA (with variable
degree of continuity across element boundaries), the two approaches share many similarities. The
perhaps more remarkable are reported below:

1 – they can be both recast in the framework of the Galerkin method: SEM is however most
often used with inexact calculation of integrals using the so-called Gauss-Legendre-Lobatto numerical
integration. This results into the so-called SEM-NI method (NI standing for numerical integration),
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which is the one we address in this paper. On the other side, for IGA, we consider the so called
NURBS-based IGA in the framework of the Galerkin method. While we are well aware that several
efforts have been recently successfully made to improve the efficiency of IGA – especially for the
reduction of assembly costs through the development of quadrature formulas tailored for NURBS
[11, 2, 33, 6, 7, 45], as well as of partial tensor decompositions [43, 36, 46, 1, 6], and above all by
means of IGA collocation methods [24, 39, 3, 29, 40, 44, 4, 42, 19, 22] – we decided here to stick to
the basic version of the method, which is still the most widespread one;

2 – the induced approximation error decays more than algebraically fast with respect to the local
polynomial degree.

On the other hand, the two methods differ in what concerns the algebraic structures of the
corresponding arrays (say, the mass and the stiffness matrices), the spectral properties of the latter
(the behaviour of their extreme eigenvalues, and the corresponding condition number), and the actual
decay rate of the approximation error with respect to the discretization parameters: the element-size
h, and the local polynomial degree p.

Our aim in this note is to report the most relevant theoretical results addressing the aforemen-
tioned issues. Most of the results on the rate of convergence of the approximation error are taken
from the existing literature (see, e.g. [9, 10, 13, 14, 8, 17, 18]) and reorganise some of them for a
better exploitation in our comparison. However, few of them are new. When the theory is missing
we investigate these properties numerically and we propose the law of behaviour in terms of h, p, the
spatial dimension d, and the total number of degrees of freedom (dof).

Our analysis is concerned with the approximation of the mass matrix and the stiffness matrix
for the Poisson boundary value problem in a cubic domain. We systematically compare SEM-NI
with two realisations of IGA: IGA-C0 (only the continuity across interelement boundaries is imposed
on the problem solution, i.e. the NURBS basis functions are only globally C0-continuous in the
computational domain) and IGA-Cp−1 (the continuity holds for the solution as well as for all its
derivatives of order up to p− 1, i.e. the NURBS basis functions are globally Cp−1-continuous in the
computational domain).

In general terms we can conclude that, errorwise, IGA-C0 and SEM-NI behave essentially in the
same way. For instance, their rate of convergence with respect to h scales (optimally) as p in the
H1−norm, and (p + 1) in the L2− norm. IGA-Cp−1 exhibits the same type of convergence, even if
the errors it produces are larger than those provided by IGA-C0 and SEM-NI with the same values
of h and p, basically due to the (much) lower number of dofs involved in the discretization for the
same value of h. When h is kept fixed and p is increased, IGA-C0 and SEM-NI converge with a rate
that is only dictated by the Sobolev regularity of the solution (hence exponentially fast in case the
latter is analytical). The same is true for IGA-Cp−1, although with a slower rate of decay. IGA-Cp−1

provides however the lowest error when the three methods are run with the same number of degrees
of freedom.

On a different side, SEM-NI arrays are in general less dense and better conditioned than those
of IGA-Cp−1. In particular, SEM-NI minimises the error with respect to the number of non-zero
entries of the stiffness matrix (those that undermine the computational cost of the stiffness matrix
assembling and of the matrix-vector products for residual evaluations in iterative methods).

In the second part of the paper, the spectral analysis concerning the behaviour of the extreme
eigenvalues (and associated condition number) of IGA arrays (mass and stiffness matrices) comple-
ments the rather scarce literature available on the subject. More precisely starting from the numerical
computation of the extreme eigenvalues for any spatial dimension d = 1, 2, 3, we mimic (with ana-
lytic laws) the real behaviour of the spectral condition number of the IGA matrices against the local
polynomial degree p and the element-size h.

While it is well known (see, e.g., [9, 38, 13, 14]) that the condition number of the SEM-NI stiffness
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matrix grows algebraically as h−2p3 for all h and p, the analysis of the present paper highlights that
the spectral condition number of the IGA-C0 stiffness matrix grows algebraically like h−2p2 when h is
sufficiently small w.r.t. p and exponentially like p−d/24dp otherwise; moreover, the spectral condition
number of the IGA-Cp−1 stiffness matrix grows algebraically like h−2p when h is sufficiently small
w.r.t. p and exponentially, at least like pedp, otherwise.

The condition number of the SEM-NI mass matrix grows algebraically like pd, while we find that
the condition numbers of the IGA mass matrices (either IGA-C0 and IGA-Cp−1) grow exponentially
with p.

The moduli of the extreme eigenvalues are examined also for the 1D advection-diffusion operator
for different values of the Péclet number in either elliptic or advective regimes.

A specific outline of the paper is as follows.
In Section 2 we present the Poisson problem, its discretization by SEM-NI (in particular we

describe how to deal with curved boundaries in the SEM context for d = 2 and d = 3 by exploiting
transfinite mappings) and by IGA methods, then we resume the theoretical convergence estimates for
both the approaches. In Section 3 we compare the numerical convergence rates of the methods when
they are applied to solve the Poisson problem with given solution. In the first test case we solve the
differential problem on the cube domain with either SEM-NI, IGA-C0 and IGA-Cp−1. In the second
one we consider a more general domain with curved boundary and compare the convergence curves
of SEM-NI and IGA-Cp−1 approximations, as well as the CPUtimes needed to assemble the stiffness
matrices. Section 4 is devoted to the spectral analysis of both the mass matrix and the stiffness
matrix for the Poisson problem. After reviewing theoretical results known in literature, we present
our conjectures (based on the numerical computations of extreme eigenvalues) about the behaviour
of the spectral condition number of IGA matrices versus both p and h. Finally, Section 5 deals with
the spectral analysis of the 1D advection-diffusion stiffness matrices.

This review addresses for the first time a systematic comparison of the theoretical properties
of two classes of methods that are very popular and highly appreciated in the community of nu-
merical analysts and computational scientists. We are confident that this analysis will be useful
for a comparative assessment of the two approaches and a better awareness of their strengths and
limitations.

2 Problem setting

Let Ω ⊂ Rd, with d = 1, 2, 3, be a bounded domain (when d ≥ 2 we require that the boundary ∂Ω is
Lipschitz continuous), and let f ∈ L2(Ω) be a given function. Our reference Poisson problem, which
we use through most of the paper as a benchmark problem, reads{

−∆u = f in Ω
u = 0 on ∂Ω.

(1)

The weak form of problem (1) reads: find u ∈ V = H1
0 (Ω) such that

a(u, v) = F(v) ∀v ∈ V, (2)

where a(u, v) =

∫
Ω
∇u · ∇v dΩ and F(v) =

∫
Ω
fv dΩ. Problem (2) admits a unique solution (see,

e.g., [41]) that is stable w.r.t. the datum f . The case of non-homogeneous Dirichlet data leads back
to the homogeneous case by standard arguments.
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2.1 Discretization by the Spectral Element Method (SEM)

Given h > 0, let Th be a family of partitions of the computational domain Ω ⊂ Rd in neh quads
(intervals when d = 1, quadrilaterals when d = 2, and hexahedra when d = 3). Following standard
assumptions we require Th to be conformal, regular, and quasi-uniform (see [41, Ch. 3]). We denote
by T̂ the reference element, i.e. the d−dimensional cube (−1, 1)d and let each element T` ∈ Th be
the image of the reference element T̂ through a sufficiently smooth one-to-one map F` : T̂ → T` with
a sufficiently smooth inverse F−1

` : T` → T̂ . If F` is affine, then the element T` is a parallelogram
(when d = 2) or a parallelepipedon (when d = 3).

To deal with more general domains, also in the case of curved boundaries, we consider transfinite
mappings introduced in [30, 31, 32].

So far, each element can be viewed as the image of a transfinite map Fk; in order to guarantee
the conformity of the mesh, if Tk and Tm share a common edge or a face, say Γkm, then Fk and Fm
must agree there, i.e. Fk|Γkm ≡ Fm|Γkm .

Formulation. Given an integer p ≥ 1, let us denote by Qp the space of polynomials of degree less than
or equal to p with respect to each direction in Ω ⊂ Rd. We introduce the following finite dimensional
spaces in Ω: Xδ = {v ∈ C0(Ω) : v|Tk ∈ Qp ◦ F−1

k , ∀Tk ∈ Th}, Vδ = V ∩Xδ = {v ∈ Xδ : v|∂Ω = 0}.
The index δ is an abridged notation undermining the mesh size h and the local polynomial degree p.

The Galerkin approximation of (2) reads: find uδ ∈ Vδ such that

a(uδ, vδ) = F(vδ), ∀vδ ∈ Vδ.

Typically, when using SEM, the exact integrals appearing in a and F are replaced by the com-
posite Legendre–Gauss–Lobatto (LGL) quadrature formulas (see [13]) with the aim of reducing the
computational effort. This is exactly the approach that we consider in this paper, i.e the so called
SEM with Numerical Integration (SEM-NI) at the LGL nodes [14].

For any integer p ≥ 1, the (p + 1) LGL nodes and weights are first defined on the reference
interval [−1, 1] (see [13, formula (2.3.12)]) and then tensorized and mapped into the generic quad
T` ∈ Th by applying the transfinite map F`. Let x`,q and w`,q, with q = 1, . . . , (p + 1)d, denote
the quadrature nodes and weights on T` for any T` ∈ Th and let neh be the number of elements
in Th. For any u, v ∈ L2(Ω) such that u, v ∈ C0(T`) for any T` ∈ Th, we define the composite
Legendre–Gauss–Lobatto-Legendre quadrature formula

(u, v)δ =

neh∑
`=1

(p+1)d∑
q=1

u(x`,q) · v(x`,q)w`,q. (3)

Then, for any uδ, vδ ∈ Xδ and f ∈ L2(Ω) such that f|T` ∈ C
0(T`), we set aδ(uδ, vδ) = (∇uδ,∇vδ)δ

and Fδ(vδ) = (f, vδ)δ.
The discrete Galerkin formulation of (2) with Numerical Integration (SEM-NI) reads: find uδ ∈ Vδ

such that
aδ(uδ, vδ) = Fδ(vδ) ∀vδ ∈ Vδ. (4)

Algebraic form. Le us denote by N = N(h, p) the total number of (non-repeated) LGL quadrature
nodes xi of Th. In order to represent the discrete solution uδ, the nodal Lagrange basis functions
ϕi(x) (for i = 1, . . . , N) defined over the set of LGL quadrature nodes {xi} are used, thus we have
uδ(x) =

∑N
i=1 uiϕi(x), where ui = uδ(xi).

The SEM-NI stiffness and mass matrices are defined by

(KSEM )ij = aδ(ϕj , ϕi), (MSEM )ij = (ϕj , ϕi)δ, i, j = 1, . . . , N0. (5)
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Both KSEM and MSEM are symmetric positive definite (s.p.d.) matrices. Thanks to the fact that
the interpolation nodes coincide with the quadrature nodes, and noticing that the Lagrange basis
functions are orthogonal with respect to the discrete inner product (·, ·)δ, the SEM-NI mass matrix
MSEM is diagonal.

Let N0 denote the number of degrees of freedom internal to Ω (we reorder all the mesh nodes
so that the first N0 are the internal ones), then we set uSEM = [ui]

N0

i=1 and fSEM = [f(xi)]
N0

i=1. The
algebraic form of (4) reads:

KSEMuSEM = MSEM fSEM , (6)

where we understand that both KSEM and MSEM are restricted to the rows i = 1, . . . , N0 and the
columns j = 1, . . . , N0.

Error estimates. If u ∈ Hs(Ω) is the solution of (2) with f ∈ Hq(Ω) (q ≥ 0) and uδ is the solution
of the SEM-NI problem (4) then for any 0 ≤ r ≤ 1, and s > d/2 (see [9, 13, 14]) it holds

‖u− uδ‖Hr(Ω) ≤ c
(
hmin(s,p+1)−r pr−s ‖u‖Hs(Ω) + hmin(q,p+1) p−q ‖f‖Hq(Ω)

)
(7)

where c = c(s, q,Ω) is independent of both h and p.

2.2 Discretization by Isogeometric Analysis (IGA)

B-splines. Let Z = {0 = ζ0, ζ1, . . . , ζn−1, ζn = 1} be the set of (n + 1) distinct knot values in the
one-dimensional patch [0, 1] and, given two positive integers p and k with 0 ≤ k ≤ p− 1, let

Ξ(k) = {ξ1, ξ2, . . . , ξq} = {ζ0, . . . , ζ0︸ ︷︷ ︸
p+1

, ζ1, . . . , ζ1︸ ︷︷ ︸
p−k

, . . . , ζn−1, . . . , ζn−1︸ ︷︷ ︸
p−k

, ζn, . . . , ζn︸ ︷︷ ︸
p+1

} (8)

be the (ordered) p−open knot vector with a fixed number of repetitions. Notice that in this paper
we specifically assume that all the internal knot values ζ1, . . . , ζn−1 are repeated p − k times. This
implies that the cardinality of Ξ(k) is q = (p−k)(n−1)+2p+2. In an open knot-vector Ξ(k), as that
under consideration in this paper, the two extreme knots (values) are repeated exactly p + 1 times.
We denote by Bi,p the ith univariate B-splines basis functions of local degree p ≥ 1 and regularity
Ck in [0,1] by means of the Cox-de Boor recursion formula ([15]).

The basis functions Bi,p intrinsically depend on (and inherit all their properties from) the knots
ξi. The number of linearly independent B-splines Bi,p is nb = (n − 1)(p − k) + (p + 1). A most
prominent property of B-splines is the regularity. For that, we assume in this paper that all the basis
functions are globally Ck-continuous in the patch (for a suitable k, with 0 ≤ k ≤ p− 1, that stands
for the global order of regularity), and in particular at all the internal knot values in Z. In order to
comply with the existing literature, we also understand the dependence of the basis functions on k.

We will consider the two extreme values for k. When k = 0, the B-splines are only globally C0

and we use the notation IGA-C0 to identify this case. When k = p − 1, the B-splines are globally
Cp−1 and we write IGA-Cp−1 to identify this case.

The d-times tensor product of the set Z induces a Cartesian grid in the parametric domain
Ω̂ = (0, 1)d. If we assume for the sake of simplicity that the knots ζi are equally spaced along
all the parametric directions, then the mesh size is h = 1/n. When the geometric dimension d of
the computational domain is larger than 1, we exploit the tensor product rule for the set Ξ(k) and
the B-splines functions. Then, for any ξ = (ξ1, . . . , ξd) ∈ Ω̂, let ψi,p(ξ) = Bi1,p(ξ

1) · · ·Bid,p(ξd) be
the generic multivariate B-spline basis function, with ik = 1, . . . , nb for any k = 1, . . . , d and with
i = 1, . . . , Nb = ndb , with lexicographic ordering. Notice that ξ1 = ξ when d = 1.
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NURBS. NURBS basis functions are built starting from B-splines by associating a set of weights
{w1, w2, . . . , wNb} with each of them; we assume in this paper that wi ∈ R and wi > 0 for all
i = 1, . . . , Nb. The ith multivariate NURBS basis function reads:

Ni,p(ξ) =
wi ψi,p(ξ)∑Nb
j=1wj ψj,p(ξ)

. (9)

NURBS inherit properties from their B-splines counterpart, specifically the regularity property as the
global Ck-continuity in the patch; we notice however that NURBS are not piecewise polynomials, but
p stands for the polynomial degree of the B-splines from which these are built. Notice that B-splines
are particular instances of NURBS when the weights are all equal to 1.

Geometric mapping. B-splines and NURBS are used to build computational domains Ω in the
physical space Rd. In this paper, we specifically consider the case in which the parameter and
physical spaces have the same dimension (i.e. these being Rd); we refer instead the interested reader
to e.g. [5, 20, 21, 34, 35, 37] for NURBS mappings into lower-dimensional manifolds as curves and
surfaces and their application in the IGA context. The geometric mapping is obtained by associating
with each basis function ψi,p a control point Pi ∈ Rd for all i = 1, . . . , Nb, such that every point x of
the physical domain Ω is obtained as

x(ξ) =

Nb∑
i=1

PiNi,p(ξ). (10)

We assume that the previous mapping is invertible a.e. in Ω̂; for this reason, given a generic
function v(ξ) defined in Ω̂, we will indifferently write it in the physical domain Ω with the same
notation v(x). We finally remark that the mapping (10) determines the mesh Th in the physical
domain Ω from the corresponding one in the parameter domain Ω̂.

Formulation. We consider now the Isogeometric approximation of problem (2) according to the
isogeometric concept for which the basis functions used to build the computational domain Ω are
then used also to build the trial function space for the approximate solution. Let us set Skδ =
span{ψi,p, i = 1, . . . , Nb} and V k

δ = V ∩ Skδ .
As for SEM, δ is an abridged notation now accounting for the mesh size (related to the number

of distinct knots along each parametric direction) and the local polynomial degree p. We indicate
with IGA-Ck the isogeometric approximation with globally Ck-continuous basis functions in the
computational domain. If, in particular, the partition Th induced by the knot vector Zd is the
same for both SEM and IGA, the finite dimensional space S0

δ of IGA-C0 coincides with the finite
dimensional space Xδ of SEM and then V 0

δ = Vδ.
The IGA-Ck approximation of (2) reads: find uk,δ ∈ V k

δ such that

a(uk,δ, vδ) = F(vδ) ∀vδ ∈ V k
δ . (11)

The subscript k (as, e.g., in uk,δ) indicates that the IGA-Ck case is considered.

Algebraic form. The discrete solution uk,δ is expanded with respect to the B-spline basis functions,

i.e. uk,δ(x) =
∑Nb

i=1 ûk,iψi,p(x).
The IGA-Ck stiffness and mass matrices are defined by

(Kk)ij = a(ψj,p, ψi,p), (Mk)ij = (ψj,p, ψi,p)L2(Ω), i, j = 1, . . . , Nb. (12)
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Both Kk and Mk are symmetric positive definite (s.p.d.) matrices.
Then we reorder the basis functions ψi,p so that the first N0 are those associated with the internal

degrees of freedom and we set uk = [ûk,i]
N0

i=1, fk = [f̂k,i]
N0

i=1 with f̂k,i = (f, ψi,p)L2(Ω). The algebraic
form of (11) reads: look for the solution uk of

Kkuk = fk, (13)

where we understand that Kk is restricted to the rows i = 1, . . . , N0 and the columns j = 1, . . . , N0.

Error estimates. Under the assumption that the partition defined by the knot vector Z is locally
quasi uniform, that is, there exists a constant θ ≥ 1 such that the mesh sizes hi = ζi+1 − ζi satisfy
the relation θ−1 ≤ hi/hi+1 ≤ θ for i = 0, . . . , n − 1, in [18, Thm. 3.4 and Cor. 4.16] it is proved
that there exists a positive constant c = c(s, p, θ) independent of h = maxi hi such that, for any
0 ≤ r ≤ s ≤ p+ 1,

‖u− uk,δ‖Hr(Ω) ≤ chmin(s,p+1)−r‖u‖Hs(Ω) ∀u ∈ Hs(Ω). (14)

This is an optimal convergence estimate for IGA with respect to h (h-refinement) for all values of
k = 0, . . . , p− 1; see also [47].

The convergence rate of IGA with respect to both p and k was studied in [17] when p ≥ 2k+1. We
warn the reader that in our paper the parameter k is used to identify the Ck regularity of the B-spline
basis functions (and then of the IGA solution), whereas in [17] it denotes the Sobolev regularity of
the IGA solution. In order to avoid misunderstandings, we denote by kb the index k used in [17],
whence kb = k+1. If the partition induced by the knot vector Z is uniform with size h, by exploiting
the estimate (37) of [17] and the Céa’s Lemma, it holds

‖u− ukb,δ‖L2(0,1) ≤ C(N − kb)−σ|u|Hσ(0,1) ∀u ∈ Hσ(0, 1), (15)

for any kb ≤ σ ≤ p + 1 and p ≥ 2kb − 1, where N = kb + p−kb+1
h is the total number of degrees of

freedom while C > 0 is independent of σ, h, p and kb.
The analysis in the case d = 1 and p ≤ 2kb + 1 still remains open [18, Remark 4.18].
The analysis for the case d = 2 is addressed in [10, Sect. 7] and in [17]. In particular, referring to

[17], if Q = Λ2 = (−1, 1)2, if the partition induced by the knot vector Z × Z is uniform, and if the
same values of p and k are used along the two directions, then ([17, Cor. 8])

‖u− ukb,δ‖H`(Q) ≤ chσ−`(p− kb)−(σ−`)‖u‖Hσ(Q) ∀u ∈ Hσ(Q), (16)

for any 0 ≤ ` ≤ kb, provided that 2kb ≤ σ ≤ p+ 1. Moreover, the positive constant c is independent
of σ, `, h, p and kb.

When d = 3, by assuming again that p and kb are the same along all directions, the more
restrictive condition 3kb ≤ σ ≤ p + 1 should be assumed to prove an analogous estimate (see [17,
Remark 1, pag. 300] and [10, Remark 7.1]).

3 Accuracy: numerical tests

In this section we compare the convergence rates of the errors under h- and p-refinement of IGA
and SEM-NI methods. We remark that for the IGA-Cp−1 case, the p−refinement coincides with the
k-refinement procedure typical of NURBS-based IGA [16, 23]. We consider only the case d = 3; we
omit to show numerical results for d = 1 and d = 2 since the methods behave similarly.
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Figure 1: Cube domain test case. Errors eδ,1 (H1−norm (left)) and eδ,0 (L2−norm (right)) vs. the
polynomial degree p. Markers refer to IGA-C0 solution, dashed lines to IGA-Cp−1 solution, while
the continuous lines to SEM-NI solution. The colour identifies the mesh size h for all the approaches

3.1 Cube domain

We consider problem (1) in Ω = (0, 1)3 and we choose the right hand side f and the Dirichlet datum
g so that the exact solution is

u(x) = sin(4π x y z) sin(4π (x− 1)(y − 1)(z− 1)). (17)

Then, we solve it by means of IGA-C0, IGA-Cp−1 and SEM-NI on a set of uniform meshes of size
h and with local polynomial degree p. We recall that, if neh,1 is the number of elements along each
direction, then h = 1/neh,1 for all the methods.

First, we choose h ∈ {1/16, 1/8, 1/4, 1/2} and p = 1, . . . , 8 and we analyse the behaviour of the
errors versus either h or p.

Then we analyse the behaviour of the errors versus the total number dof of degrees of freedom
and finally versus the number nnz of non-zero entries of the stiffness matrices for several values of p
and h that we specify in the sequel.

Error vs. h and p. In Figure 1 we show the H1-norm (at left) and the L2-norm (at right) of the
relative errors between the numerical solutions (obtained by one of the three methods IGA-C0, IGA-
Cp−1 and SEM-NI) and the exact solution (17), vs. the polynomial degree p, with h fixed. More
precisely, we set

eδ,1 =
‖u− uδ‖H1(Ω)

‖u‖H1(Ω)
, eδ,0 =

‖u− uδ‖L2(Ω)

‖u‖L2(Ω)
. (18)

The H1−norm of the IGA-C0 and SEM-NI errors almost coincide: as we can see in both pictures
of Figure 1, the markers (that represent the errors for IGA-C0) are overlapped with the continuous
lines (that represent the errors for SEM-NI). The errors of IGA-Cp−1 (dashed lines) exhibit the
slowest decay rates with respect to p.

The exact solution we are considering belongs to C∞(Ω), thus the errors of IGA-C0 and SEM-NI
decay with respect to p faster than any algebraic power of p, i.e. exponentially. The same happens
for IGA-Cp−1, although the rate of decay of the error is slower than that of IGA-C0. The L2−norm
of the errors for IGA-C0 is slightly lower than the corresponding SEM-NI errors.
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Figure 2: Cube domain test case. Errors eδ,1 (H1−norm, (top)) and eδ,0 (L2−norm (bottom)) vs. the
mesh size h. Markers refer to IGA-C0 solution, dashed lines to IGA-Cp−1 solution, while continuous
lines to SEM-NI solution. The colour identifies the polynomial degree p for all the approaches

In Figure 2 we show the H1-norm (top) and the L2-norm (bottom) of the errors (18) versus the
mesh size h, when p is fixed. Optimal convergence rates are shown by all the methods.

Error vs dof . The total number of degrees of freedom (dof) of the discretization is a function of
both the local polynomial degree p and the global number of mesh elements neh. In the case in which
the partition Th is quasi uniform and tensor-based, we denote by neh,1 = c/h (c is a constant that
depends only on Ω) the number of elements along any spatial direction, so that the global number
of elements is neh = (neh,1)d and the global number of degrees of freedom dof (including those
associated with the boundary) is:

IGA-C0 IGA-Cp−1 SEM-NI (or SEM)

dof (neh,1p+ 1)d (p+ neh,1)d (neh,1p+ 1)d.

We notice that the number of degrees of freedom of IGA-C0 coincides with that of SEM-NI, while
that of IGA-Cp−1 grows more slowly.

In Figures 3 and 4 the H1-norm and the L2-norm of the errors are plotted against dof . We
consider several values of p and of neh,1. The choice of both of them is limited by the RAM capacity
(16 GBytes) of the hardware used to perform the numerical simulations.

When neh = neh,1 = 1, the numerical solutions are global polynomials in the computational
domain for all the three methods. IGA-C0 and IGA-Cp−1 provide the same solution (named simply
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Figure 3: Cube domain test case. Errors eδ,1 (H1−norm) vs. dof . The results of both ‘IGA, 1
element’ and ‘SEM-NI, 1 element’ are obtained with neh,1 = 1 and p = 1, . . . , 24, while those of
IGA-C0, IGA-Cp−1 and SEM-NI are computed with neh,1 ∈ {2, 4, 8, 16} and p = 1, . . . , 8
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Figure 4: Cube domain test case. Errors eδ,0 (L2−norm) vs. dof . The results of both ‘IGA, 1
element’ and ‘SEM-NI, 1 element’ are obtained with neh,1 = 1 and p = 2, . . . , 24, while those of
IGA-C0, IGA-Cp−1 and SEM-NI are computed with neh,1 ∈ {2, 4, 8, 16} and p = 1, . . . , 8

IGA in Figures 3 and 4) and their errors spectrally decay w.r.t. p until p = 13; then, rounding errors
downgrade the convergence and the H1−norm error remains up to 10−6 for p ≥ 13. The round-off
errors are amplified by the large condition number of the IGA stiffness matrix when h = 1 (to better
understand spectral properties of stiffness matrices, we refer to Sect. 4).

On the contrary, the SEM-NI error vs. p decays until it is quite close to the machine precision
10−14. The same behaviour is also observed for the L2−norm error.

For a fixed neh,1 > 1, the error of IGA-Cp−1 vs. dof = dof(p) decays faster than the errors of both
IGA-C0 and SEM-NI. Nevertheless, in the range of p ≤ 8 and 2 ≤ neh,1 ≤ 16, the minimum error
measured for IGA-Cp−1 is about 10−9, obtained with neh,1 = 16 and p = 8 (for which dof = 15625);
larger values of these discretization parameters produce matrices too large and too dense to be stored
into the 16GB RAM of the hardware used for the numerical simulations. In the same range of p ≤ 8
and 2 ≤ neh,1 ≤ 16, the minimum error reached by SEM-NI is about 10−12 (obtained with neh,1 = 16
and p = 8, for which dof = 2146689). We speculate that also IGA-C0 would reach the minimum
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error provided by SEM-NI with neh,1 = 16 and p = 8, but the RAM capacity of 16 GBytes limited
the runs of IGA-C0 to p = 6 when neh,1 = 16.

Matrix sparsity pattern. As it emerges from the previous considerations, dof is not the unique
reference parameter to be taken into account in measuring the efficiency of a method. As a matter
of fact, other important issues, especially for d = 3, are the sparsity pattern of the stiffness matrix
and its number of nonzero entries, say nnz. The latter is a measure not only of the memory space
required to store the matrix, but also of the computational complexity that must be addressed, first
of all to assemble the stiffness matrix and then to solve the linear system.

The numerical results shown in these sections have been produced using an Intel(R) Core(TM)
i7-4790 CPU @ 3.60GHz with 4 Cores and 16GB of RAM. When d = 3, starting from moderate
values of p (e.g. p = 4) and moderate values of neh,1 (e.g. neh,1 = 8) the direct solution of both the
SEM-NI linear system (6) and the IGA-C0 system (13) become prohibitive on this hardware. This
is due to the fill-in that occurs during the elimination process involved in the direct solver.

As a consequence, a preconditioned iterative method, like, e.g., Krylov ones, is in order. We solve
the linear systems by the Bi-GCStab method [48], preconditioned by an incomplete LU factorization.
On our machine, the iterative numerical solution of the linear system of IGA-C0 becomes prohibitive
for p > 4 and neh,1 > 7.

We notice that, even if both the IGA and SEM-NI stiffness matrices are symmetric and positive
definite for the problem at hand, we used the Bi-GCStab instead of the Conjugate Gradient method.
As a matter of fact, since the condition number of the IGA stiffness matrices heavily grows with p
(see the Sect. 4), the symmetric incomplete Cholesky factorization breaks down when computing
the square root of non-positive values. At each iteration of the Krylov method, one has to compute
matrix-vector products (whose computational cost is proportional to nnz) and to solve auxiliary
linear systems related to the preconditioner. We omit here the analysis of the costs associated with
the preconditioner, that is out of the scope of this paper.

In the next subsection we provide a comparison of the computational cost for assembling the
stiffness matrix of IGA-Cp−1 and SEM-NI versus both dof and nnz in the more realistic case of a
domain with curved boundary. Here we just plot the H1–norm error versus the parameter nnz.

In Fig. 5 the pattern of the stiffness matrix stemming from the three methods are shown, for the
case p = 4 and neh,1 = 4, when d = 3 and Ω = (0, 1)3. We notice that, in the case of SEM-NI, nnz
is independent of the fact that quadrature formulas are used to approximate integrals; indeed, the
same sparsity pattern would be obtained if one uses exact integration instead of the numerical one.

Then, in Figure 6 we show the H1-norm and the L2−norm of the errors versus nnz. SEM-NI is
the method (among the three) that provides the minimum errors for a prescribed value of nnz.

3.2 Domain with curved boundary: one-eighth of the sphere

In this section we compare the accuracy of SEM-NI and IGA (limited to the more interesting case
IGA-Cp−1) by solving the Poisson problem in a computational domain with curved boundary.

Let Ω be one-eighth of the sphere centred at the origin and with radius equal to one, i.e. Ω =
{x = (x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0, x2 + y2 + z2 ≤ 1}.

We look for the solution of the differential problem (1) with g(x) and f(x) such that the exact
solution is u(x) = y z exp(−x2 − y2 − z2).

SEM-NI discretization. In order to approximate the solution of (1) by SEM-NI we partition the
computational domain Ω into hexahedra. The coarsest decomposition we consider is made of four
hexahedra as shown in Fig. 7, left, such decomposition ensures that the transfinite mappings F`
introduced in Sect. 2.1 are invertible. Then, in each of these four hexahedra we consider neh,1 ×
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Figure 5: Pattern of the stiffness matrix of IGA-C0 (left), IGA-Cp−1 (centre), and SEM-NI (right)
when Ω = (0, 1)3, p = 4 and neh,1 = 4. dof is 4913 for both IGA-C0 and SEM-NI, while it is 512
for IGA-Cp−1. nnz is 911599 for IGA-C0, 140604 for IGA-Cp−1, and 46575 for SEM-NI. The fill-in
percentage are 4% for IGA-C0, 54% for IGA-Cp−1 and 2% for SEM

Table 1: One-eighth of the sphere test case. SEM-NI discretization parameters. The total number of
spectral elements is neh = ne3

h,1 × 4. dof is the number of degrees of freedom internal to Ω

dof

neh,1 neh p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

1 4 1 13 157 1597 5853 14461
2 32 13 157 1597 14461 50877 123133
4 256 57 621 5853 50877 176541 424317
8 2048 157 1597 14461 123133 424317 1016317

12 6912 337 3277 28957 243517 835677 1997437
16 16384 621 5853 50877 424317 1452093 3465981

neh,1 × neh,1 uniform hexahedra spectral elements T` (see Sect. 2.1) with neh,1 = 1, 2, 4, 8, 12, 16.
The global number of elements is neh = 4 · (neh,1)3. In each element T` the local polynomial degree
p along any spatial direction ranges from 1 to 16 when neh,1 = 1, from 1 to 8 when neh,1 = 2, 4, 8,
and from 1 to 6 when neh,1 = 12, 16. The total number of degrees of freedom dof internal to Ω are
shown in Table 1 for p = 1, . . . , 6.

IGA discretization. We consider IGA-Cp−1 in a single NURBS patch (see Fig. 8), with neh,1 =
2, 4, 8, 12, 16 and different values of p, more precisely: p ranges from 1 to 15 when neh,1 = 2, from 1
to 13 when neh,1 = 4, from 1 to 10 when neh,1 = 8, and from 1 to 8 when neh,1 = 12, 16. The global
number of degrees of freedom internal to Ω is shown in Table 2.

The IGA numerical solutions for this test case have been computed by GeoPDEs 3.0, a package
for Isogeometric Analysis written in Matlab and Octave ([25, 49]), while SEM-NI numerical solutions
have been computed using a proprietary software written in Matlab and Octave (we refer to [28] for
a preliminary public version of the latter software). Albeit comparing computational costs of two
methods is technically difficult, basically due to the use of different libraries (but of the same soft-
ware) and potentially different implementation styles, we believe that the result is still qualitatively
meaningful: indeed, we used the basic versions of both the methods and the implementation of the
solvers is made without taking into account any strategy for improving its efficiency. In the latter
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Figure 6: Cube domain test case. H1−norm (top) and L2−norm (bottom) of the error versus the
number of non-zero entries of the stiffness matrix when Ω = (0, 1)3

case, we envision that both the methods would yield better results.
The H1–norm errors eδ,1 (see definition (18)) are shown in Figures 9–11 for both SEM-NI and

IGA-Cp−1 discretizations versus the polynomial degree, the number of mesh elements and the total
number of degrees of freedom. The errors decay exponentially w.r.t. the polynomial degree p for both
SEM-NI and IGA-Cp−1; as in the test case on the cube domain, the SEM-NI errors decay faster than
the IGA-Cp−1 ones. Optimal convergence w.r.t. the mesh size h is confirmed for both the methods.

As we can appreciate in Fig. 11, the IGA-Cp−1 errors decay faster than the SEM-NI ones when
we analyse the behaviour vs. the number dof of degrees of freedom, nevertheless the curve of the
errors obtained with SEM-NI and neh,1 = 1 (for which the global number of elements is neh = 4)
is the lower one and the errors computed with IGA-Cp−1 stay above it for all the combinations of p
and neh allowed by the 16GB RAM of our computer.

In Figures 12 and 13 we show the CPUtimes (in seconds) needed to assemble the stiffness matrix
versus dof and nnz, respectively. We verified that, for both IGA-Cp−1 and SEM-NI, the computa-
tional cost to assemble the stiffness matrix exceeds that required to solve the corresponding linear
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Table 2: One-eighth of the sphere test case. IGA-Cp−1 discretization parameters. The total number
of elements is neh = ne3

h,1, dof is the number of degrees of freedom internal to Ω

dof

neh,1 neh p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

2 8 1 8 64 512 1728 4096
4 64 8 27 125 729 2197 4913
8 512 27 64 216 1000 2744 5832

12 1728 64 125 343 1331 3375 6859
16 4096 125 216 512 1728 4096 8000

system. The CPUtimes needed to assemble the IGA-Cp−1 stiffness matrix grow like dof3.2 and
nnz1.6, while in the case of SEM-NI they grow like dof1.5 and nnz. We have employed NURBS to
describe the geometry as well as to define the basis functions. Using B-splines instead of NURBS
does not affect the computational costs in GeoPDEs [25, 49] (the software used for these simulations),
since B-splines are treated as NURBS with unitary weights. Since B-Splines do not describe exactly
the sphere, we infer that they feature less accuracy with respect to NURBS.

These results lead us to compare the errors of the two methods vs the number nnz of non-zeros
entries of the stiffness matrices. In Fig. 14 the H1–norm errors eδ,1 versus nnz are shown and finally,
in Fig. 15, the H1–norm errors eδ,1 vs the CPUtime needed to assemble the stiffness matrix are
plotted. In order to reach a prescribed error, there exists at least one combination of p and neh,1
such that the computational cost of SEM-NI is lower than that of IGA-Cp−1 and, viceversa, if our
target is a small CPUtime, the SEM-NI error corresponding to that CPUtime is lower than the
IGA-Cp−1 one.
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Figure 8: One-eighth of the sphere test case. NURBS representation of the domain with neh,1 = 2
and p = 2 (left) and neh,1 = 4 and p = 2 (right)
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Figure 9: One-eighth of the sphere test case. The discretization error eδ,1 (H1–norm) versus the
polynomial degree p. IGA in the legend stands for IGA-Cp−1
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Figure 11: One-eighth of the sphere test case. The discretization error eδ,1 (H1–norm) versus the
number of degrees of freedom. IGA in the legend stands for IGA-Cp−1
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Figure 12: One-eighth of the sphere test case. The CPUtime (in sec) needed to assemble the stiffness
matrix versus the number of degrees of freedom. IGA in the legend stands for IGA-Cp−1
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Figure 13: One-eighth of the sphere test case. The CPUtime (in sec) needed to assemble the stiffness
matrix versus the number of nonzero elements of the matrix itself. IGA in the legend stands for
IGA-Cp−1
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Figure 14: One-eighth of the sphere test case. The discretization errors eδ,1 (H1–norm) and eδ,0
(L2–norm) versus the number of non-zero elements of the stiffness matrix. IGA in the legend stands
for IGA-Cp−1
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Figure 15: One-eighth of the sphere test case. The discretization errors eδ,1 (H1–norm) and eδ,0
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4 Spectral properties: eigenvalues and condition number

In this section we summarise the main results concerning the spectral properties of SEM-NI and IGA
arrays. Because of their importance for the convergence rate of iterative methods for the solution of
the linear system, as well as for the propagation of rounding errors in solving the linear system itself
(see, e.g., Figs. 3, 6, and 9), we specifically highlight the behaviour of the extreme eigenvalues (and
the corresponding spectral condition number) of mass matrices and stiffness matrices.

For any matrix A which is symmetric positive definite (or similar to a symmetric positive definite
matrix), let λmin(A) and λmax(A) denote its minimum and maximum (real) eigenvalues, respectively.
The spectral condition number of A is defined as

K(A) =
λmax(A)

λmin(A)
. (19)

The extreme eigenvalues of the SEM-NI mass and stiffness matrices (5) (the latter reduced to the
rows and columns associated with the nodes internal to Ω = (0, 1)d) behave as follows ([9, 38, 13, 14,
12]):

λmin(MSEM ) ∼ hdp−2d (20)

λmax(MSEM ) ∼ hdp−d (21)

λmin(KSEM ) ∼ hdp−d (22)

λmax(KSEM ) ∼ hd−2p3−d (23)

λmin((MSEM )−1KSEM ) ∼ c (24)

λmin((MSEM )−1KSEM ) ∼ h−2p4. (25)

The corresponding spectral condition numbers for d = 1, 2, 3 are:

K(MSEM ) ∼ pd (26)

K(KSEM ) ∼ p3h−2 (27)

K((MSEM )−1KSEM ) ∼ p4h−2; (28)

these are reported in Table 3. In the whole section the symbol ∼ means “up to a constant independent
of both p and h”.

The eigenvalues and the condition number of IGA matrices have been studied in [26, 27]. In [26]
it is proved for d = 2 that, independently of the k-regularity of the B-spline basis functions, it holds:

λmin(Mk) ∼ c(p)h2, λmin(Mk) ≥ c(h)p−416−p

λmax(Mk) ∼ c(p)h2, λmax(Mk) ∼ c(h)p−2,

K(Mk) ≤ cp216p, with c independent of h and p,

λmin(Kk) ∼ c(p)h2,

λmax(Kk) ∼ c, with c independent of h and p,

K(Kk) ≤ c(h)p816p,

(29)

where Mk and Kk are the mass matrix and the stiffness matrix of IGA approximation for a generic
k = 0, . . . , p− 1. In [27] it is proved for d = 1, p ≥ 1 and n ≥ 2 (where n is the number of elements,
so that h ∼ 1/n) that

λmin(Mp−1) ≥ c(p)h, λmin(Kp−1) ≥ π2c(p)h. (30)
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Other estimates about the clustering of the eigenvalues of the matrix corresponding to the IGA
approximation of the advection-diffusion-reaction operator for d = 1 are proved in [27].

We have numerically computed the extreme eigenvalues of the mass and stiffness matrices for both
IGA-C0 and IGA-Cp−1 using the function eigs of Matlab for different values of h and p. Starting
from these values we have estimated the analytic behaviour of the extreme eigenvalues (and then the
spectral condition number) of the IGA matrices w.r.t. both h and p.

For the sake of clearness, we anticipate in Table 3 the estimated behaviour of the spectral condition
number of mass and stiffness matrices for all the three approaches (SEM-NI, IGA-C0 and IGA-Cp−1).
Moreover, in Tables 4 and 5 we compare the condition numbers of IGA-Cp−1 and SEM for some values
of p and h in the most interesting case d = 3. More precisely, we notice that when p ≤ 3 the better
conditioned stiffness matrices are those assembled with the IGA-Cp−1 basis functions approach, while
when p > 3 SEM performs better. Numerical results of Table 5 show that SEM provides the better
conditioned mass matrices for any p ≥ 2.

In the next sections we show the numerical computed values and the estimated behaviour of the
extreme eigenvalues and of the condition number of the mass and stiffness IGA matrices.

Table 3: Behaviour of the condition numbers of mass and stiffness matrices

SEM-NI IGA-C0 IGA-Cp−1

K(M) ∼ pd ∼ p−d/24pd

0

−1

log10 h h = 1/p

∼
(
e
4

)d/h
4pd(hp)−d/2

∼ epd

1 p

K(K) ∼ h−2p3

1 p

∼ h−2p2

0

−1

log10 h

p

h = (p2+d/24−dp)1/2

∼ p−d/24dp

∼ h−2p

log10 h

h = e−dp/2

∼ pedp

p
1

−1

0 ∼
(
e
4

)d/h
p−d/2h−d/2−14dp

h = 1/p

1 2

3

4.1 IGA-C0 mass matrix

We denote with M0 the mass matrix associated with IGA-C0 approximation. Our numerical results
show that, for any value of h > 0 and p ≥ 1, λmin(M0) and λmax(M0) behave as:

λmin(M0) ∼ hdp−d/24−pd, (31)

λmax(M0) ∼ hdp−d, (32)

for d = 1, 2, 3, respectively. Then
K(M0) ∼ p−d/24pd, (33)
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Table 4: Condition number K(K) of the stiffness matrices when d = 3. Comparison between IGA-
Cp−1 and SEM. 1st, 2nd and 3rd regimes refer to IGA−Cp−1

1st regime 2nd regime 3rd regime

K(Kp−1) ∼ h−2p K(Kp−1) ∼ pedp K(Kp−1) ∼
(
e
4

)d/h 4dp

h (hp)d/2

h . e−dp/2 e−dp/2 < h . 1/p h & 1/p

p = 2 h . e−3 ' 0.0498 e−3 < h . 1/2 h & 1/2

h 1/32 1/24 1/20 1/10

K(Kp−1) 5.22 · 10 2.95 · 10 2.11 · 10 2.08 · 10

K(KSEM ) 1.67 · 103 9.38 · 102 6.52 · 102 1.63 · 102

p = 3 h . e−9/2 ' 0.01109 e−9/2 . h . 1/3 h & 1/3

h 1/32 1/10 1/2

K(Kp−1) 3.75 · 102 4.01 · 102 4.56

K(KSEM ) 4.20 · 103 4.10 · 102 1.78 · 10

p = 4 h . e−6 ' 0.0025 e−6 . h . 1/4 h & 1/4

h 1/32 1/10 1/3

K(Kp−1) 7.71 · 103 8.95 · 103 1.52 · 105

K(KSEM ) 8.60 · 103 8.38 · 102 7.80 · 10

p = 6 h . e−9 ' 10−4 e−9 . h . 1/6 h & 1/6

h 1/32 1/10 1/5

K(Kp−1) 3.56 · 106 5.62 · 106 1.55 · 107

K(KSEM ) 2.26 · 105 2.21 · 103 5.52 · 102

p = 8 h . e−12 ' 6 · 10−6 e−12 . h . 1/8 h & 1/8

h 1/32 1/10 1/7 1/5

K(Kp−1) 1.73 · 109 5.15 · 109 3.21 · 108 5.17 · 1010

K(KSEM ) 4.43 · 105 4.33 · 103 2.12 · 103 1.08 · 103

i.e., the condition number of M0 grows exponentially with p and it is independent of the element-size
h.

In Figures 16 – 18 we show the computed extreme eigenvalues and the spectral condition number
versus h (at left) and versus p (at right) for d = 1, 2, 3. Numerical results confirm estimates (31),
(32) and (33).
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Table 5: Condition number K(M) of the mass matrices when d = 3. Comparison between IGA-Cp−1

and SEM. 1st and 2nd regimes refer to IGA−Cp−1.

1st regime 2nd regime

K(Mp−1) ∼ epd K(Mp−1) ∼
(
e
4

)d/h
4dp(hp)−d/2

h . 1/p h . 1/p

p = 2 h ≤ 1/2 h > 1/2

h 1/32

K(Mp−1) 1.17 · 103

K(MSEM ) 6.40 · 10

p = 4 h . 1/4 h & 1/4

h 1/32 1/3

K(Mp−1) 3.27 · 105 7.79 · 105

K(MSEM ) 3.60 · 102 3.60 · 102

p = 6 h . 1/6 h & 1/6

h 1/32 1/5

K(Mp−1) 1.10 · 108 5.94 · 108

K(MSEM ) 1.07 · 103 1.07 · 103

p = 8 h . 1/8 h & 1/8

h 1/32 1/7

K(Mp−1) 4.17 · 1010 4.51 · 1011

K(MSEM ) 2.39 · 103 2.39 · 103
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Figure 16: The extreme eigenvalues and the spectral condition number of K(M0) for d = 1, versus h
(at left) and versus p (at right). The computed values confirm the estimate given in (31), (32) and
(33)
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Figure 17: The extreme eigenvalues and the spectral condition number of K(M0) for d = 2, versus h
(at left) and versus p (at right). The computed values confirm the estimates given in (31), (32) and
(33)
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Figure 18: The extreme eigenvalues and the spectral condition number of K(M0) for d = 3, versus h
(at left) and versus p (at right). The computed values confirm the estimates given in (31), (32) and
(33)
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4.2 IGA-C0 stiffness matrix

By denoting with K0 the stiffness matrix corresponding to the IGA-C0 approximation, its (computed)
extreme eigenvalues behave depending as follows:

λmin(K0) ∼

{
hdp−d if h .

(
p2+d/24−dp

)1/2
hd−2p2−d/24−dp otherwise

(34)

λmax(K0) ∼ hd−2p2−d (35)

for any d = 1, 2, 3. Then

K(K0) ∼

{
h−2p2 if h .

(
p2+d/24−dp

)1/2
p−d/24dp otherwise.

(36)

In Figure 19 we report the computed spectral condition numbers versus both h and p, for d =
1, 2, 3 jointly with a graph summarising the behaviour of K(K0) given in (36). The stiffness matrix
K0 is better conditioned w.r.t. p when h . (p2+d/24−dp)1/2, in such a case K(K0) ∼ h−2p2 is
more favourable of one order than the condition number of KSEM . On the contrary, when h &
(p2+d/24−dp)1/2, K(K0) grows exponentially with p, but it is independent of h.

In Figures 20 – 22 we show the computed extreme eigenvalues and the spectral condition number
versus h (at left) and versus p (at right) for d = 1, 2, 3. Numerical results confirm estimates (31),
(32) and (33).
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Figure 20: The extreme eigenvalues and the spectral condition number of K(K0) for d = 1, versus h
(at left) and versus p (at right). The behaviour of the minimum eigenvalue (and similarly that of the
spectral condition number) versus h and p depends on how much h is small w.r.t. p, see (34) and
(36)
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Figure 21: The extreme eigenvalues and the spectral condition number of K(K0) for d = 2, versus h
(at left) and versus p (at right). The behaviour of the minimum eigenvalue (and similarly that of the
spectral condition number) versus h and p depends on how much h is small w.r.t. p, see (34) and
(36)
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Figure 22: The extreme eigenvalues and the spectral condition number of K(K0) for d = 3, versus h
(at left) and versus p (at right). The behaviour of the minimum eigenvalue (and similarly that of the
spectral condition number) versus h and p depends on how much h is small w.r.t. p, see (34) and
(36)
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4.3 IGA-Cp−1 mass matrix

The computed extreme eigenvalues of the mass matrix Mp−1 of IGA-Cp−1 behave depending on h
and p as follows:

λmin(Mp−1) ∼

{
hde−pd if h . 1/p(
e
4

)−d/h (h
p

)d/2
4−pd otherwise

(37)

λmax(Mp−1) ∼
{
hd if h . 1/p
p−d otherwise

(38)

for any d = 1, 2, 3, respectively. Then

K(Mp−1) ∼

{
epd if h . 1/p(
e
4

)d/h
(hp)−d/24pd otherwise.

(39)

In Figure 23 we report the computed spectral condition numbers versus both h and p, for d =
1, 2, 3 jointly with a graph summarising the behaviour of K(Mp−1) given in (39).

In Figures 24 – 26 we show the computed extreme eigenvalues and the spectral condition number
versus h (at left) and versus p (at right) for d = 1, 2, 3. Numerical results confirm estimates (37),
(38) and (39).
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Figure 24: The extreme eigenvalues and the spectral condition number of K(Mp−1) for d = 1, versus
h (at left) and versus p (at right). The behaviour of the extreme eigenvalues (and similarly that of
the spectral condition number) versus h and p depends on how much h is small w.r.t. p, see (37)–(39)
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Figure 25: The extreme eigenvalues and the spectral condition number of K(Mp−1) for d = 2, versus
h (at left) and versus p (at right). The behaviour of the extreme eigenvalues (and similarly that of
the spectral condition number) versus h and p depends on how much h is small w.r.t. p, see (37)–(39)
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Figure 26: The extreme eigenvalues and the spectral condition number of K(Mp−1) for d = 3, versus
h (at left) and versus p (at right). The behaviour of the extreme eigenvalues (and similarly that of
the spectral condition number) versus h and p depends on how much h is small w.r.t. p, see (37)–(39)
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4.4 IGA-Cp−1 stiffness matrix

The computed extreme eigenvalues of the stiffness matrix Kp−1 of IGA-Cp−1 behave depending on
h and p as follows:

λmin(Kp−1) ∼


hd if h . e−pd/2

hd−2e−pd if e−pd/2 . h . 1/p(
e
4

)−d/h
p2−d/2hd/24−pd if h & 1/p

(40)

λmax(Kp−1) ∼
{
phd−2 if h . 1/p for p > 2
p2−dh−1 otherwise.

(41)

for any d = 1, 2, 3, respectively. Then

K(Kp−1) ∼


h−2p if h . e−dp/2

pedp if e−dp/2 . h . 1/p(
e
4

)d/h
p−d/2h−d/2−14dp otherwise

(42)

In Figure 27 we report the computed spectral condition numbers versus both h and p, for d =
1, 2, 3 jointly with a graph summarising the behaviour of K(Kp−1) given in (42).

In Figures 28 – 30 we show the computed extreme eigenvalues and the spectral condition number
versus h (at left) and versus p (at right) for d = 1, 2, 3. Numerical results confirm estimates (40),
(41) and (42).
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Figure 28: The extreme eigenvalues and the spectral condition number of K(Kp−1) for d = 1, versus
h (at left) and versus p (at right). The behaviour of the extreme eigenvalues (and similarly that of
the spectral condition number) versus h and p depends on how much h is small w.r.t. p, see (40)–(42)
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Figure 29: The extreme eigenvalues and the spectral condition number of K(Kp−1) for d = 2, versus
h (at left) and versus p (at right). The behaviour of the extreme eigenvalues (and similarly that of
the spectral condition number) versus h and p depends on how much h is small w.r.t. p, see (40)–(42)

36



10
-2

10
-1

10
0

h

10
-10

10
-5

10
0

m
in

im
u

m
 e

ig
e

n
v
a

lu
e

3

1

p=1

p=2

p=3

p=4

p=8

(e/4)
-3/h

h
3/2

0 2 4 6 8

p

10
-10

10
-5

10
0

m
in

im
u

m
 e

ig
e

n
v
a

lu
e

h=1

h=0.5

h=0.33333

h=0.25

h=0.125

h=0.083333

 e
-3p

 p
1/2

4
-3p

10
-2

10
-1

10
0

h

10
-2

10
-1

10
0

10
1

m
a
x
im

u
m

 e
ig

e
n
v
a
lu

e

1

1

p=1

p=2

p=3

p=4

p=8

1 2 4 8

p

10
-2

10
-1

10
0

10
1

10
2

m
a
x
im

u
m

 e
ig

e
n
v
a
lu

e

h=1

h=0.5

h=0.33333

h=0.25

h=0.125

h=0.083333

p
-1

10
-2

10
-1

10
0

h

10
0

10
5

10
10

s
p
e
c
tr

a
l 
c
o
n
d
it
io

n
 n

u
m

b
e

r

-2
1

p=1

p=2

p=3

p=4

p=8

(e/4)
3/h

h
-5/2

1 2 3 4 5 6 7 8

p

10
0

10
5

10
10

10
15

s
p
e
c
tr

a
l 
c
o
n
d
it
io

n
 n

u
m

b
e
r

h=1

h=0.5

h=0.33333

h=0.25

h=0.125

h=0.083333

 e
3p

 p
-3/2

4
3p

Figure 30: The extreme eigenvalues and the spectral condition number of K(Kp−1) for d = 3, versus
h (at left) and versus p (at right). The behaviour of the extreme eigenvalues (and similarly that of
the spectral condition number) versus h and p depends on how much h is small w.r.t. p, see (40)–(42)
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5 Eigenvalues of the advection-diffusion operator

Let us consider the second-order differential operator

Lu = −νu′′ + bu′, (43)

in the interval Ω = (0, 1), where ν > 0 and b > 0 are given constants. Denoting by L the characteristic
length (here L = 1), let Pe = b·L

ν be the global Péclet number which determines whether the second-
order or the first-order regime predominates.

Let us denote by ASEM , A0 and Ap−1 the matrices arising from the discretization of the differ-
ential operator L by SEM, IGA−C0, and IGA−Cp−1, respectively, in Ω with homogeneous Dirichlet
boundary conditions.

The iterative condition number ([13, (C.1.10)])

K(A) =
maxi |λi(A)|
mini |λi(A)|

, (44)

where {λi(A)}i are the eigenvalues of A, is a very good indicator of the performance of Krylov
methods for the solution of the algebraic system Au = f . We investigate the behaviour of K(A)
versus the discretization parameters h and p for SEM, IGA−C0, and IGA−Cp−1 for different values
of Pe.

In Figures 31–33 the minimum and maximum modulus of the eigenvalues and the iterative con-
dition number of the matrix ASEM are shown versus both h and p. From these numerical results we
evince that:

min
i
|λi(ASEM ))| ∼

{
h p−1 if h . p

4
√
Pe

h−1p if h & p

4
√
Pe
,

(45)

max
i
|λi(ASEM ))| ∼

{
h−1p2 if h . p

4
√
Pe

p0.4 if h & p

4
√
Pe
,

(46)

K(ASEM ) ∼

{
h−2p3 if h . p

4
√
Pe

h p−0.6 if h & p

4
√
Pe
.

(47)

In Figures 34–36 the minimum and maximum modulus of the eigenvalues and the iterative con-
dition number of the matrix A0 are shown versus both h and p. From these figures we evince that

min
i
|λi(A0))| ∼

{
hp−1 if h . 2 e−p/2√

Pe

h−1pαβ−p if h & 2 e−p/2√
Pe

,
(48)

with 1/4 ≤ α ≤ 3/2 and 3 ≤ β ≤ 4.

max
i
|λi(A0))| ∼

{
h−1p if h . 0.15 p√

Pe

p−1/4 if h & 0.15 p√
Pe
,

(49)

K(A0) ∼


h−2p2 if h . 2 e−p/2√

Pe

p1−αβp if 2 e−p/2√
Pe

. h . 0.15 p√
Pe

hp−(α+1/4)βp if h & 0.15 p√
Pe
,

(50)
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with 1/4 ≤ α ≤ 3/2 and 3 ≤ β ≤ 4.
In Figures 37–39 the minimum and maximum modulus of the eigenvalues and the iterative condi-

tion number of the matrix Ap−1 are shown versus both h and p. From these figures we clearly evince
that

max
i
|λi(Ap−1))| ∼

{
h−1p if h . 0.05 p√

Pe

p−1/2 if h & 0.05 p√
Pe
,

(51)

while for what concerns the behaviour of both the minimum modulus of the eigenvalues and the
iterative condition number, the conclusions are not evident, moreover we observe different behaviours
for p even and p odd. We can say that

min
i
|λi(Ap−1))| ∼


h if h . e−p/2√

Pe

h−αβ−p if e−p/2√
Pe

. h . 0.05√
Pe

c(h, p)β−p if h & 0.05√
Pe
,

(52)

and

K(Ap−1) ∼



h−2p if h . e−p/2√
Pe

hα−1pβp if e−p/2√
Pe

. h . 0.05√
Pe

(c(h, p)h)−1pβp if 0.05√
Pe

. h . 0.05 p√
Pe

(c(h, p))−1p−1/2βp if h & 0.05 p√
Pe
,

(53)

where 1 ≤ α ≤ 2, 2 ≤ β ≤ 4, while c(h, p) is a monotonically decreasing function of h if p is odd,
while it can be non-monotone w.r.t. h if p is even (this is evident in the left-bottom picture of both
Fig. 37 and Fig. 39).

By comparing the values of the condition numbers reported in Figures 33 and 39 we deduce
that, when Pe = 1 and Pe = 100, the IGA-Cp−1 matrices provide the smaller condition numbers
while, when Pe = 10000, SEM can perform better than IGA-Cp−1 for several combinations of the
discretization parameters h and p.

We warn the reader that the results of this section refer to the case d = 1 and, more in general,
in accordance with the numerical results shown in the previous section for the Poisson problem, we
expect that βp should be replaced by βpd in both (52) and (53).
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Figure 31: Advection-diffusion test case. The minimum modulus of the eigenvalues of ASEM for
d = 1, versus h (at left) and versus p (at right). Pe = 1 at top, Pe = 102 in the middle, and
Pe = 104 at bottom. See (45)
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Figure 32: Advection-diffusion test case. The maximum modulus of the eigenvalues of ASEM for
d = 1, versus h (at left) and versus p (at right). Pe = 1 at top, Pe = 102 in the middle, and
Pe = 104 at bottom. See (46)
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Figure 33: Advection-diffusion test case. The iterative condition number K(ASEM ) for d = 1, versus
h (at left) and versus p (at right). Pe = 1 at top, Pe = 102 in the middle, and Pe = 104 at bottom.
See (47)
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Figure 34: Advection-diffusion test case. The minimum modulus of the eigenvalues of A0 for d = 1,
versus h (at left) and versus p (at right). Pe = 1 at top, Pe = 102 in the middle, and Pe = 104 at
bottom. See (48)
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Figure 35: Advection-diffusion test case. The maximum modulus of the eigenvalues of A0 for d = 1,
versus h (at left) and versus p (at right). Pe = 1 at top, Pe = 102 in the middle, and Pe = 104 at
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Figure 36: Advection-diffusion test case. The iterative condition number of A0 for d = 1, versus h
(at left) and versus p (at right). Pe = 1 at top, Pe = 102 in the middle, and Pe = 104 at bottom.
See (50)
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Figure 37: Advection-diffusion test case. The minimum modulus of the eigenvalues of Ap−1 for d = 1,
versus h (at left) and versus p (at right). Pe = 1 at top, Pe = 102 in the middle, and Pe = 104 at
bottom. See (52)
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Figure 38: Advection-diffusion test case. The maximum modulus of the eigenvalues of Ap−1 for d = 1,
versus h (at left) and versus p (at right). ν = 1 at top, ν = 10−2 in the middle, and ν = 10−4 at
bottom. See (51)
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Figure 39: Advection-diffusion test case. The iterative condition number of Ap−1 for d = 1, versus h
(at left) and versus p (at right). Pe = 1 at top, Pe = 102 in the middle, and Pe = 104 at bottom.
See (53)
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6 Conclusions

In this paper we have carried out a systematic comparison between the Spectral Element Method
with Numerical Integration (SEM-NI) and the NURBS-based Isogeometric Analysis methods (in its
basic version in the framework of the Galerkin method) IGA-C0 (C0 regularity inside the domain)
and IGA-Cp−1 (global Cp−1 regularity inside the domain). Our focus has been on the accuracy and
the conditioning with respect to the discretization parameters h and p when applied to solve the
Poisson problem. As of accuracy, we have considered two test cases, the first one on the reference
domain Ω = (0, 1)d with d = 1, 2, 3, the second one on a more general domain with curved boundary.
IGA and SEM-NI are comparable in terms of accuracy w.r.t. h and p, whereas their computational
costs look different. As a matter of fact, a qualitative comparison between the methods – carried
out by means of implementations not involving any efficiency improvement of the solvers – indicates
that, for a given accuracy target, the matrix assembly for SEM-NI is less computational demanding
than that of IGA in terms of CPUtime and of memory storage.

In the second part of the paper, starting from the numerical computations of the eigenvalues,
we provided very accurate estimates of the extreme eigenvalues (as well as of the spectral condition
numbers) of the mass and stiffness matrices of IGA approaches. These factors play a crucial role on
the convergence rate of iterative methods for the solution of the associated linear system and on the
propagation of rounding errors in solving the linear system itself. The extreme eigenvalues also reflect
the stability restriction of explicit time-advancing schemes for initial boundary value problems. The
condition number of IGA mass matrices grows exponentially w.r.t. to p, while the condition number
of the SEM-NI matrices grows only algebraically vs p. On the other hand, the condition number of
the IGA stiffness matrices follows different regimes (with either algebraic or exponential dependence
on p) in different regions of the plane (p, h).
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[49] R. Vàzquez. A new design for the implementation of isogeometric analysis in octave and matlab:
Geopdes 3.0. Comput. Math. Appl., 72(3):523–554, 2016.

52


	Introduction
	Problem setting
	Discretization by the Spectral Element Method (SEM)
	Discretization by Isogeometric Analysis (IGA)

	Accuracy: numerical tests
	Cube domain
	Domain with curved boundary: one-eighth of the sphere

	Spectral properties: eigenvalues and condition number
	IGA-C0 mass matrix
	IGA-C0 stiffness matrix
	IGA-Cp-1 mass matrix
	IGA-Cp-1 stiffness matrix

	Eigenvalues of the advection-diffusion operator
	Conclusions

