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I. INTRODUCTION

In this article, we face the approximation of the Navier–Stokes equations for viscous incom-
pressible flows in two-dimensional bounded domains. We propose the use of continuous spectral
elements, defined on the Gauss–Lobatto Legendre quadrature formulas, stabilized by techniques
similar to those introduced in the finite element context. In the last years the spectral element
methods have been used massively for the approximation of the Navier–Stokes equations [1]–[2]
and, more recently, even in the context of triangular elements [3].

It is well known that in the numerical approximation of the Navier–Stokes equations for
incompressible flows, two possible types of instability can may arise: one is due to the presence
of dominating convection terms, while the other is intrinsic to the mixed formulation (in velocity
and pressure) of the problem. The first type of instability generates oscillations on the velocity
field for high Reynolds number flows, the second type of instability produces spurious modes
on the pressure when the finite dimensional spaces of pressure and velocity do not obey the so
called inf-sup or Ladyzenskaya–Brezzi–Babuška (LBB) condition [4]–[5]. In particular, in the
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spectral context, the LBB condition is satisfied if one uses polynomials of degree N for the
velocity and polynomials of degreeN −2 for the pressure, the so-called approach (PN −PN−2),
or if one uses polynomials with the same degree for both the velocity and the pressure but with
a-posteriori filtering of parasitic modes for the pressure or, again, other methods [6]. The LBB
condition does not necessarily have to be fulfilled if the incompressibility condition is relaxed. A
possible relaxation in the finite element context was proposed by Brezzi and Pitkaranta [7], and it
has been reinterpreted by Hughes, Franca, and Balestra [8] in terms of streamline diffusion-type
perturbation. They showed that the stabilizing quality of the streamline diffusion method was
beneficial in a context beyond that of convective flows.
Hansbo and Szepessy [9] introduced a streamline diffusion finite element method for the time-
dependent incompressible Navier–Stokes equations, which was based on a mixed velocity–
pressure formulation using the same finite element discretization (P1 − P1 or Q1 − Q1) of
space–time for the velocity and the pressure spaces. Later Franca, Frey, and Hughes generalized
the stabilization schemes for the nonstationary linearized Navier–Stokes equations [10]–[11] to
high-order interpolations and they designed a stability parameter ‘‘τ ’’ which is satisfactory both
for low- and high-order interpolation. Tobiska and Verfürth [12] furnish an optimal error estimate
for the streamline diffusion finite element method on the linearized and nonlinear Navier–Stokes
equations. Canuto and Van Kemenade [13] proposed a bubble-stabilized spectral method for the
incompressible Navier–Stokes equations; they made a comparison between the bubble-stabilized
spectral method and the (PN − PN−2) method, and they designed and tested a stabilization
parameter ‘‘τ ’’ based on bubbles.
In this article, we extend the streamline diffusion stabilization to spectral element context, where
the interpolation degree is generally higher than in the finite element one, and the Galerkin
formulation is replaced by a generalized one that makes use of Gaussian integration on each
element. A stabilization parameter ‘‘τ º, depending on both the element size of the elements and
the interpolation polynomial degree, is furnished.
The temporal discretization is made by a semi-implicit finite difference scheme, so that at each
time-level we approximate a linearized Navier–Stokes system. Stability and convergence results
are proved for the stabilized approach on the linearized Navier–Stokes equations. The stability
analysis gives both lower and upper bounds on the choice of the time-step ∆t (see Theorem 6.3);
while the spectral accuracy of high polynomial interpolation is not damaged by the use of the
stabilizing terms (see Theorem 6.5). In order to prove stability and convergence, we need some
basic estimates on the spectral element approximation. To this aim, we prove the inverse inequality
for spectral elements on a quasi-uniform grid of parallelograms (Theorem 6.1), an interpolation
result in L2- and H1-norms for conformal spectral elements (Theorem 6.2), a projection result
in the one-dimensional case (Theorem 6.3) and we use an approximation result of Babuška and
Suri [14] for the two-dimensional case.

At each time level, a linear system of large dimension has to be solved; the matrix of the
system is sparse and its condition number strongly depends on the parameters of the spectral
element discretization, say the mesh size H and the polynomial degree N on each element.
In this article, the BiCGStab algorithm is used, with a preconditioner based on bilinear finite
element discretization. Owing to the block-wise structure of the matrix, the preconditioner is
inverted following the idea of ‘‘Element-by-Element’’ techniques [15]–[16], we can say that
this preconditioner is optimal from the point of view of the efficiency because of its potential
parallelization and its limited computational cost. In the last part of the article, several test cases
are presented showing the high accuracy of the method, and a comparison with the results of
Ghia, Ghia, and Shin [17] for finite differences discretization is reported. We refer to [18] for
other significant test cases.
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An outline of the article is as follows.
In Section II, the incompressible Navier–Stokes equations are given, jointly with their weak

formulation. In Sections III and IV, the space and the time discretizations are presented, while
in Sections V and VI the stabilized approach is given, and the stability and the convergence of
the approximation is proved for the linearized Navier–Stokes equations. In Section VII some
numerical results are given.

II. NAVIER–STOKES EQUATIONS

The Navier–Stokes equations for viscous homogeneous incompressible fluids read: find the vector
field u and the scalar field p so that

∂u
∂t − ν∆u + (u · ∇)u +∇p = f in Ω× (0, T )
∇ · u = 0 in Ω× (0, T )
u = 0 on ∂Ω× (0, T )
u = u0 in Ω× {0},

(2.1)

where T > 0,Ω is an open spatial domain in R2 with polygonal boundary ∂Ω; u = u(x, t) is the
velocity field, p = p(x, t) is the pressure scalar field, ν is the viscosity, x ∈ Ω denotes the space
variable, and t ∈ (0, T ) is the time variable. The function u0 is the initial data. As usual in the
viscous incompressible Navier–Stokes equations, the density ρ of the fluid is normalized, and all
the equations are considered in their adimensional form. The Reynolds number associated to the
system (2.1) is:

Re =
D‖u∞‖

ν
, (2.2)

where u∞ is the drift velocity of the fluid and D is a reference length.
In order to write the weak formulation of the problem (2.1), we introduce the notations:

H1
0 (Ω) = {u ∈ H1(Ω) : γ∂Ωu = 0}, (2.3)

where γ∂Ω stands for the trace operator from H1(Ω) to H1/2(∂Ω) [19] define

V = H1
0 (Ω), V = V 2, (2.4)

Q =
{
q ∈ L2(Ω) :

∫
Ω
qdΩ = 0

}
, (2.5)

a : V ×V→ R a(u,v) =
∫

Ω
ν∇u · ∇vdΩ, (2.6)

b : V ×Q→ R b(v, q) = −
∫

Ω
qdivvdΩ, (2.7)

c : V ×V ×V→ R c(w,u,v) =
∫

Ω
(w · ∇)u · vdΩ, (2.8)

and finally,

c̃ : V ×V ×V→ R c̃(w,u,v) =
1
2
c(w,u,v)− 1

2
c(w,v,u). (2.9)
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The variational formulation of the problem (2.1) reads:
find u : (0, T )→ u(t) ∈ V, p : (0, T )→ p(t) ∈ Q such that for almost every t ∈ (0, T )

d
dt

∫
Ω u(t) · vdΩ + a(u(t),v) + c̃(u(t),u(t),v) + b(v, p(t)) =∫

Ω f(t)vdΩ ∀v ∈ V

b(u(t), q) = 0 ∀q ∈ Q.
(2.10)

It is well known that in R2 the weak solution of (2.10) exists and it is unique for finite time.

III. SPACE DISCRETIZATION

Let us denote by TH a conformal, regular, and quasi-uniform (see, e.g., [20]) partition of Ω inNe
quadrilaterals Tk such that

Ω̄ =
Ne⋃
k=1

T̄k, (3.1)

with

H = max
Tk∈TH

Hk, Hk = diam(Tk), k = 1, . . . , Ne. (3.2)

We denote the reference domain (−1, 1)2 by T̂ and we suppose that, for all k, there exists
a sufficiently smooth one-to-one mapping Fk : T̂ → Tk with a sufficiently smooth inverse
F−1
k : Tk → T̂ such that

∀(ξ, η) ∈ T̂ ,Fk(ξ, η) = (F1k(ξ, η), F2k(ξ, η)) ∈ Tk. (3.3)

If Fk is an affine map, then the domain Tk is a parallelogram and Fk has the form Fk(x̂) = Bkx̂
+ bk. We denote by {ξi}N+1

i=1 and {ωi}N+1
i=1 the nodes and the weights of the Gauss–Lobatto

Legendre quadrature formulas defined on (−1, 1) [21] and by {ξi, ξj}N+1
i,j=1and ωij = ωiωj the

corresponding nodes and weights on the two-dimensional reference domain T̂ .
Let QN (T̂ ) be the set of algebraic polynomials, defined on T̂ , of degree less than or equal to

N in each direction, and set

QH(Ω) = {v ∈ C0(Ω̄) : v|Tk ∈ QN (Tk),∀Tk ∈ TH}. (3.4)

For uN , vN ∈ QN (T̂ ) we define the discrete inner product:

(uN , vN )N,T̂ =
N+1∑
i,j=1

uN (ξi, ξj)vN (ξi, ξj)ωij , (3.5)

while for uN , vN ∈ QN (Tk) we set:

(uN , vN )N,Tk =
N+1∑
i,j=1

uN (xki , y
k
j )vN (xki , y

k
j )ωij |det JFk(ξi, ξj)|, (3.6)

where

(xki , y
k
j ) = Fk(ξi, ξj), i, j = 1, . . . , N + 1, k = 1, . . . , Ne, (3.7)
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and JFk is the jacobian of Fk. Given uH, vH ∈ QH(Ω), we set

(uH, vH)H =
Ne∑
k=1

(uN,k, vN,k)N,Tk , (3.8)

where uN,k = uH|Tk , vN,k = vH|Tk .
From now on the index H will characterize the spectral element discretization we are con-

sidering; it stands for the couple H = (H,N), i.e., the mesh size and the number of degrees of
freedom on each element Tk.

If Slk is a side of ∂Tk, l = 1, . . . , 4, and we denote by

glk : (−1, 1)→ Slk (3.9)

the one-to-one affine map, we can define

(uN,k, vN,k)N,Slk =
N+1∑
i=1

uN (glk(ξi))vN (glk(ξi))ωi|g′lk(ξi)|. (3.10)

If Σ is any subset of ∂Tk such that Σ̄ = ∪lS̄lk, we set:

(uH, vH)H,Σ =
∑
l,k

(uN,k, vN,k)N,Slk . (3.11)

Finally, we define the finite dimensional space (spectral element subspaces):

VH = V ∩QH(Ω),VH = V 2
H, QH = Q ∩QH(Ω). (3.12)

The generalized Galerkin spectral element approximation of problem (2.10) reads: ∀t ∈ (0, T )
find (uH(t), pH(t)) ∈ VH ×QH:

d
dt (uH(t),vH)H + aH(uH(t),vH) + c̃H(uH(t),uH(t),vH)

+ bH(vH, pH(t)) = (f(t),vH)H ∀vH ∈ VH
bH(uH(t), qH) = 0 ∀qH ∈ QH
uH(0) = u0H in Ω,

(3.13)

where

aH : VH ×VH → R aH(uH,vH) =
Ne∑
k=1

(ν∇uN,k,∇vN,k)N,Tk

bH : VH ×QH → R bH(vH, qH) = −
Ne∑
k=1

(qN,k,∇ · vN,k)N,Tk

cH : VH ×VH ×VH → R cH(wH,uH,vH) =
Ne∑
k=1

((wN,k · ∇)uN,k,vN,k)N,Tk , (3.14)

c̃H(wH,uH,vH) =
1
2
cH(wH,uH,vH)− 1

2
cH(wH,vH,uH), (3.15)

and u0H is a suitable approximation of u0.
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IV. TIME DISCRETIZATION

We advance in time the problem (3.13) by a suitable finite difference scheme. Given ∆t ∈ (0, T ),
we set t0 = 0 and tn = t0 + n ·∆t with n = 1, . . . ,M and M =

[
T
∆t

]
.

Given un, for n ≥ 0, we look for the solution (un+1, pn+1) of the system:
1

∆t (u
n+1 − un)− ν∆un+1 + (un · ∇)un+1 +∇pn+1 = fn+1 in Ω

∇ · un+1 = 0 in Ω
un+1 = 0 on ∂Ω.

(4.1)

Setting now unH = uH(tn), pnH = pH(tn), and FnH(vH) = (f(tn),vH)H, for each n, the fully
discrete formulation of (3.13) reads: for n = 0, . . . ,M − 1 find (un+1, pn+1) ∈ VH ×QH:

1
∆t (u

n+1
H − unH,vH)H + aH(un+1

H ,vH) + c̃H(unH,u
n+1
H ,vH)

+ bH(vH, pn+1
H ) = (fn+1,vH)H ∀vH ∈ VH

bH(un+1
H , qH) = 0 ∀qH ∈ QH

u0
H = u0H in Ω.

(4.2)

V. STABILIZATION METHODS

It is well known that the general Galerkin approximation to the Navier–Stokes equations for
incompressible flows can show two different types of instability. The first one is due to the
advective–diffusive nature of the problem that, for high Reynolds number, implies the presence
of spurious oscillations on the velocity field. Moreover, the mixed formulation of the problem
can imply the presence of pressure spurious modes, i.e., functions p̂H ∈ QH such that

(p̂H,∇ · vH) = 0 ∀vH ∈ VH. (5.1)

It follows that, if (uH, pH) ∈ VH ×QH is a solution of (3.13), also

(uH, pH + αp̂H) ∀α ∈ R, ∀p̂H satisfying (5.1), (5.2)

should be a solution of (3.13). This instability can be avoided by requiring that the compati-
bility condition (or inf-sup Ladyzenskaya–Brezzi–Babuška condition) be satisfied, so that the
uniqueness of the solution is guaranteed.

From a numerical viewpoint, the LBB condition requires that the space Vh is sufficiently rich
compared with the space QH. In the spectral element context, several approaches satisfying the
LBB condition have been proposed for the Stokes problem. These approaches require the use of
different discretizations for the velocity and the pressure, and one or more staggered grids.
One possibility is given by the use of polynomials of degree N to approximate the velocity
and polynomials of degree N − 2 to approximate the pressure (briefly PN − PN−2). In order
to implement this method, two strategies can be used: the first one consists of using (N + 1)
Gauss–Lobatto Legendre nodes for the velocity (in each spatial direction) and the internal (N−1)
Gauss–Lobatto Legendre nodes for the pressure (in each spatial direction), the second one consists
of using (N + 1) Gauss–Lobatto Legendre nodes for the velocity and (N − 1) Gauss–Legendre
nodes for the pressure.
The first method has the drawback that the compressibility condition does not use a quadrature
formula, the second one that it requires the use of two staggered grids (see [6] for a detailed
description of these approaches).
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A valid alternative to these approaches is to use a stabilized method, which essentially consists
of adding residual dependent terms to the standard Galerkin formulation, so that the problems
connected to either the convective terms or the LBB conditions can be overcome. In particular,
the same computational grid can be used for both the velocity and the pressure. In this work,
stabilization techniques for the spectral element discretization are proposed following the schemes
introduced by Franca and Hughes [11], [22], [23] for the finite element method.
Such an approach was formerly used for spectral approximations: for advection diffusion equations
([24], and also for Navier–Stokes equations [13]).

Let us denote

Lk(w,vN,k, qN,k) = −ν∆vN,k + (w · ∇)vN,k +∇qN,k ∀k = 1, . . . , Ne. (5.3)

By adapting the idea in [10] to our problem (4.2), we propose the following stabilized problem:
for n = 0, . . . ,M − 1 find (un+1

H , pn+1
H ) ∈ VH ×QH:

(
un+1
H −unH

∆t ,vH
)
H

+ aH(un+1
H ,vH) + bH(un+1

H , qH)

+ c̃H(unH,u
n+1
H ,vH) + bH(vH, pn+1

H ) +
∑
Tk∈TH (∇ · un+1

N,k , γk(x)∇ · vN,k)N,Tk
+
∑
Tk∈TH

(
un+1
N,k

∆t + Lk(unN,k,u
n+1
N,k , p

n+1
N,k ), τk(x)Lk(unN,k,vN,k, qN,k)

)
N,Tk

= (fn+1,vH)H +
∑
Tk∈TH

(
fn+1 +

unN,k
∆t , τk(x)Lk(unN,k,vN,k, qN,k)

)
N,Tk

∀vH ∈ VH, qH ∈ QH
u0
H = u0H .

(5.4)

We observe that if in (5.4) we put qH = 0, then we obtain the momentum equation plus the
stabilization, i.e.:(

un+1
H − unH

∆t
,vH

)
H

+ aH(un+1
H ,vH)

+ c̃H(unH,u
n+1
H ,vH) + bH(vH, pn+1

H ) +
∑

Tk∈TH
(∇ · un+1

N,k , γk(x)∇ · vN,k)N,Tk

+
∑

Tk∈TH

(
un+1
N,k

∆t
+ Lk(unN,k,u

n+1
N,k , p

n+1
N,k ), τk(x)(−ν∆vN,k + (unN,k · ∇)vN,k)

)
N,Tk

= (fn+1,vH)H +
∑

Tk∈TH

(
fn+1 +

unN,k
∆t

, τk(x)(−ν∆vN,k + (unN,k · ∇)vN,k)
)
N,Tk

∀vH ∈ VH, (5.5)

while if we put vH = 0, then we obtain the continuity equation plus the stabilization, i.e.:

bH(un+1
H , qh) +

∑
Tk∈TH

(
un+1
N,k

∆t
+ Lk(unN,k,u

n+1
N,k , p

n+1
N,k ), τk(x)∇qN,k

)
N,Tk

=
∑

Tk∈TH

(
fn+1 +

unN,k
∆t

, τk(x)∇qN,k
)
N,Tk

∀qH ∈ QH, (5.6)
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The stabilization parameters τk(x) and γk(x) are defined as follows at each time-step tn:

τk(x) =
Hk

2|unH(x)|pN2 ξ(Rek(x)), γk(x) =
λ|unH(x)|pHk

N2 ξ(Rek(x)), (5.7)

where

Rek(x) =
m|unH(x)|pHk

2νN2 , (5.8)

ξ(Rek(x)) =
{
Rek(x) if 0 ≤ Rek(x) < 1
1 if 1 ≤ Rek(x), (5.9)

|unH(x)|p =

{
(|(unH)1(x)|p + |(unH)2(x)|p)1/p if 1 ≤ p <∞
max
i=1,2

|(unH)i(x)| if p =∞, (5.10)

and finally (see Lemma 6.2)

0 < m ≤ 1
6C̃2

. (5.11)

The constant C̃ is the constant of the inverse inequality for the spectral element discretization (see
Theorem 6.1).
Since ξ(Rek(x))/Rek(x) ≤ 1, we have the following bound on τk:

τk(x) ≤ mH2
k

4νN4 ∀x ∈ Ω. (5.12)

VI. PROOF OF STABILITY AND CONVERGENCE

We prove now a stability result about the discretization of the linearized Navier–Stokes system: αu− ν∆u + (w · ∇)u +∇p = f in Ω
∇ · u = 0 in Ω
u = 0 on ∂Ω,

(6.1)

with α = 1/∆t, in view of the fact that at each time-setp of the finite difference scheme (4.2) we
have to solve such a problem with u := un+1 and w := un.

We set XH = VH ×QH and let [vH, qH] denote an element in XH. We define the following
norm in XH:

‖|[uH, pH]|‖Ω =

[
α‖uH‖2L2(Ω) + ν‖∇uH‖2L2(Ω) +

∑
Tk∈TH

‖γ1/2
k (x)∇ · uN,k‖2L2(Tk)

+
∑

Tk∈TH
‖τ1/2
k (x)∇pN,k‖2L2(Tk)

]1/2

. (6.2)

The space XH is a Hilbert space endowed with the norm (6.2). Given w ∈ VH, we define the
following bilinear form on XH:
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BHw(uH, pH; vH, qH) = α(uH,vH)H + (ν∇uH,∇vH)H

+
1
2
[((w · ∇)uH,vH)H − ((w · ∇)vH,uH)H]− (pH,∇ · vH)H

+ (∇ · uH, qH)H +
∑

Tk∈TH
(∇ · uN,k, γk(x)∇ · vN,k)N,Tk

+
∑

Tk∈TH
(αuN,k + Lk(w,uN,k, pN,k), τk(x)Lk(w,vN,k, qN,k))N,Tk

∀vH ∈ VH,∀qH ∈ QH, (6.3)

and the linear functional

FHw(vH, qH) = (f ,vH)H +
∑

Tk∈TH
(f , τk(x)Lk(x,vN,k, qN,k))N,Tk ∀vH ∈ VH, ∀qH ∈ QH.

Given w ∈ VH, the stabilization on the linearized model problem (6.1) can be rewritten as:

BHw(uH, pH; vH, qH) = FHw(vH, qH) ∀vH ∈ VH, ∀qH ∈ QH. (6.4)

Lemma 6.1. If the decomposition TH satisfies (3.1)–(3.2) then

‖uH‖L2(Ω) ≤ ‖uH‖H ≤ 3‖uH‖L2(Ω) ∀uH ∈ QH(Ω), (6.5)

with ‖uH‖H = (uH, uH)H,Ω.
Proof. The proof of this lemma follows from the equivalence between the L2 norm and the

discrete norm on a reference element T̂ , ‖uN‖N,T̂ =
√

(uN , uN )N,T̂ for any function uN ∈
QN (T̂ ). Indeed (see [6]) ‖uN‖L2(T̂ ) ≤ ‖uN‖N,T̂ ≤ 3‖uN‖L2(T̂ ).

Remark. We consider now a regular, quasi-uniform, and affine equivalent family TH of
quadrilaterals Tk ⊂ Ω̄, it means that

∃σ > 1 : ∀Tk ∈ TH Hk

ρk
≤ σ, with ρk = sup{diam(B)|B is a ball contained in Tk},

and it holds (see Theorem 15.2 in [25])

‖JFk‖ ≤
Hk

ρ̂
‖J−1
Fk
‖ ≤ Ĥ

ρk
(6.6)

with Ĥ =
√

2ρ̂ = 2
√

2 and |det JFk | ≤ CH2
k .

The following scaling results are a consequence of Theorem 15.1 of [25]:

|v̂|Hm(T̂ ) ≤ CHm−1
k |v|Hm(Tk), ∀v ∈ Hm(Tk) (6.7)

and

|v|Hm(Tk) ≤ CH1−m
k |v̂|Hm(T̂ ), ∀v̂ ∈ Hm(T̂ ). (6.8)

We analyze now the so-called inverse inequality for spectral elements.

Theorem 6.1 (Inverse inequality). Let TH be a regular, quasi-uniform, and aff ine equivalent
family of quadrilaterals Tk in Ω̄. Then there exists a positive constant C̃ independent of N and
H such that

‖∇vH‖L2(Ω) ≤ C̃N2H−1‖vH‖L2(Ω) ∀vH ∈ QH. (6.9)
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Proof. It is enough to prove that∫
Tk

|∇vN |2 ≤ C̃2N4H−2
∫
Tk

|vN |2 ∀Tk ∈ TH , ∀vN ∈ QN (Tk), and vN = vH|Tk . (6.10)

Following the proof of proposition 6.3.2 in [26] (the inverse inequality for piecewise polyno-
mials) we consider T̂ = (−1, 1)2 and the affine one-to-one map Fk introduced in Section III.
Then, ∀vN ∈ QN (Tk), we define v̂N ∈ QN (T̂ ) such that v̂N = vN ◦ Fk.

By the inverse inequality for algebraic polynomials [27], there exists C1 independent of N
such that ∫

T̂

|∇v̂N |2 ≤ C1N
4
∫
T̂

|v̂N |2, ∀v̂N ∈ QN (T̂ ), (6.11)

and by (6.7)–(6.8), we have

|vN |2H1(Tk) ≤ C2|v̂N |2H1(T̂ ) ≤ C2 · C2
1N

4|v̂N |2L2(T̂ ) ≤ C̃2H−2
k N4|vN |L2(Tk). (6.12)

The thesis follows by summation on all elements {Tk} and by (3.2).

Remark. From Theorem 6.1 we easily obtain a second inverse inequality:∑
Tk∈TH

‖∆vN,k‖2L2(Tk) ≤ C̃2N4H−2‖∇vH‖2L2(Ω) ∀vH ∈ QH. (6.13)

Lemma 6.2 (Coercivity). Given w ∈ VH, and τ̄ = max 1≤k≤Ne
x∈Ω

τk(x), if

m ≤ 1
6C̃2

and
2
√

2‖w‖2L∞(Ω)

120ν +
√

2τ̄‖w‖2L∞(Ω)

< α <
2
τ̄

(6.14)

then a positive constant α∗ > 0 exists such that

BHw(vH, qH; vH, qH) ≥ α∗‖|[vH, qH]|‖2Ω ∀[vH, qH] ∈ XH. (6.15)

Proof. By definition (6.3), we have

BHw(vH, qH; vH, qH)

= α‖vH‖2H + ν‖∇vH‖2H +
∑

Tk∈TH
‖γ1/2
k ∇ · vN,k‖2N,Tk

+
∑

Tk∈TH
‖τ1/2
k (x)(−ν∆vN,k + (w · ∇)vN,k +∇qN,k)‖2N,Tk

+
∑

Tk∈TH
(αvN,k, τk(x)(−ν∆vN,k + (w · ∇)vN,k +∇qN,k))N,Tk

(by Young inequality)

≥ α

2
‖vH‖2H + ν‖∇vH‖2H +

∑
Tk∈TH

‖γ1/2
k ∇ · vN,k‖2N,Tk

+
(
1− α

2
τ̄
) ∑
Tk∈TH

‖τ1/2
k (x)(−ν∆vN,k + (w · ∇)vN,k +∇qN,k)‖2N,Tk
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(by Young inequality and if α ≤ 2/τ̄)

≥ α

2
‖vH‖2H + ν‖∇vH‖2H +

∑
Tk∈TH

‖γ1/2
k ∇ · vN,k‖2N,Tk

+
(
1− α

2
τ̄
)[
−21

Tk∈TH∑
‖τ1/2
k (x)ν∆vN,k‖2N,Tk

− 1
5

∑
Tk∈TH

‖τ1/2
k (x)(w · ∇)vN,k‖2N,Tk

+
1

132

∑
Tk∈TH

‖τ1/2
k (x)∇qN,k‖2N,Tk

]
.

Using now the inverse inequality (6.13) and the fact that τk(x) ≤ mH2

4νN4 , we have∑
Tk∈TH

‖τ1/2
k (x)ν∆vN,k‖2N,Tk ≤

mH2

4νN4 ν
2C̃2N4H−2‖∇vH‖2H ≤

1
24
ν‖∇vH‖2H (6.16)

and ∑
Tk∈TH

‖τ1/2
k (x)(w · ∇)vN,k‖2N,Tk ≤

√
2‖w‖2L∞(Ω)

mH2

4νN4 C̃
2N4H−2‖vH‖2H

≤
√

2
24ν
‖w‖2L∞(Ω)‖vH‖2H. (6.17)

It follows that

BHw(vH, qH; vH, qH) ≥
[
α

2
−
(
1− α

2
τ̄
) √2

120ν
‖w‖2L∞(Ω)

]
‖vH‖2H

+
[
1
8

+
7ατ̄
16

]
ν‖∇vH‖2H +

∑
Tk∈TH

‖γ1/2
k ∇ · vN,k‖2N,Tk

+
1

132

(
1− α

2
τ̄
) ∑
Tk∈TH

‖τ1/2
k (x)∇qN,k‖2N,Tk . (6.18)

We set now: C1 = α
2 −

(
1− α

2 τ̄
) √2

120ν ‖w‖2L∞(Ω), C2 = 1
8 + 7ατ̄

16 , and C3 = 1
132

(
1− ατ̄

2

)
;

under the assumptions (6.14) on α, the constants C1, C2, and C3 are nonnegative constants and
the thesis follows by Lemma 6.1 and by setting α∗ = min{C1, C2, C3}.

Remark. We observe that the assumption on α given in (6.14) yields the following ones
on ∆t:

τ̄

2
<

∆t
α1

<
τ̄

2
+

60ν√
2‖w‖2L∞(Ω)

. (6.19)

The lower bound on ∆t reflects a similar one given in [12].

Remark. If one uses spectral elements in space–time with piecewise constant elements in
time, then the term∑

Tk∈TH
(αuN,k, τk(x)(−ν∆vN,k + (w · ∇)vN,k +∇qN,k))N,Tk (6.20)
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should be omitted into the stabilizing term. In such case, we obtain a less restrictive bound on α,
i.e.,

α >

√
2

120

‖w‖2L∞(Ω)

ν
(6.21)

and consequently, ∆t must only satisfy the upper bound:

∆t
α1

<
120√

2
ν

‖w‖2L∞(Ω)
(6.22)

in space–time with piecewise constant elements in time.

Lemma 6.3 (Stability). If (uH, pH) is the solution of (6.4), then there exists a positive constant
β such that

‖|[uH, pH]|‖Ω ≤ β

α∗
‖f‖H. (6.23)

Proof. By definition of FHw, we have

FHw(vH, qH)

= (f ,vH)H
∑

Tk∈TH
(f , τk(x)Lk(w,vN,k, qN,k))N,Tk

≤ ‖f‖H
[
‖vH‖H +

∑
Tk∈TH

‖τk(x)(−ν∆vN,k + (w · ∇)vN,k +∇qN,k)‖N,Tk
]
. (6.24)

Since we choose τk(x) less than 1, we have[
‖vH‖H +

∑
Tk∈TH

‖τk(x)(−ν∆vN,k + (w · ∇)vN,k +∇qN,k)‖N,Tk
]2

≤ 2‖vH‖2H + 6
∑

Tk∈TH
‖τ1/2
k (x)ν∆vN,k‖2N,Tk + 6

∑
Tk∈TH

‖τ1/2
k (x)(w · ∇)vN,k‖2N,Tk

+ 6
∑

Tk∈TH
‖τ1/2
k (x)∇qN,k‖2N,Tk (by inverse inequality and (6.14))

≤ 6

[(
1 +

1
24

‖w‖2L∞(Ω)

ν

)
‖vH‖2H +

ν

24
‖∇vH‖2H +

∑
Tk∈TH

‖τ1/2
k (x)∇qN,k‖2N,Tk

]
.

(6.25)

We have that

FHw(vH, qH) ≤ β‖f‖H‖|[vH, qH]|‖Ω ∀[vH, qH] ∈ XH,

by taking β = max

{√
1
α

(
1 + 1

24

‖w‖2
L∞(Ω)

ν

)
,
√

1
24ν

}
and using Lemma 6.1.

The thesis follows by Lemma 6.2.
Now we need to introduce some approximation estimates for spectral elements. First of all we

give an interpolation result in two dimensions, then a projection result for the one-dimensional
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case and, finally, we recall Babuška and Suri results for the approximation in two dimen-
sions [14].

For every Tk ∈ TH let IkN : C0(Tk) → QN (Tk) the local Lagrange interpolation operator on
the Gauss–Lobatto Legendre nodes in Tk, and IH : C0(Ω) → QH(Ω) the global interpolation
operator such that (IHu)|Tk = IkN (u|Tk), for every Tk ∈ TH .
We have the following interpolation result for spectral elements.

Theorem 6.2. For all u ∈ Hs(Ω) with s ≥ 2, there exists a constant C > 0 independent of
H and N such that

‖u− INu‖Hm(Tk) ≤ CHmin(N+1,s)−m
k Nm−s‖u‖Hs(Tk) m = 0, 1 ∀Tk ∈ TH (6.26)

and

‖u− IHu‖Hm(Ω) ≤ CHmin(N+1,s)−mNm−s‖u‖Hs(Ω) m = 0, 1. (6.27)

Proof. The proof follows the guidelines in [28] and it is extended to the two-dimen-
sional case.

Let T̂ = (−1, 1)2, the following error estimate is known in the spectral methods context (see
[19], [21]): ∀û ∈ Hs(T̂ )

‖û− IN û‖Hm(T̂ ) ≤ CNm−s‖û‖Hs(T̂ ) m = 0, 1, s ≥ 2. (6.28)

We take an arbitrary vN−1 ∈ QN−1(T̂ ), we have

‖û− IN û‖Hm(T̂ ) = ‖(û− vN−1)− (IN û− vN−1)‖Hm(T̂ )

= ‖(û− vN−1)− IN (û− vN−1)‖Hm(T̂ )

≤ C(s)Nm−s inf
vN−1∈QN−1(T̂ )

‖û− vN−1‖Hs(T̂ ).

From Deny–Lions lemma (see [26]) it is easy to prove ([14]) that

inf
pN∈QN (Tk)

‖u+ pN‖Hs(Tk) ≤ CHmin(N+1,s)
k |u|Hs(Tk) ∀u ∈ Hs(Tk), (6.29)

and the ®rst estimate of the thesis follows by a scaling argument. Moreover, in view of the fact
that IHu ∈ QH(Ω) and by summation on Tk, we have the estimate (6.27).

We give now a projection result for spectral elements in R.

Theorem 6.3. Let I be an open subset inR and TH a quasi-uniform decomposition of I inNe
disjoint subintervals Ik, for k = 1, . . . , Ne and let it be H = maxkmeas(Ik). Given u ∈
Hs(I), if uH is the spectral element approximation of u, then there exists a positive constant C
such that

‖u− ukN‖Hm(Ik) ≤ CHmin(N+1,s)−mNm−s‖u‖Hs(Ik), 0 ≤ m ≤ s, s ≥ 1, (6.30)

with ukN = uH|Ik , and

‖u− uH‖Hm(I) ≤ CHmin(N+1,s)−mNm−s‖u‖Hs(I) m = 0, 1 s ≥ 2. (6.31)

Proof. Let us denote by ak and bk the left and right extrema, respectively, of the interval
Ik, and let ūk ∈ P1(Ik) be such that ūk(ak) = u(ak) and ūk(bk) = u(bk); finally, let ů ∈
Hs(I) ∩H1

0 (I) be such that ůk = ů|Ik = u|Ik − ūk, for k = 1, . . . , Ne. We set

V 0
H = {v ∈ C0(I) : v|Ik ∈ PN (Ik), v = 0 on ∂Ik, k = 1, . . . , Ne}. (6.32)
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Then we define the orthogonal projector Πk
s : Hs(Ik) ∩H1

0 (Ik) → PN (Ik) with respect to the
inner product in Hs(Ik), such that, given v̊k ∈ Hs(Ik) ∩H1

0 (Ik):

(Πk
s v̊k, wN )Hs(Ik) = (̊vk, wN )Hs(Ik) ∀wN ∈ PN (Ik). (6.33)

From [29] we have that there exists a constant C > 0 independent of N such that

‖̊uk −Πk
s ůk‖Hm(Ik) ≤ CNm−s‖̊uk‖Hs(Ik) 0 ≤ m ≤ s, s ≥ 0, (6.34)

and, for any vN−1 ∈ PN−1(Ik) we have

‖̊uk −Πk
s ůk‖Hm(Ik) = ‖(̊uk − vN−1)−Πk

s (̊uk − vN−1)‖Hm(Ik)

≤ CNm−s‖̊uk − vN−1‖Hs(Ik) [by a scaling argument and (6.29)]

≤ C(s)Hmin(N+1,s)−mNm−s |̊uk|Hs(Ik). (6.35)

In order to prove the second estimate we define the following operator: Πs : Hs(I) ∩H1
0 (I)

→ V 0
H such that

Πsů ∈ V 0
H, and (Πsů)|Ik = Πk

s ůk. (6.36)

We have

‖̊u−Πsů‖H1(I) =

( ∑
Ik∈TH

‖̊uk −Πk
s ů‖2Hm(Ik)

)1/2

≤ CHmin(N+1,s)−mNm−s‖̊u‖Hs(I). (6.37)

We recall the two following approximation results of Babuška and Suri, whose proof is in [14].

Lemma 6.4. Let TH be a quasi-uniform mesh and Tk ∈ TH with verticesAi; let u ∈ Hs(Tk).
There exist a positive constant C independent of u,N, and H and a sequence zN,k ∈ QN (Tk)
for N = 1, 2, . . . , such that, for any 0 ≤ m ≤ s,

‖u− zN,k‖Hm(Tk) ≤ CNm−sHmin(N+1,s)−m
k ‖u‖Hs(Tk) s ≥ 0. (6.38)

If s > 3/2, then we can assume that zN,k(Ai) = u(Ai).

Theorem 6.4. Let u ∈ Hs(Ω) ∩H1
0 (Ω), with s > 3/2, then for any N ≥ 1 and H > 0 there

exists zH ∈ VH such that

‖u− zH‖Hk(Ω) ≤ CHmin(N+1,s)−kNk−s‖u‖Hs(Ω)k = 0, 1, (6.39)

where C is independent of u,N,H, and TH .
Remark. The function zH is obtained starting by the local polynomials zN,k and by matching

continuously at the interfaces between two adjacent elements (see Ref. 14, proof of Theorem 4.6).
The proof of the following lemma follows from Theorem 6.2 and it is similar to the proof of
(4.3.44) in [26] for one-dimension quadrature formulas.

Lemma 6.5. If u ∈ Hs(Tk) with s ≥ 2, then ∃C > 0 independent of N and Hk such that

|(u, vN )L2(Tk) − (u, vN )N,Tk |
≤ C(s)N−sHmin(N+1,s)‖u‖Hs(Tk)‖vN‖L2(Tk) ∀vN ∈ QN (Tk). (6.40)
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Remark. If u ∈ Hs(Tk) and zN−1,k ∈ QN−1(Tk) is a polynomial satisfying (6.38), then

‖∇zN−1,k‖Hs−1(Tk) ≤ C‖u‖Hs(Tk). (6.41)

Theorem 6.5 (Convergence). There exists a unique solution [uH, pH] of (5.4). Moreover, if
u ∈ [H1

0 (Ω) ∩Hs+1(Ω)]2 with s ≥ 1, p ∈ L2
0(Ω) ∩H l(Ω) with l ≥ 1,w ∈ Wmax(s,l,r),∞(Ω),

f ∈ Hr(Ω), then there exists a positive constant C such that

‖|[u− uH, p− pH]|‖Ω ≤ C(Hmin(N+1,s)−1N1−s‖u‖Hs(Ω) +Hmin(N+1,l)N−l‖p‖Hl(Ω)

+ Hmin(N+1,r)N−r‖f‖Hr(Ω)). (6.42)

In particular,

C = max

{
√
v + ‖w‖W s−1,∞(Ω) +

H

N

(
√
α+
‖w‖W s,∞(Ω)

ν

)
+

1
N
‖w‖W s−2,∞(Ω)

+
H

N2

(√
λ|w|p

2ν
+

1
ν
‖w‖2W s−2,∞(Ω)

)
,

1
Nν

(1 + ‖w‖W l−1,∞(Ω)),

‖w‖W r,∞(Ω)

(
1 +

H

νN2

)}
. (6.43)

Proof. Lemmas 6.2 and 6.3 ensure the coercivity of BHw and the continuity of FHw; the
Strang Lemma [26] ensures the existence and the uniqueness of the solution of (5.4) and it is used
here to give the error convergence estimate:

‖|[u− uH, p− pH]|‖Ω ≤ inf
zH∈VH
rH∈QH

(1 +
β

α∗

)
‖|[u− zH, p− rH]|‖Ω

+ sup
vH∈VH
qH∈QH

|Bw(zH, rH; vH, qH)− BHw(zH, rH; vH, qH)|
‖|[vH, qH]|‖Ω


+ sup

vH∈VH
qH∈QH

|Fw(vH, qH)−FHw(vH, qH)|
‖|[vH, qH]|‖Ω , (6.44)

where Bw and Fw are the counterparts, in the Galerkin context, of BHw and FHw, respectively.
We begin by controlling the term ‖|[u− zH, p− rH]|‖Ω by using (6.38) and definitions (5.7) for
τk(x) and γk(x), respectively. By definition (6.3) and by taking an arbitrary element [zH, rH] ∈
VH ×QH, we have
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‖|[u− zH, p− rH]|‖Ω

=

[
α‖u− zH‖2L2(Ω) + ν|u− zH|2H1(Ω)

+
∑

Tk∈TH
‖γ1/2
k ∇(u− zN−1,k)‖2L2(Tk)

+
∑

Tk∈TH
‖τ1/2
k (x)∇(p− rN−1,k)‖2L2(Tk)

]1/2

(by Theorem 6.4)

≤
[
α(CHmin(N+1,s)N−s‖u‖Hs(Ω))2 + ν(CHmin(N+1,s)−1N1−s‖u‖Hs(Ω))2

+
λ|w|pH2

2νN4 (CHmin(N+1,s)−1N1−s‖u‖Hs(Ω))2

+
mH2

4νN4 (CHmin(N+1,l)−1N1−l‖p‖Hl(Ω))
2
]1/2

≤ CHmin(N+1,s)−1N1−s‖u‖Hs(Ω)

(
√
ν +
√
α
H

N
+

√
λ|w|p

2ν
H

N2

)

+
C

Nν
Hmin(N+1,l)N−l‖p‖Hl(Ω). (6.45)

We analyze now the error due to the generalized Galerkin approach. By the exactness of the
Gauss–Lobatto quadrature formulas on polynomials of degree (2N − 1), we choose [zH, rH] ∈
XH such that zH|Tk = zN−1,k ∈ (QN−1(Tk))2, rH|Tk = rN−1,k ∈ QN−1(Tk), so that all the
terms that do not involve the function w and that arise from Bw annul those arising from BHw.
It holds:

|Bw(zH, rH; vH, qH)− BHw(zH, rH; vH, qH)|
≤ |c̃(w, zH,vH)− c̃H(w, zH,vH)|

+

∣∣∣∣∣ ∑
Tk∈TH

[((w · ∇)zN−1,k, τk(x)(−ν∆vN,k +∇qN,k))L2(Tk)

− ((w · ∇)zN−1,k, τk(x)(−ν∆vN,k +∇qN,k))N,Tk ]
∣∣∣∣∣

+

∣∣∣∣∣ ∑
Tk∈TH

[(−ν∆zN−1,k +∇rN−1,k, τk(x)(w · ∇)vN,k)L2(Tk)

− (−ν(∆zN−1,k +∇rN−1,k, τk(x)(w · ∇)vN,k)N,Tk ]

∣∣∣∣∣
+

∣∣∣∣∣ ∑
Tk∈TH

[((w · ∇)zN−1,k, τk(x)(w · ∇)vN,k)L2(Tk)

− ((w · ∇)zN−1,k, τk(x)(w · ∇)vN,k)N,Tk ]

∣∣∣∣∣ , (6.46)
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where

|c̃(w, zH,vH)− c̃H(w, zH,vH)|

=
1
2
|c(w, zH,vH)− c(w,vH, zH)− cH(w, zH,vH) + cH(w,vH, zH)|

≤ 1
2

∣∣∣∣∣ ∑
Tk∈TH

[((w · ∇)zN−1,k,vN,k)L2(Tk) − ((w · ∇)zN−1,k,vN,k)N,Tk ]

∣∣∣∣∣
+

1
2

∣∣∣∣∣ ∑
Tk∈TH

[((w · ∇)vN,k, zN−1,k)L2(Tk) − ((w · ∇)vN,k, zN−1,k)N,Tk ]

∣∣∣∣∣ . (6.47)

We analyze each term of (6.47) on an arbitrary element Tk ∈ TH :

•|((w · ∇)zN−1,k,vN,k)L2(Tk) − ((w · ∇)zN−1,k,vN,k)N,Tk | (by Lemma 6.5)

≤ CH
min(N+1,s)−1
k N1−s‖(w · ∇)zN−1,k‖Hs−1(Tk)‖vN,k‖L2(Tk) (by (6.41))

≤ CHmin(N+1,s)−1N1−s‖w‖W s−1,∞(Tk)‖u‖Hs(Tk)‖vN,k‖L2(Tk),

•|((w · ∇)vN,k, zN−1,k)L2(Tk) − ((w · ∇)vN,k, zN−1,k)N,Tk |
= |(∇vN,k,w ⊗ zN−1,k)L2(Tk) − (∇vN,k,w ⊗ zN−1,k)N,Tk | (by Lemma 6.5)

≤ CH
min(N+1,s)
k N−s‖w ⊗ zN−1,k‖Hs(Tk)‖∇vN,k‖L2(Tk) (by (6.41))

≤ CHmin(N+1,s)N−s‖w‖W s,∞(Tk)‖u‖Hs(Tk)‖∇vN,k‖L2(Tk),

and the terms of (6.46):

•|((w · ∇)zN−1,k, τk(x)(−ν∆vN,k +∇qN,k))L2(Tk)

− ((w · ∇)zN−1,k, τk(x)(−ν∆vN,k +∇qN,k))N,Tk | (by Lemma 6.5 and (6.41))

≤ CH
min(N+1,s)−1
k N1−s‖w‖W s−1,∞(Tk)‖u‖Hs(Tk)‖τk(x)(−ν∆vN,k +∇qN,k)‖L2(Tk)

(by Theorem 6.1 and definition of τk(x))

≤ CHmin(N+1,s)−1N1−s‖w‖W s−1,∞(Tk)‖u‖Hs(Tk)[‖vN,k‖L2(Tk) + ‖τk(x)∇qN,k‖L2(Tk)].

•|(−ν∆zN−1,k +∇rN−1,k, τk(x)(w · ∇)vN,k)L2(Tk)

− (−ν∆zN−1,k +∇rN−1,k, τk(x)(w · ∇)vN,k)N,Tk |
= |(τk(x)w ⊗ (−ν∆zN−1,k +∇rN−1,k),∇vN,k)L2(Tk)

− (τk(x)w ⊗ (−ν∆zN−1,k +∇rN−1,k),∇vN,k)N,Tk | (by Lemma 6.5)

≤ CH
min(N+1,s)−2
k N2−s‖w‖W s−2,∞(Tk)‖τk(x)ν∆zN−1,k‖Hs−2(Tk)‖∇vN,k‖L2(Tk)

+ CH
min(N+1,l)−1
k N1−l‖w‖W l−1,∞(Tk)‖τk(x)∇rN−1,k)‖Hl−1(Tk)‖∇vN,k‖L2(Tk)

(by (6.41) and Theorem 6.1)

≤ CHmin(N+1,s)−2N2−s‖w‖W s−2,∞(Tk)
mH2

4N4 ‖u‖Hs(Ω)C̃N
2H−1‖vN,k‖L2(Tk)
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+ CHmin(N+1,l)−1N1−l‖w‖W l−1,∞(Tk)
mH2

4νN4 ‖p‖Hl(Tk)C̃N2H−1‖vN,k‖L2(Tk)

(by m < 1/(6C̃2) and (6.41))

≤
[
CHmin(N+1,s)−1N−s‖w‖W s−2,∞(Tk)‖u‖Hs(Tk)

+
C

Nν
Hmin(N+1,l)N−l‖w‖W l−1,∞(Tk)‖p‖HlTk)

]
‖vN,k‖L2(Tk).

Finally,

•|(w · ∇)zN−1,k, τk(x)(w · ∇)vN,k)L2(Tk) − (w · ∇)zN−1,k, τk(x)(w · ∇)vN,k)N,Tk |
≤ CHmin(N+1,s)−1N1−s‖w‖2W s−1,∞(Tk)‖∇zN−1,k‖Hs−1(Tk)‖τk(x)∇vN‖L2(Tk)

(by Theorem 6.1 and (6.41))

≤ H

N2

C

ν
Hmin(N+1,s)−1N1−s‖w‖2W s−1,∞(Tk)‖u‖Hs(Tk)‖vN,k‖L2(Tk).

Then, by summation on Tk ∈ TH we obtain:

sup
vH∈VH
qH∈QH

|Bw(zH, rH; vH, qH)− BHw(zH, rH; vH, qH)|
‖|[vH, qH]|‖Ω

≤ CHmin(N+1,s)−1N1−s‖u‖Hs(Ω) ·
[
‖w‖W s−1,∞(Ω) +

H

Nν
‖w‖W s,∞(Ω)

+
1
N
‖w‖W s−2,∞(Ω) +

H

νN2 ‖w‖2W s−2,∞(Ω)

]
+

C

Nν
Hmin(N+1,l)N−l‖w‖W l−1,∞(Ω)‖p‖Hl(Ω). (6.48)

We have to control the last term in (6.44):

|Fw(vH, qH)−FHw(vH, qH)| ≤ |(f ,vH)L2(Ω) − (f ,vH)H)|

+

∣∣∣∣∣ ∑
Tk∈TH

[(f , τk(x)(−ν∆vN,k + (w · ∇)vN,k +∇qN,k))L2(Tk)

− (f , τk(x)(−ν∆vN,k + (w · ∇)vN,k +∇qN,k))N,Tk ]
∣∣∣∣∣ ; (6.49)

where, by Lemma 6.5,

|(f ,vH)L2(Ω) − (f ,vH)H| ≤ CHmin(N+1,r)N−r‖f‖Hr(Ω)‖vH‖L2(Ω)

and

|(f , τk(x)(−ν∆vN,k + (w · ∇)vN,k +∇qN,k))L2(Tk)

− (f , τk(x)(−ν∆vN,k + (w · ∇)vN,k +∇qN,k))N,Tk |
≤ |(f , τk(x)(−ν∆vN,k +∇qN,k)L2(Tk) − (f , τk(x)(−ν∆vN,k +∇qN,k)N,Tk |

+ |(f , τk(x)(w · ∇)vN,k)L2(Tk) − (f , τk(x)(w · ∇)vN,k)N,Tk | (by Lemma 6.5)
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≤ CHmin(N+1,r)N−r‖f‖Hr(Tk) · [ν‖τk(x)∆vN,k‖L2(Tk) + ‖τk(x)∇qN,k‖L2(Tk)]
+ |(f ⊗w, τk(x)∇vN,k)L2(Tk) − (f ⊗w, τk(x)∇vN,k)N,Tk | (by Theorem 6.1)

≤ CHmin(N+1,r)N−r‖f‖Hr(Tk)[‖vN,k‖L2(Tk) + ‖τk(x)∇qN,k‖L2(Tk)]

+
H

N2

C

ν
Hmin(N+1,r)N−r‖f‖Hr(Tk)‖w‖W r,∞(Tk)‖vN,k‖L2(Tk).

Then

sup
vH∈VH
qH∈QH

|Fw(vH, qH)−FHw(vH, qH)|
‖|[vH, qH]|‖Ω

≤ CHmin(N+1,r)N−r‖f‖Hr(Tk)‖w‖W r,∞(Tk)

(
1 +

H

νN2

)
. (6.50)

The thesis follows by applying now infzH∈VH
rH∈QH

on the sum between (6.45) and (6.48) and then

by summing with (6.50).

VII. NUMERICAL RESULTS

At each time level we have to solve a linear system of large dimension but with sparse structure.
If N is the polynomial interpolation degree in each dimension and Ne is the global number of
spectral elements, then we have a system of dimension 3Ne ·N2, with a density of about 10% of
nonzero coefficients.
Numerical results show that the condition number of the matrix A arising from the stabilized
approximation method is

K(A) = O(H−4N6), (7.1)

where H is the maximum diameter on the elements of the decomposition.
So, it is mandatory to solve the system by a preconditioned iterative method. We choose to use the
Bi-CGStab of Van-der Vorst (see [30]), preconditioned by a local finite element preconditioner
on the style of ‘‘EBE’’ (see [15] and [16]).
It is well known ([31]–[33]) that finite element preconditioners are optimal for the spectral ap-
proximation of boundary value problems. However, instead of a global preconditioner, which
requires many storage locations to be inverted, we considered an element-by-element bilinear
preconditioner, based on the same stabilized approximation used for the primary problem, with a
no-friction boundary condition on the internal boundaries, i.e., ∀Tk ∈ TH :

T̃n := −pn + ν(n · ∇)u = 0 on ∂Tk \ (∂Ω ∩ ∂Tk), (7.2)

(T̂ is the stress tensor) while on ∂Tk ∩ ∂Ω the original boundary condition given on the problem
is imposed. No boundary condition for the pressure has been imposed explicitly.

Remark. Even if this preconditioner is not optimal, numerical results point out substantial
reduction of the iterations number with respect to an unpreconditioned system or even to a diago-
nally preconditioned system. All the results presented in the following section are obtained using
the local finite element preconditioner.
In order to stop the iterations we control that the euclidean norm of the residual, normalized over
the Euclidean norm of the right-hand side, is less than a given tolerance ε. If it is not specified we
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TABLE I. Spectral accuracy of the stabilized scheme for the Kim and Moin analytical solution to the
Navier–Stokes equations on 16 spectral elements.

N ‖u− uH‖H1(Ω ) ‖p− pH‖L2(Ω )

4 0.4276e-2 0.1883e-1
5 0.3589e-3 0.3674e-2
6 0.2586e-4 0.3279e-3
7 0.1472e-5 0.8756e-4

choose ε = 10−10. At each time-step we take the maximum number of iterations of the BiCGStab
equal to 400.

Now we present some numerical results attesting to the high accuracy of the stabilized ap-
proximation. First, we consider the analytical solution of Kim and Moin (see [34]) for the time-
dependent Navier-Stokes equations and we show the accuracy of the schemes we have used in
space and in time. We have considered the problem (2.1) on the computational domain Ω = (0, 1)2,
with exact solution

u(x, y) = − cos(απx) sin(απy)e(−2α2π2tν)

v(x, y) = sin(απx) cos(απy)e(−2α2π2tν)

p(x, y) = −1
4
[cos(2απx) + cos(2απy)]e(−4α2π2tν). (7.3)

and we have chosenα = 2. We have considered a partition of Ω in 4×4 squared elements, viscosity
ν = 10−2, the Euler semi-implicit scheme (4.1) for the time discretization. The stabilization
parameters are chosen as follows: p = 2,m = 5 · 10−3, λ = 1. In Table I we show the space
approximation errors, here (0, T ) = (0, 0.01) and ∆t = 0.0001, while Table II shows the first-
order accuracy in ∆t for the semi-implicit Euler scheme (4.1). Again, we considered a partition
of Ω in 4× 4 squared elements, with polynomial degree N = 5, the other parameters are chosen
as for the results of Table I.

A. Driven Cavity Flow

This test case shows the motion of a flow inside a plane square domain Ω = (0, 1)2 with tangential
velocity prescribed on the top boundary u∞ = (1, 0)T . The parameter D in the definition of Re
is the measure of the side of Ω. A no-slip boundary condition is imposed on the vertical sides as
well as on the bottom horizontal side.

The problem has been solved by the stabilized spectral elements (SSE), and by the Euler
semi-implicit time advancing scheme in order to linearize the nonlinear terms.

The iterative pseudo-temporal procedure is stopped when the Euclidean norm of the difference
between two successive numerical solutions is less than 10−6. The numerical solutions shown in
Figs. 1–4 are obtained with a time-step ∆t given in Table III, as the number of time-steps needed
to obtain the stationary solutions. The stabilization parameters have been chosen as follows:
m = 8 · 10−3, λ = 1, and p = 2.

TABLE II. ‖u− uH‖H1(Ω ) error of the semi-implicit Euler scheme at T = 1.

∆t 0.01 0.025 0.05 0.1 0.25
‖u− uH‖H1(Ω ) 0.2018e-2 0.4951e-2 0.9707e-2 0.2077e-1 0.4329e-1



STABILIZED SPECTRAL ELEMENT APPROXIMATION . . . 135

FIG. 1. Profiles of u velocities along vertical lines through geometric center of the cavity.

First of all we present the comparison with the results of Ghia et al. [17] about the profiles of
u and v velocities along vertical and horizontal (respectively) lines through geometric center of
the cavity (see Figs. 1 and 2). The solid lines represent the numerical solution obtained by SSE
at different Reynolds numbers, while the symbols represent the numerical data found in Tables I
and II in [17].

In Table IV we compare the space discretization used in [17] and by SSE. N and M stand for
the polynomial degree in each spectral element (in each direction) and the number of elements in
each direction, respectively. Unless otherwise specified, the decomposition of Ω is uniform.

FIG. 2. Profiles of v velocities along horizontal lines through geometric center of the cavity.
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FIG. 3. Streamlines for Re = 100 (left) and Re = 400 (right).

In Figs. 3 and 4, we present the streamline contours for the cavity flow configurations, for
Re = 100, 400, 1000, 5000.

B. Uniform Flow Past a Circular Cylinder

This is a problem unsteady in nature and it represents the motion of a flow past a circular obstacle.
The computational domain Ω = (−4.5, 15.5) × (−4.59, 4.5) is considered and the circular
obstacle, with diameter D = 1, is centered at (0.0, 0.0). The unsymmetry of the geometry has
been adopted in order to generate the periodic motion of the fluid [35].

The computational domain has been discretized in 64 spectral elements with polynomial degree
N = 6 in each direction. The global number of nodes is 1700. The boundary conditions are
assigned as they can be observed in Fig. 5, where t1 and t2 represent the two components of the
normal component of the stress tensor: T̃n := −pn + ν(n · ∇)u.

The semi-implicit Euler scheme has been used with ∆t = 0.1. At the beginning of the mo-
tion, two symmetric eddies past the cylinder are generated and, approximately, at t = 22.0 the
unsymmetry on the geometry generates the beginning of the vortices. The motion is transitory

FIG. 4. Streamlines for Re = 1000 (left) and Re = 5000 (right).
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TABLE III. The time-step and the number of time-steps needed to obtain the stationary solution of the
driven cavity test case.

Re ∆t # time-steps

100 0.1 186
400 0.1 425

1000 0.1 593
5000 0.05 1323

TABLE IV. The number of nodes of the space discretization used in the ‘‘Driven Cavity’’ test case. M
denotes the number of elements in each space direction.

Re 100 400 1000 5000

Ghia 129× 129 129× 129 129× 129 129× 129
Discretization (16641) (16641) (16641) (16641)

SSE N = 8 M = 6 N = 8 M = 6 N = 6 M = 10 N = 6 M = 12
Discretization (2401) (2401) (3721) (5329)

FIG. 5. The geometry (left) and the partition of the computational domain (right) for the test case uniform
flow past a circular cylinder.

until t = 110.0, when it becomes periodic with a period T = 5.6. This period corresponds to a
Strouhal number St = D/(‖u∞‖T ) = 0.178, comparable with those found in [35].

We show the data and the discretization of the computational domain in Fig. 5 and the stationary
streamlines inside a period of the motion in Figs. 6–8.

FIG. 6. The stationary streamlines inside a period of the motion for Re = 100.
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FIG. 7. The stationary streamlines inside a period of the motion for Re = 100.

FIG. 8. The stationary streamlines inside a period of the motion for Re = 100.

In Figs. 9–11 the vorticity for Re = 200 is shown in a zoom of the computational domain,
inside a period of the motion. Here we have used ∆t = 0.05 and we have obtained a period
T = 6.0 with St = 1.67.

VIII. CONCLUSIONS

In this article, we have considered the approximation of the incompressible linearized Navier–
Stokes equations on bidimensional domains by a stabilized spectral element method. We used a

FIG. 9. The vorticity inside a period of the motion (t = 110 and t = 111).

FIG. 10. The vorticity inside a period of the motion (t = 112 and t = 113).
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FIG. 11. The vorticity inside a period of the motion (t = 114 and t = 115).

spectral element discretization in space, plus SUPG-like stabilization techniques. An automatic
design of the stabilization parameters is given in Section V. The time variable has been discretized
by a finite difference scheme. Results of stability and convergence are proved for the approxima-
tion we have used. Finally, we reported numerical tests demonstrating the spectral accuracy of
the approximation.

We thank Prof. A. Quarteroni for fruitful discussions during the preparation of this report.
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