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Abstract

We review some basic aspects of spectral methods and their application to
the numerical solution of Navier-Stokes equations for viscous incompressible
flows.

Introduction

Spectral methods are today widely used for the approximation of partial differential
equations. They are intrinsically very accurate, and they become computationally
effective also for non cartesian domains, provided they are used in a domain decom-
position framework in which case the domain is split into subdomains that can be
mapped into a reference square (or cube). The spectral element method provides
an instance of domain decomposition approach.

Spectral methods were initially used for the approximation of differential problems
with periodic boundary conditions, with a Galerkin approach and Fourier basis func-
tions. In 1965 the introduction of the FFT algorithm, that allows to travel from the
physical space and the frequency space by O(N log, N) floating point operations
versus O(N?) that would be required otherwise (say using a matrix-vector prod-
uct), gave a great impulse to the development of the method.

Earliest theoretical results, concerning stability and convergence of spectral methods
are due to Gottlieb and Orszag.

Afterwards, in the seventhies, spectral methods have been extended to differential
problems with non periodic boundary conditions, by the use of Chebyshev and Leg-
endre systems, for two- and three-dimensional domains. The first estimates of the
approximation errors in Sobolev norms, obtained by functional analysis arguments,
are due to Canuto and Quarteroni (see [19]).

From the computational viewpoint, the use of a tensorial basis has limited this
type of methods to tensorial shaped domains (i.e. deformations of parallelotop do-
mains) until spectral methods were adapted to domains with more general geome-
tries in the eighties: Patera introduced spectral elements ([62], [51]), Morchoisne
proposed the overlapping domain decomposition methods ([56]) and Quarteroni the
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non-overlapping domain decomposition methods ([68]).
An historical account on the “early stage” of spectral methods is given e.g. in the
books [36], [16], [10].

Since their origin spectral methods were applied to the mechanics of viscous
incompressible flows. This paper pays special attention to the approximation of
the Navier Stokes equations in the primitive variable formulation. In this case, the
velocity and the pressure cannot be chosen independently; indeed, a compatibility
condition (the so-called Ladyzenskaya-Brezzi-Babuska or inf-sup condition) has to
be satisfied in order to avoid spurious modes on the pressure. Moreover, for the
Navier Stokes equations for high Reynolds number flows, the dominating convection
terms produce another type of instability that generates oscillations on the velocity
field.

In the spectral context, the most widely used method to avoid the spurious modes
on the pressure is the so called (Qn — Qn_2) approach. It was proposed by Ma-
day, Meiron, Patera and Ronquist ([50]) and it consists of choosing the space of
polynomials of degree N (in each variable) for the velocity and of degree N — 2 for
the pressure. The LBB condition id satisfied with a constant 8 which behaves like
N~1/2_ Another approach, which is less used, consists in using polynomials with
the same degree for both the velocity and the pressure with a-posteriori filtering of
parasitic modes for the pressure ([5]).

Otherwise, one has to relax the incompressibility condition, in which case the LBB
condition doesn’t necessarily have to be fulfilled. An example is provided by the
adaption to the spectral context (see [34], [17]) of the stabilization techniques that
have been originally proposed for the finite element approximation of the Stokes
problem (see Brezzi and Pitkaranta [13] and Hughes, Franca and Balestra [39])
and of the incompressible Navier-Stokes equations (see Brooks and Hughes [14] and
Franca and Frey [30]).

About the approximation of the time-dependent Navier-Stokes equations we give
an account of those numerical methods which can be defined through a separa-
tion between temporal and spatial discretization. We deal with semi-implicit finite-
difference and fractional step schemes, largely used in the spectral framework. The
former avoid the resolution of non-linear systems (contrary to implicit methods) and
retain reasonably good stability properties.

The latter are based on the splitting of the differential operator in two or more subop-
erators such that the original problem can be reduced to the subsequent resolution of
simpler differential problems (such as elliptic or Stokes equations). Inside the spec-
tral method context the fractional step schemes (and, in particular, the projection
methods) have been used, among others, by Shen ([77]), Pinelli et al. ([66]), Karni-
adakis et al. ([42]). Splitting methods using Adams-Bashforth or Adams-Moulton
multistep schemes were considered by Karniadakis et al. ([42]), Orszag and Kells
([57]) and Marcus ([53]). Operator factor splitting was considered by Maday, Patera
and Ronquist ([52]).

We observe that, with the exception of the stabilized approach, all the previous
schemes lead to the successive resolution of subproblems that may be either elliptic
problems (linear or non linear) or a generalized form of the Stokes problem. There-
fore, in order to achieve an overall globally efficient algorithm, it is mandatory to
tackle effectively these computational kernels.



Domain decomposition methods offer a chance in this respect. We review here the
domain decomposition formulation of linear elliptic, generalized Stokes and Navier-
Stokes problems. In particular, on the Poisson problem we describe different iterative
procedure to implement the domain decomposition techniques: the classical iterative
substructuring methods such as Dirichlet-Neumann ([68]), Neumann-Neumann ([9])
and Robin ([48]); and the projection decomposition method associated to spectral
collocation ([33]). A brief review on the overlapping Schwarz method is done in
connection with the method proposed by Pavarino ([63]) (see also Pahl ([60]) and
Casarin ([21])).

The Dirichlet-Neumann scheme is also presented for the Stokes problem, while the
Navier-Stokes equations are discretized by stabilized spectral elements. The paper
ends with some numerical results obtained by the stabilized spectral element approx-
imation of the Navier-Stokes system, which are obtained by the BiCGStab iterations
preconditioned by the finite element matrices.

1 Mathematical foundation and different paradigms of
spectral methods

Spectral methods are among the most commonly used methods for the approxi-
mation of partial differential equations. Historically, spectral methods have been
associated with Fourier expansion and they have been applied to approximate peri-
odic functions. However, nowadays they are used indifferently for periodic as well as
general boundary-value problems. For the latter, algebraic polynomial expansions
(especially Chebyshev’s and Legendre’s) are used in lieu of Fourier trigonometric
polynomials.

The basic idea behind the classical single-domain spectral approach consists of
approximating the solution of a differential problem, v € W, by an infinitely dif-
ferentiable function u, € W, with W, a subspace of W. The function u, is a
trigonometric polynomial in the Fourier approach or an algebraic polynomial in the
Legendre or Chebyshev system. It follows that the accuracy of the approximation is
inherently high and actually depends solely on the regularity of the exact solution.

The discrete spectral problem is obtained by the projection of the differential
equations to be solved on a finite dimensional space V,, (possibly coinciding with
W, ) by a suitable projection operator P, and, if W, # V,, it is required that
dimV, = dimW,. We refer to W, and V, as the space of the trial and test
functions, respectively. The choice of {P,, W, V,} characterises completely the
type of spectral approximation. Three different spectral schemes, Galerkin, tau and
collocation, are typically used.

The Galerkin and collocation schemes can be applicable to the Fourier or the
algebraic approximation, on the contrary the tau approach is applicable solely to
problems with non-periodic boundary conditions.

In order to briefly describe the spectral schemes we consider the following linear
differential problem:

Lu=f in Q, (1)
Bu=0 on 01,



where (2 is an open bounded domain in R? (d = 1,2, 3) of boundary 99, L is a linear
differential operator, B is a set of linear boundary differential operators on 02 and
f a suitable function in L?(Q). The corresponding variational formulation reads:

findue W : a(u,v) = F(v) Yv eV, (2)

where a : W xV — R is the bilinear form associated to L and F is a linear continuous
functional associated to f and to the boundary differential operator B.

The Galerkin approach is characterised by choosing the same space for the test
and trial functions (i.e. W, = V,,) and P, as the classical L?() projection operator
from V to V, i.e.

(PNU’IUN)Lz(Q) = (U’UN)Lz(Q)a Vo, € Vy. 3)
The Galerkin approximation to (2) reads:

findu, €V, : a(u,,v,) =F(vy) Yo, € V,. (4)

The spectral tau approach can be viewed as a special case of the Petrov-Galerkin
that, applied to (2) reads:

findu, € W, : au,,vy) =F(vy) Vo, €V,. (5)

The tau method was proposed by Lanczos in 1938 ([16]), and it differs from the
Galerkin one for the treatment of boundary conditions. In particular, the test func-
tions are not required to satisfy the boundary conditions, since the latter are enforced
through a set of supplementary equations. The projection operator P, is defined as
for the Galerkin scheme. We refer to Sec. 1.2 for a more detailed description of tau
approach.

Finally, the collocation approach is characterised by choosing V,, = W, as the
space of lagrangian polynomials on a set of Gaussian quadrature nodes and by
letting P, to be the interpolation operator with respect to the Gaussian quadrature
formula.

The collocation form of (1) reads:

Lyuy=f at x; € Q

ﬁnd uN S VN : { BNuN = O at X; S aQ’ (6)

where L, and B, are suitable approximations of L and B, respectively, and x; are
the Gaussian nodes in .

The use of a spectral scheme is also characterised by the way the solution u, €
W is represented, whether in transform or in physical space.
In transform space a function v is described through its coefficients with respect to
a complete orthogonal system (Fourier, Chebyshev or Legendre); in physical space
by its nodal values in §2. For Galerkin or tau approaches, the solution is represented
through the transform space, while for the collocation approach it will be represented
in the physical space.



1.1 Fourier approximation

For a smooth and periodic complex function u(x), defined on the interval (0,27),
its truncated Fourier series of order N reads

N/2-1

PNU’("E) = Z '&'k(pk(x)a (7)

k=—N/2

with @y (z) = e*2.

For a suitable N, if u € C*°(0,27) and it is periodic with all its derivatives in
(0,27), the truncated series (7) is a good approximation of u, thanks to the property
that the k—th coefficient 4y of the expansion decays faster than any negative power
of k. This property is usually referred to as “spectral accuracy” or “exponential
accuracy” of the Fourier method.

More generally, given a periodic complex function u defined on the domain Q =
(0,2m)¢ (d = 2,3), its truncated Fourier series will be:

N/2—1

Pyu(x)= > dpr(x), (8)

k1,.,kg=—N/2

where: x = (21, ..., £4) will be an element of R¢, k = (ki, ..., kq) a multi-index and
p5(x) = e®* withk-x = kiz1 + ... + kgzg.

The following result provides an estimate in all Sobolev norms for the remainder of
the Fourier series of u:

[ = Pyull sy < ON"""[|ull ym ) for 0 <s <m. (9)
Let us consider the differential problem
Lu=f inQ=(0,2n)4, u periodic in Q, (10)

with L being a differential operator and f a suitable function defined in Q = (0, 27)<.
We look for an approximate solution u, of u by the Galerkin method (4) as follows.
We define the space

Vy = span{pk(x), —N/2<k; <N/2-1, j=1,..,d} (11)

and seek a function of the following form

N/2-1
uy(x)= Y axpk(®) (12)
ki,....kq=—N/2
that satisfies the equations
/LuN ()P (%) = /f(x)ak(x)dsz CN/2< ki, kg < NJ2—1. (13)
Q Q



By the orthogonality of the Fourier system {¢k(x)} in V,,, we obtain the following
equations:

(Luy )y = fu — N/2 < ki, kg < NJ2—1, (14)

where fi and (IT?ZV)k are the coefficients of f(x) and Lu, (x) respectively, with re-
spect to the Fourier expansion.

We observe that 1-D differentiation of P, u in transform space consists of multi-
plying each Fourier coefficient i by the imaginary unity times the corresponding
wavenumber, i.e.:

N/2-1
(Pyu)(z) = Pyu'(z) = Z Utkpg(z). (15)
k=—N/2
Similarly for partial derivatives we have:
N/2—-1
O(P,u) ou . :
TNJ_(X) = pNa—%(x) = ) indkjen(x), j=1,..d. (16)
ki,...kg=—N/2

This implies that, if the operator L is linear, the system (14) can be easily reduced
to a diagonal system on the coefficients dx of (12). Otherwise convolution sums
appear in the system which is not yet diagonal.

As an example of application of the Fourier-Galerkin method we consider the
Helmholtz equation

—Au+du=f inQ=(0,27)? (17)
u periodic in
with A > 0 and f € L?(Q). The Fourier-Galerkin solution u, € V, satisfies the

equation

/ (—Auy (x) + Auy (x))e Frz1Hk222) 4O — / fx)emmthae2) gQ
Q

2 (18)

—N/2 < ki,ky < NJ2 -1,

by (12), (16) and by the orthogonality of the basis in V,, we obtain a diagonal system
for the (N + 1)? discrete Fourier coefficients {ay} :

(k7 + K3 + Nax = fic —N/2<ki,kg <NJ/2—-1, (19)

whose solution is very cheap. The coefficients gy are often named “frequency un-
knowns”.
The Fourier Galerkin approach has pros and cons. Among the pros we note:

e its spectral accuracy (that we mentioned above), which means that, if u €
H?(Q), there exists a positive constant C independent of N such that (see

[16])
[u =ty gmgy < CN"?llull 4o q 0<m<s, >0 (20)
(this makes spectral methods much more accurate than finite difference or

finite element methods); (H7(§)) is the space of functions of L?(f2) whose
distributional derivatives of order up to 7 belong to L?(2) (see [47]);



e the phase error is minimised; actually Fourier spectral methods are free of
phase errors as ¢ (z) = tkgg(z), Vk;

e if L is a linear differential operator with constant coefficients, then the system
(14) is diagonal and only O(N) floating point operations are needed to compute
the coefficients ay.

On the other hand, the Fourier-Galerkin approach has several drawbacks:

e only periodic solutions can be treated;

e if the differential problem is non linear and/or it has non-constant coefficients,
convolution sums appear in the system (14), with a consequently high compu-
tational effort.

The first drawback is overcome by using algebraic polynomials which preserve spec-
tral accuracy (see Sec. 1.2), while for the latter, one resorts to the pseudo-spectral
Fourier method, whose theoretical properties have been earlier pointed out in Got-
tlieb and Orszag ([36]) and in Kreiss and Oliger ([44]).

For simplicity of exposition we take now d = 1, a similar approach can be
followed if d > 1 by building the set of nodes in Q as a cartesian product of the
one-dimensional sets of nodes.

We denote by

- 2T . .
‘:% = {x] = Wja J = Oa"',N - 1} (21)

the set of Gaussian nodes on the interval [0, 27|, and by I, u € V,, the trigonometric
interpolant of u on the set E%

N/2-1

Lou(@) = Y iigpn(x). (22)

k=—N/2

The coefficients
=
~ _ 7k .
Uk_NjE_OU(xj)e g —N/2<EkE<N/2-1 (23)

are the “discrete Fourier coefficients” of the complex function u in [0, 27] with respect
to the nodes in =%. The polynomial (22) is also known as the discrete Fourier
series of u and (23) is the discrete Fourier transform from N nodal values {u(z;)}
to N discrete coefficients {4y}, (the latter being an approximation of {ix}). The
interpolant (22) is preferred to the truncated series (7) since the coefficients 1y, of an
arbitrary function are not known in closed form, so that they must be approximated
starting from the information in the physical space.

Due to the orthogonality of the Fourier system, we have the inversion formula or

inverse discrete Fourier transform
N/2—1

ulzg) = Y dige j=0,..,N—1. (24)
k=—N/2



The convergence properties of the interpolation polynomials {Iu}n>¢o are similar
to those of the sequence of truncated Fourier series {P,u}n>0, i.e.

lu = Iyull oy < ONT"|uf| yom g for 0 <s<m, s >0. (25)

Furthermore, the continuous and the discrete Fourier coefficients (i and @) have
the same asymptotic behaviour.

We define the pseudo-spectral derivative of u(z) as the exact derivative of its
interpolant polynomial I, u(x), i.e.

Dyu:= (I u). (26)

If u g V, then (I u) # I, (u'), but the difference ||(I,u)" — I, (u')|| is of the same
order as ||u’ — P, u'|| so that the pseudo spectral derivative is spectrally accurate.
The Fourier pseudo-spectral derivative D,u can be represented in the Gaussian
nodes by a matrix-vector product, i.e.:

N-1
(Dyu)(z) = Y (Dy)iju(z;) 1=0,..,N—1 (27)
=0
with D, € RYXN and
1 g =) ,
(Dy)ij = 5(—1) C(’t[ N L7 Lji=0,.,N—1.  (28)
0 I=j

The pseudo-spectral counterpart L, of a differential operator L is obtained by
substituting each derivative in L by a pseudo-spectral derivative; for example, if
Lu := —(a ¥) + (bu)' + cu, with a = a(z), b = b(z) and ¢ = ¢(z), then the
pseudo-spectral operator L, reads:

Lyu=—(Iy(auy)) + (Iy(buy)) +cuy. (29)
In vector form (29) reads:
D, (a® (Dyw) + Dy (bow +cou, (30)

where: u = (uy (20),--,uy (zn_1))T, a = (a(zo),...,a(zy_1))T, b = (b(zo), .-,
b(zn_1))T, ¢ = (c(zg),..-,c(zn_1))T and a ® b denotes the point-wise product of
two vectors a and b.

We can now approximate the differential problem (1) at Gaussian nodes by a
collocation approach by solving the system (not-diagonal in general):

=G
Lyuy (:E]) = f(‘TJ) at z; € = (31)
The unknowns {u, (z;) ;V: ! of the system are said “physical unknowns”, when they
are available, an approximation ay of the frequency unknowns dy, (the coefficients of

u, in (43)) can be computed via a discrete Fourier transform as follows:

N-1
1 .
Gy = ~ § :UN (z;)e i —~N/2<k<N/2-1. (32)
7=0



We observe that the discrete Fourier transform (23) can be used also to easily com-
pute the pseudo-spectral derivative of a function u that is known by its nodal values
u(z;). In fact, in order to compute D, u(z;) one can “travel” from the nodal values
{u(z;), j = 0,...,N — 1} to the discrete coefficients {@, —N/2 < k < N/2 —1}
by a Discrete Fourier Transform (23), compute ﬂ,(cl) = ikt (which are the discrete
coefficients of D, u) and then, go back to the physical space, by an inverse Discrete
Fourier Transform (24).

A great impulse to the development of the pseudo-spectral Fourier approach was
given by Cooley and Tukey ([23]) in 1965 by the introduction of the Fast Fourier
Transform (FFT) algorithm that permits to compute the discrete Fourier coefficients
{ii} from the nodal values {u,(z;)} in O(N logy N) floating point operations
(provided that N is a power of 2).

In order to treat the case of general boundary conditions, we introduce now the
algebraic polynomial systems.

1.2 Galerkin spectral methods for problems with non-periodic bound-
ary conditions

The property of spectral accuracy (20) is also attainable for smooth but non-periodic
functions, provided that the expansion functions are properly chosen. Both Legendre
and Chebyshev systems (see [16]) allow spectral accuracy in the expansion of smooth
functions, they are algebraic polynomials and satisfy the orthogonality property with
respect to a suitable weighted inner product in L?(—1,1).

From now on we denote by {Tj(x)}r>0 the set of Chebyshev polynomials:

To(z) =1, Ti(z) =z,

33
Tpir(s) = 20 Ty(z) — Te1(z) k> 1 (33)
and by {Ly(z)}r>0 the set of Legendre polynomials:
LO(:E) = 13 Ll(w) =T,
2k +1 k (34)

Lii1(z) =

xLg(z) — Ly 1(x) k>1.

k+1 k+1

They are orthogonal with respect to the weighted inner product

1
(1, 0y = / w(z)o(z)w(z)dz, (35)
21

where the weight is

1
————— for the Chebyshev system
w(z) =4 +/(1—1x2) Y Y (36)

1 for the Legendre system.

The same notation used in (35) will be considered with functions defined on a
two or three dimensional domain. In this case the weight will be the product of the
weight functions given in (36) (see [16], Sec. 2.4 for more details).



1.2.1 The Galerkin approach

To deal with the weak formulation of (1) we denote by H'(€) the space of functions
v € L?(S)) whose first-order distributional derivatives belong to L%(2), endowed
with the norm

loll o ey = {012, + V02, 32 (37)

L2(Q) L2(Q)

The symbol H{ () is used to denote the subspace of H'(Q2) of the functions whose
trace at the boundary is zero, i.e. H}(Q) = {v € H(Q) : v|sq = 0}.

Consider the Poisson equation in the unit square Q = (—1,1)? with homogeneous
Dirichlet boundary condition:

—Au = fin Q, u =0 on 0N (38)

and f € L%(Q). This problem admits the variational form (2) with

V =Hy(Q), a(u,v) = [ Vu-VodQ and F(v) = [ fv dQ. (39)
/ /

We denote by P (I) the set of the algebraic polynomials of degree less than or equal
to N on the interval I C R, and by Q,, (©2) the set of algebraic polynomials of degree
less than or equal to IV in each variable in 2. Then we look for the solution of the
Galerkin method taking

Vy={v€Q,(2) :v=0o0n 08} (40)

We choose in V,, the following basis functions ¢y (x) = @k, (z1)pk, (x2), 2 <
ki,ko < N with

| Ty(z) — To(z) Fk even
(@) = { To(z) — Ty(z) k odd (41)
or
| Lg(z) — Lo(z) k even
(@) = { Li(z) — Ly(z) K odd. (42)
Then we expand the numerical solution u, with respect to this basis:
N
uy(x) = Y axpx(x). (43)
k1,ka=2

Since the basis functions ¢y (x) satisfy the homogeneous Dirichlet boundary condi-
tions given in (38) no explicit boundary conditions will be imposed on u,, .
The Galerkin formulation of (38) reads:

find Uy € VN : (VUN,V(Pj)w = (.fa 90,])11; 2<j1,52 <N (44)

10



and owing to (43), this yields the following system for the {ax} :

N

Z ax(Vex, Voi)w = (f, ¢5)w 2<j1,j2 < N. (45)
k1,k2=2

The matrix form of (45) reads:
Sa=f (46)

where S = [(Vk, Vj)y] is the stiffness matrix, a = [ax] is the vector of unknowns
and f = [(f, ¢j)w) is the right hand side.

The matrix S is a structured sparse matrix and it is symmetric only if the Legendre
system is used.

We observe that, in general, this approach is scarcely used in the spectral context
since, for large values of N, a large computational effort is required to evaluate
both the bilinear form and the right hand side by sufficiently accurate quadrature
formulas.

1.2.2 The spectral tau approach

The main feature of this approach is that the test space V,, and the trial space W
do not coincide. As for the Galerkin approach the operator P, is the orthogonal
projection operator from W to V, relative to the inner product of V. Let 2 CGL be
the set of nodes of the Gauss-Lobatto quadrature formulas of Chebyshev type

E%GL = {60 = _15 62 = —COS(’I:ﬂ'/N), 1= ]-a aN - 17 £N = 1} (47)
and HLGL the set of Legendre type:

gL = (¢g =1, v =1, &,i=1,..,N — 1, are the zeros of L’y (£)}.  (48)
Then we define 2L = EGEL x E¢YL and denote by x;; = (&;,¢;) its elements.
(The same notatlon holds for the Legendre set of nodes). We consider the problem
(1) on the computational domain Q C R? and the Petrov-Galerkin approach (5),
where we define the trial space as

v ={v €Q,(Q): Bu(xy) =0 at x;; € 09}, (49)

while the choice of V,, depends on the number of boundary conditions which are
imposed on each side of 0€2.

As an example we consider the Neumann problem for a second-order elliptic
operator in the interval (—1,1):

Lu:=—u"4+u=f -l<z<1
{ W (1) = /(1) = 0, (50)
and we look for the tau solution
uy EW, ={velP,(-1,1): '(—1) =2'(1) =0} (51)

11



N
expanded in Chebyshev polynomials, i.e.: u, (z) = Z&ka(x).
k=0

Here V, = P,_,(—1,1) = span{Ti(z), k = 0,..., N — 2} and the solution u, is
determined by the system:

(1 1
/ (" +uy) () T ()w(z) do = / F(@)Th(@)w(z) do
-1 -1

for k=0,..,N —2

u' (1) =/ (1) = 0.

\ 7N

Since the derivatives of u, can be expanded with respect to the Chebyshev
system as follows (see [16], Sec. 2.4.2):

N-1
o) = YT &
k=0
with
9 N
iV =23 pa, c0=2, cg=1fork>1, (54)
Ck p=k+1
p+k odd
and
N-2
uy(2) = Y ay Ti(a) (55)
k=0
with
1 X
~(2 ~
i) = 3 o’ Ky, (56)
k p=k+2
p+k even

we can transform the system (52) in terms of the unknown coefficients {a;} and
obtain:

1 B N
—— Y p(0® — k) +ak = f k=0,.,N—2
Ck
T eoen
9 N-1 (p_l)k N N-1 1 N (57)
— ip =Y — iy = 0.
PDLLED PETHES JEUD pRcS
k=0 p=k+1 k=0 p=k+1
\ p+k odd p+k odd

Following [16] (Sec. 5.1.2), the Neumann boundary conditions in (57) can be
rewritten as

N N

Y Kap= ) Ka=0, (58)
k=1 k=2
k odd k even



so that the even and odd coefficients in (57) can be decoupled and a block diagonal
linear system has to be solved.

The matrix associated to the linear system for the even (or odd) coefficients has an
upper Hessenberg structure and a Gauss elimination without pivoting can be used
with a computational effort of the order of N?/4 operations.

In general the accuracy of this approach is less than the one from Galerkin’s
approach if the same number of degrees of freedom is used.

We have seen that both Galerkin and tau spectral methods are formulated in
terms of the frequency unknowns {a;} of the numerical solution u, . As such, they
are cumbersome to handle for general problems with variables coefficients and/or
nonlinearities, due to the presence of convolution sums. As already seen in the
periodic case, this leads to the use of spectral methods with nodal variables, i.e. to
collocation or generalized Galerkin spectral methods.

1.3 Collocation spectral methods

These collocation methods are in general amenable to Galerkin spectral methods
since they make use of Gaussian nodes for the numerical evaluation of integrals.
Consider the two-dimensional elliptic problem with homogeneous Dirichlet boundary
conditions:

{ Lu:=-V-@wVu)+yu=f inQ=(-1,1) (59)

u=20 on 0f)

with f € L2(Q), v, v € L*°(9) non negative.
Given N > 2, we consider the 2-D Chebyshev Gauss-Lobatto set ESCL (or the
Legendre Gauss-Lobatto set E5°") and we look for a function u, € Q, () such

that:

{ =V - (v(xij) Vuy (xi5)) + (i )uy (xi5) = f(xij)  Vxij € Q (60)
Uy (xij) =0 VXZ']' € 09.

The system (60) is referred to as the point-wise form of the spectral collocation
method.

The primary unknowns of the collocation problem (60) are the nodal values
uy(xi;). They are computed by solving the linear system that arises from the
pseudo-spectral approximation of (60), i.e. by substituting each derivative in (59)
by a pseudo spectral derivative as done for the Fourier expansion.

In order to derive the algebraic form of (60) we introduce the Lagrangian basis

functions associated to the nodes E%GL or E]LVGL:

wi € ]PN(_]-? 1)7 wz(éj) = 6Z]a ’L,j = 07 "'aNa (61)

and the 2-D Lagrangian basis associated to the sets E%GL or EfVGL defined by a
tensorial product as:

pij(x) = Pi(z1)j(z2) € Qy (), 4,5 =0,..., N. (62)
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Clearly ;(xg) = 6ix0jl. The Lagrange interpolant of u € C%(Q) on the nodes of

E]LVGL or E%GL 1S

Tyu(x) = Y ulxi)pi (%), (63)

and the solution u, (x) of (60) reads:

N
uy (x) = ZUN (xi5) pij (x). (64)

1,7=0

The pseudo-spectral partial derivatives of a regular function u are defined as follows:

D 1)) = 2% ) = 3 ) 28 ), 1,2 (65)
v T B T
Setting
0pij 0pij
(Dy 1 )ktij = —8355 (xk1), (Dys)kiij = —a,v; (Xk1), (66)

for ¢,5,k,l =0,..., N, they can be represented by the matrix-vector form:

N

(D JuXkt) = Y (Dvm)kij w(xig), m=1,2. (67)
i,j=0

The squared matrices in (66) of order (N 4 1)2, are the “pseudo-spectral derivative
matrices”. They have a sparse structure, with (IV 4+ 1)® non-zero entries.

As for the Fourier system, an alternative way to compute the pseudo-spectral deriva-
tive of u consists in passing from the physical space to the frequency space, differ-
entiating and then coming back to the physical space. This procedure is efficient for
Chebyshev expansions for large IV, as a fast transform is still available.

When 2 is a rectangular domain, the matrices (66) can be obtained from their
one-dimensional counterpart, the pseudo-spectral derivative matrix Dy, of order
(N +1). In fact, the z1 (resp. z2) pseudo-spectral derivative is the same on all rows
(resp. columns) of the collocation grid, i.e.

(Do) ki) = Pi((x1) k)95 ((22)1) = i (1)) 00 (68)

and

(Dy.,) (xk1) = Pi((21) )95 ((2)1) = diwtp; ((w2):)- (69)

If we consider the set of Chebyshev Gauss-Lobatto nodes (47), and we write
the Lagrange polynomials 1;(z1), 1j(z2) in terms of the Chebyshev functions, the
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pseudo-spectral derivative matrix in one dimension has the following entries:

[~ 1435
¢ (—=1)7 .
a7 4
¢ &1—&;
—&; _
S 1<l=j<N-1
W-@ - U=
D = 70
O =y Mot (70)
6 1T
2N? +1
+ l=5=N
\ 6
with
(2 1=0,N
cl_{1 1<I<N-1. (71)
Similarly, for the Legendre system (48) we have:
( LN(Il) 1 .
l
In@)e—§& 77
0 1<l=j<N-1
(DN)lj = 9 (N +1)N . (72)
R S A l:]:()
4
N+1)N .
\ 7( 4) l=j5=N.

The system (60) can be written in matrix form through the following matrix
Agp = _‘DN,IV‘DN,I - ‘DN,2V‘DN,2 +G (73)

with Vz'j,kl = u(xij)éikéjl and Gij,kl = 'Y(Xij)éikéjl (fOI‘ i,j, k, l, = 0, ceey N)

The matrix AS, is the algebraic counterpart of the differential operator of (60). Its
structure is represented in Fig. 1. By substituting the rows of A§, associated to
the boundary nodes with the rows of the identity matrix (corresponding to Dirichlet
boundary conditions), the algebraic form of (60) reads

Agpu=f (74)
where

) Vg €
iy = uy ), and £ = { J00) e €0 (75)
ij .

We observe that the system can be reduced by eliminating the unknowns associated
to the nodes on the boundary.
The condition number of A, is x5,(45,) = O(NV 4) so that, when using iterative
methods, the use of preconditioners is mandatory.

In 1980 Orszag introduced the centred finite difference preconditioner, i.e. the
matrix obtained by the approximation of the same differential operator by finite
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Figure 1: The pattern of matrix S

difference on the Gauss-Lobatto grid. This is an optimal preconditioner for the
spectral collocation since the eigenvalues of the centred finite difference derivative
matrix on the Gauss-Lobatto grid and the pseudo-spectral matrix D, have the same
asymptotic behaviour.

Later, in 1985, the finite element matrix was proposed by Deville and Mund ([25])
and by Canuto and Quarteroni ([20]), using bilinear finite elements on the grid
induced by the Gauss-Lobatto nodes. Effective generalizations of the finite element
preconditioner have been carried out later by Canuto and Pietra ([18]), Deville and
Mund ([26]) and by Quarteroni and Zampieri ([73]). For elliptic equations, both
finite differences and finite elements matrices lead to a preconditioned matrix whose
condition number is independent of N, see Haldenwang, Labrosse, Abboudi and
Deville ([38]).

1.4 Generalized Galerkin method

The Generalized Galerkin (GG) method is obtained from a Galerkin method in
which every integral is replaced by suitable quadrature formulas.

In particular for the spectral methods, the Gauss-Lobatto quadrature formulas are
used. For any function u € C°([—1,1]) the Gauss Lobatto quadrature formulas read
as follows:

1 N
[uerw©de = 3 utéiyw, (76)
el i=0

where the values ¢; and w; are said respectively nodes and weights of the quadrature
formulas. The nodes of the Chebyshev Gauss-Lobatto quadrature formulas are those
given in (47) and the weights are

— 1=0,N
2N ’

w; =4 (77)
N ’L:]., ,N ].,



while the Legendre Gauss-Lobatto nodes are those given in (48) and the weights
are:

2 1
N(N +1) L (&)

i=0,..,N. (78)

w; =
The Gauss-Lobatto quadrature formulas are exact for polynomials of degree less than
or equal to 2N — 1. For any fixed N > 1, the nodes for 2-D quadrature formulas
are those given in E]LVGL or 249" and the weights are w;j = wyw; for 4,5 =0,..., N.
Then, Yu,v € C°(Q), we define the discrete scalar product:

N
(U, 0) 0 = D u(xij)v(xij wi; (79)
4,j=0
and we note that
(1) = [ulx)u(x)d0 Y € Qo1 (9). (80)

Q

The interpolation on the Legendre Gauss-Lobatto nodes satisfies the following bo-
unds (see [19]): if u € H*(Q), for some s > 2

lu — I, ull < ONF=9||ul| for k=0,1. (81)

HkE(Q) H3(Q)

Thanks to (81) it holds that: if v € H*(Q2), for some s > 2 and v, € Q, (), then
there exists C' > 0 independent of N such that

(4 0y) 5 gy = (U Uy )l S ONT?ull ooy llow 1o - (82)

Similar estimates hold for the interpolation on the Chebyshev Gauss-Lobatto nodes,
by replacing the classical Sobolev norm in H* with the weighted Sobolev norm.
By setting V,, = Q,, () N H} (), and

ay (UN"UN) = (VVUN’ va)N,Q + (’YuNa'UN)N,Q vuNa'UN € VN’ (83)
the GG formulation of problem (59) reads:
find u, €V, : ay(uy,vy) = (fivy)va Yo, € V,. (84)

In the case of Dirichlet boundary condition, the Generalized Galerkin approach is
equivalent to the collocation approach introduced in the previous section.
For all uy,v, € Q, () we start noticing that

4
ou
(Vi V0 )0 = (7 1y 000,00+ 3 (155200, ) (55)
k=1

N,Sp

where S denotes the k—th side of the boundary 92 and n the outward normal
vector to 0€2. To obtain the system (60) starting from (84), it is sufficient to put
vy (x) = @i (for 4,7 =1,...,N — 1) in (84), use the identity (85) and to eliminate
the sum in (85) thanks to the homogeneous Dirichlet boundary conditions.
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By the linearity of the problem and by (43), the generalized Galerkin formulation
(84) also reads:

ZaN((pkla(Pij)uN(xkl) = (fa (Pij)N,n 4,j =0,...,N, (86)
k,l=0

or again
Agpu="=f (87)

with (Asp)ijrr = ay (0ri, pij) and (£)ij = (f, @ij) y o for the internal nodes, (Asp)ijr =
0ri01; and (f);; = 0 for the Dirichlet boundary nodes.

The matrix A, differs from the collocation matrix Ag, on the rows associated
to internal nodes, for the presence of the quadrature weights, more precisely:

(Asp)ijrt = wig(AS,)ijkl Vi, j,k,l=1,..,N — 1 (88)

Even if the collocation and the GG approaches are equivalent, the latter formulation
is often preferred, in fact:

1. the condition number of A, is x(Asp) = O(N?) versus x(45,) = O(N*);

2. by eliminating the rows and the columns associated to the Dirichlet nodes, the
matrix Ay, becomes symmetric.

Collocation and GG approaches differ on the treatment of Neumann data. Set
n = (ng,ny) and assign the Neumann boundary condition du/0n = g on an open
subset 0, of 9Q, with g € L?(09,,).
When using a collocation approach, the Neumann boundary condition is strongly
enforced on the boundary nodes and it reads:

ou ou ou
v(xij) = = (i) = v(ig) 5 (i) (xig) + V(Xz‘j)a—;(Xz‘j)ny(Xz‘j) (89)
= v(xi5)na(xi5) (Dn,1w)ij + v(xij)ny (xi5) (Dngw)ij = g(xi5)-

The matrix Ag, is updated on the rows associated to Neumann boundary nodes with
the terms (Asp)”,kl = v(xij)ng(xi5) (D, 1)zg,kl + v(xi5)ny (xi5) (D, 2)zy,kl

Otherwise, thanks to the equivalence (85), inside the GG approach the Neumann
condition is expressed in weak form by the equations

4
a, (“Na‘Pz’]) (f7 (101] Z ga (101]|Sk N,S0 VIL;.? Xy € 0N. (90)

The matrix Ag, is not changed, while now the component f;; of the right hand side
will contain the right hand side of (90). It is worthwhile observing that Neumann
boundary conditions expressed in weak form do not affect the symmetry of the
matrix Agp, contrary to what happens for the strong form (89).

For the convergence analysis, the Strang lemma, ([71]) can be advocated. For that
consider the linear differential problem (1) and the following GG approximation:

findu, €V, :a,(uy,v,) =F,(vy) Yv, € V,. (91)
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Theorem 1.1 (Strang lemma) Let V' be a Hilbert space endowed with the norm
|- 1], a:V xV — R a bilinear and continuous form, i.e.:

Iy >0: |a(w,v)| <vllw| [l Vw,v € V (92)

and F : V — R a linear continuous functional.

Suppose further that F,, (-) is a linear map and the bilinear form a (-, -) is uniformly
coercive over V, x V. This means that there exists a positive constant a* such
that for all N > 1 it holds

ay(vy,0y) 2 ooy |? Yoy € Vy. (93)

Then there exists a unique solution u, of (91), which satisfies

1 F
luy <+ sup Tl0), (94)
o NEVN ||UN||
UN;EO

_}_i* sup |a’(wN’UN) — a’N(wNﬂvN)|
vy evy ||UN|| (95)
vN#O
+i* sup ‘f(IUN)_fN(IUN)'.
A" wyevy ||UN||
UN;EO

If we take V = H{(Q), if the bilinear form a,, is that given in (83), F, (v,) =
(f,vy )y and uy is the GG solution of (84), we have a more detailed result. In
fact, by taking the interpolant of u of degree N —1 in each variable in place of w, in
(95), the term |lu— wN||H1(Q) is bounded by C'(N — 1)1_5||u||Hs(m (by the inequality
(81)) and the difference |a(w,,v,) —a, (w,,vy)| is equal to zero. Finally, for some
r > 1, tho term [F{uy) % ()] s bounded By ON 7Ly 2 g (o (52)
so that

bt =l < OOl iy + N7 ) (96)

1.5 The spectral element method

Spectral Element Method (SEM) combines the high accuracy of spectral approxima-
tion to (at some extent) the geometric versatility of the Finite Element Method. The
computational domain is partitioned into macro “spectral” elements, either quadri-
lateral or triangular then, a Generalized Galerkin formulation based on Gaussian
quadrature formulas and relatively high degree polynomials are used.
SEM are very similar to some h — p type Finite Element (see [3]), the essential dif-
ference between the two approaches lies in the choice of the basis for the trial and
the test functions of the variational formulation.

SEM were proposed by Patera in 1984 ([62]); initially, conforming partitions in
rectangular domains were considered. Later, Korczak and Patera ([43]) adopted
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the isoparametric mappings (largely used in FEM) in order to discretize more com-
plex geometries. In 1989 Bernardi, Maday and Patera ([6]) introduced a new non-
conforming approach to domain decomposition: the mortar element method, and
Mavripilis, Maday and Patera ([49]) applied it to the spectral approximation. The
latter has become very competitive in the treatment of complex geometries with
non-uniform distribution of the computational nodes (see [6], [49]).
In 1991 Dubiner ([29]) and later Karnadiakis ([78]) gave a great impulse to triangular
spectral elements, by the use of orthogonal polynomial basis on triangular domains.
Now we confine to continuous and conforming spectral elements for ease of ex-
position. In order to briefly illustrate the conforming SEM we introduce in € a
decomposition 7z of quadrilaterals T}, with k =1, ..., Ne, we set
H = max diam(T},) diam(T}) = max diag(Ty) (97)
Tw€Ty

and we use the set 257" of Legendre Gauss-Lobatto nodes (48) on each element Tj.

Then we set:

Vo = {uy, €C°(Q) ¢ uylny, € Q (Th), VT% € T} (98)
and uy , = Uy |1y, vy, = vy|7,- The discretization of (2) by the SEM reads:
Ne Ne
findu, €V, : ZaN’k (UN,k,’UN,k) = Z(f, vN’k)N’,c Yo, €V, (99)
k=1 k=1

where ay , (uy ,,vy ) is obtained from a|r, (u,,,v,,) by replacing each integral with

the Legendre Gauss-Lobatto quadrature formulas, and (f,vy )y, is the Legendre

Gauss-Lobatto numerical integration of / Joy L.
T,
The following interpolation and quadrature error formulas hold (see [34]):

Theorem 1.2 For all u € H*(2) with s > 2, there exists a constant C; > 0
independent of Hy and N such that VI} € Ty

lu — Iyullgm ) < C1H,TIH(N+1’S)_mNm75||U||H8(Tk) m =0,1. (100)
Moreover, there exists a constant Cy > 0 independent of H and N such that
Ju— Lyullimey < CoHMRNFLO=m =Syl m—0,1.0  (101)

Lemma 1.3 If u € H%(T}) with s > 2, then 3C > 0 independent of N and H such
that Vv, € Q, (T})

(s 0x) gy = (s VO3 ), | < C(s)N~* H™MNFL) | O (102)

HS(Tk) ||UN ||L2(Tk)'

On the basis of these results, if u is the solution to (59), u,, to (99) and f € H"(Q)
with > 1, then there exists C > 0 independent of N and H such that

Hu <C [Hmin(N—l—l,s)lelfs“uH

—1—Hmin(N+1,r)N’T||f||m(ﬂ)] :
(103)

The proof follows by the application of theorem 1.2, lemma 1.3 and by the
following approximation result of Babuska and Suri [4]:

HS(Q)
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Figure 2: The pattern of the matrix A, on a decomposition in 4 x4 spectral elements
with N = 4.

Theorem 1.4 Let u € H*(Q) N H}(Q), with s > 3/2, then for any N > 1 and
H > 0 there exists z,, € V,, such that

||u < CHmin(N+1,s)—kNlc—s||u||HS(Q) k=0,1 (104)

- Z’H ||H"’(Q)
where C is independent of u, N, H and 7. O

Consider now the algebraic form of problem (99). The matrix A, associated to
the bilinear form

Ne
Gy (UH7U%) = ZG’N,k (uN,k7UN,k) (105)
k=1

has a sparse structure. An example of A, for a domain which is split into 4 x 4
elements with polynomials of degree N = 4 is shown in Fig. 2.

From numerical experiments we obtained that the condition number of the Spec-
tral Element matrix is

x(4,) < CN*H 2 (106)

The sparsity of the matrix and the high dependence of the condition number by
the discretization parameters N and H suggest to solve the linear system A, u = f
associated to (99) by preconditioned Krylov Methods. An optimal preconditioner
for this system can be provided by the global bilinear finite element matrix (see the
Remark in Sec. 4.1). Another is given by the inexact additive Schwarz method with
coarse correction ([27], [28], [60], [32]), that we briefly describe hereafter.

Consider a decomposition of the computational domain 2 in Ne conformal non-
overlapping spectral elements T} and a coarse mesh Mg given by the vertices of all
the elements Tj. Then, for any T}, € Ty, consider an extension T}, . overlapping the
adjacents elements of one or two nodes in each direction and the fine mesh My, . of
all Legendre Gauss-Lobatto nodes in T} . (see Fig. 3).
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Figure 3: The spectral elements T} and the extended elements T} . with one or two
nodes of overlap.

Let Ap (resp. Ag,) be the bilinear finite (or spectral) element matrix associated to
the discretization of the problem (2) on the mesh My (resp. My ). Let R} (resp.
Rf}e) be the extension matrix whose action extends to zero a vector of nodal values
in Mg (resp. in My, ). The transposes Ry and Ry . are restrictions matrices whose
action restricts a full vector defined on all the nodes in € to a local vector on My
or My .

The inexact additive Schwarz preconditioner FP,s for A, with coarse refinement is
defined as follows:

Ne
P :=R{A;'Ro+ Y R{ Ag . R (107)
k=1

The attribute “inexact” to the preconditioner refers to the fact that the local ma-
trices Ay and the coarse matrix Ag arise from bilinear finite (or spectral) element
discretization rather than on the primary spectral element discretization directly. If
finite element methods were used for both the primary discretization and the pre-
conditioner, Driya and Widlund ([28], [27]) proved that 3C > 0 independent of H
and h (the size of the fine meshes on T} ), but possibly depending on v such that:

X(PitA) S Cw)(1+ 671, (108)

A being the finite element matrix associated to the primary discretization and SH
the maximum extension of the elements T}, . along the z1 or x5 direction. For large
jumps on the coefficient v at the interface, the convergence rate can deteriorate and
precisely 3C > 0 independent of H, h and v, but depending on 3 such that

x(P;tA) < C(B) (1 + log %) : (109)
We come back now to spectral element approximation. An estimate similar to
(108) holds also if we consider the matrix A, instead of A, thanks to the equivalence
of the two discretizations (see [15]). If we consider a decomposition in squared
elements with Hy = H for any T, € Ty and if we measure the extension of an
element T} by mesh nodes and the extension amounts of one node in each direction,
it follows that the overlap is BH ~ H/N?, i.e. the distance between the Legendre
Gauss-Lobatto endpoint and the nearest one. The immediate consequence is that
the condition number of the precondioned matrix P,;' A,, is bounded uniformly with
respect to H but not with respect to the polynomial degree N. In particular:

X(Pi'4,) < C)(1+ N?), (110)
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M,
3 4 5 6 7 8 9 10 11
13 16 18 17 19 19 19 19 19
13 15 16 15 16 16 16 16 16
15 17 17 17 18 17 17 17 17
15 17 17 17 18 18 18 18 18
14 16 15 16 16 16 16 16 16 16
14 15 17 17 15 15 15 16 16 16
16 17 17 16 16 16 16 18 18 18

—
o 2w el

2
© 00~ O O W

Table 1: The number of conjugate gradient iterations for the additive Schwarz pre-
conditioner with coarse correction for the problem (112) with a decomposition of
in My x M equal subdomains and one point of overlap.

for mild variations of v, and
x(PitAy,) < C(B)(1 + log(HN?)), (111)

in the case of severe discontinuities across the interfaces.

Since iterative methods are used, the matrices A,, and P! are never explicitly
assembled; a matrix-vector product involving A,, is performed by local matrix-vector
products. Then (107) yields only local systems (for the matrices Ay ), or the coarse
system (for Ap), and all of them have relatively little dimension.

Let us show the number of conjugate gradient iterations preconditioned by the ma-
trix P,.! to solve with a tolerance ¢ = 107 the following problem:

{ ~Au=f nQ=(0,1)? (112)

u=g on 012,

where f and g are fixed in a way that the exact solution is u(x) = e** 72, We have
considered a decomposition of 2 into Ne = M; x M; equal subdomains. The results
refer to the overlap involving only one grid point outside each subdomain.

2 Stokes and Navier-Stokes equations

Given an open bounded domain Q C R? and a time interval (0, 7T"), the Navier Stokes
equations for Newtonian, viscous incompressible fluids read:

%_?_VAquvp:f_(u-V)u in Q x (0,T)

V-u=0 in Q x (0,7) (113)
u=0 on 99 x (0,T)

u=uy inQX{O},

where v is the kinematic viscosity, u = u(x,
kinematic pressure, up = ug(x) and f = f(x
force field, respectively.

t) is the velocity field, p = p(x,t) is the
,t) are the initial data and the external
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M,
2 3 4 5 6 7 8 9 10 11
5 15 18 21 24 26 26 27 27 27
10 16 23 25 27 27 27 28 28 28
12 16 22 23 24 24 24 23 24 23
13 15 19 21 21 21 21 21 21 21
12 16 19 19 20 20 19 20 20 20
12 15 16 18 18 18 18 18 17 17
13 16 15 17 16 16 16 16 16 16
14 16 16 16 16 16 16 16 16 16

2
© 00 ~J O O i W N

Table 2: The number of conjugate gradient iterations for the additive Schwarz pre-
conditioner with coarse correction for the problem (112) with a decomposition of
in M1 x Mj equal subdomains and two points of overlap.

Before analysing the Navier-Stokes system and its discretization in time, we
want to face up the discretization of the generalized Stokes problem, since many
time-differentiation algorithms for the Navier-Stokes system can be reduced to a
successive resolution of generalized Stokes systems.

2.1 Analysis of the generalized Stokes problem

The generalized Stokes equations read:

au—vAu+Vp=f inQ
Veu=0 in Q (114)
u=20 on 0,

with £ € [L?(£2)]? and « is a non-negative constant. Given

V = [H}(Q)]” and Q=IL3Q) =S qe L*N: /qu =0, (115)

the weak formulation of (114) reads: find u € V, p€ @ :

{ a(u,v) + b(v,p) = (f, v)L2(Q) VWwevVv (116)
b(u,q) =0 Vg € Q,
with
a(u,v) = /VVu - VvdQ + /au - vdQ),
Q Q (117)
b(v,q) = —/qV - vdQQ.
Q
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When the Stokes (or Navier-Stokes) equations in the primitive variable formula-
tion are approximated by Galerkin methods, a compatibility condition between the
finite dimensional spaces for velocity and pressure has to be satisfied.

As a matter of fact, when the continuity equation is discretized directly, some para-
sitic modes on the pressure can appear with a deterioration of the accuracy on the
numerical solution. The parasitic modes have been characterised mathematically for
equal order polynomial approximation of velocity and pressure. Various techniques
have been developed in order to filter them out. We give a short account hereafter.

We consider the generalized Galerkin approach (see Sec. 1.4) in order to approx-

imate (116): findu, € V, CV, p, €Q, CQ:

{ (IN(I.IN,VN) + bN(VN,pN) = (fa VN)N,Q VvN € VN (118)
bN(uNan):O qu GQNa
with

ay (uN’VN) = (Vqu’va)N,Q + (auN7vN)N,Q

119
bN(VN’qN):_(qNav'vN)N,m (119)

and where V and (), are finite dimensional polynomial subspaces of V and @
respectively.

The space of parasitic modes for the pressure, i.e. the elements of the following
space:

Zy = {qN €Qy: bN(vN’qN) =0, Vv, € VN}’ (120)

is empty if and only if the following inf-sup or Ladyzenskaya-Brezzi-Babuska (LBB)
condition is satisfied (see [2], [12]):

B>0: Vay €Qy Iy €Vt by(vyaw) 2 BIVa L lawll o (121
The a priori most obvious choice
2
VvV, =[Q,()n H&(Q)] and Qy = Q, ()N Li(Q) (122)
gives dim Z, = 7, with

Zy = span{Ly(z), Ly(y), Ly(2)Ly(y), L ()L ()1 £2)(1 £y)}.  (123)

Should the Chebyshev (rather than Legendre) Gauss-Lobatto quadrature be used,
the space Z,, would have a similar characterisation, with the Chebyshev polynomials
T, instead of L. See [5].

The parasitic modes can be filtered out, for example, by a transform from the
physical space to the frequency space, projecting p, upon the space Z JJV-, and then
by anti-transforming to the physical space.

Another strategy consists of choosing V, as before and @, satisfying (see [5]):

QN @ ZN = QN (Q) N L%(Q)a QN n ZN = {0}’

(124)
dimQ, + dim Z,, = dim(Q,, () N L3(2)).
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Figure 4: At left the two staggered grids: Legendre Gauss-Lobatto (x) for the
velocity and Legendre Gauss (O) for the pressure. At right the two grids: Legendre
Gauss-Lobatto (x) for the velocity and internal Legendre Gauss-Lobatto (O) for the
pressure

In this case, the (LBB) condition (121) is satisfied with a constant 3 = 3, = O(N 1)
and, if u € H*T1(Q), p € H*(RQ), the following error estimate holds:

= gLy + N2 = Baligy < ON7* (10l gy + 1Pl ey) - (125)

Due to the difficulty to build the space @),, the interest of this choice is more
theoretical than practical.
A more practical choice from the computational viewpoint is to take

Qy = Q,_,(2) NLG(Q). (126)
The (LBB) condition (121) is satisfied with § = 8, = O(N~2), and (see [50))

(127)
ON= (110l s gy + 1Pl ey ) -

Two ways can be followed in order to implement this approach. The former consists
in using a staggered grid, a Legendre Gauss-Lobatto grid for the velocity and a
Legendre Gauss grid for the pressure (as in Fig. 4, left); in this way an interpolation
process is needed in order to compute the values for Vp, on the velocity grid.
Alternatively, one can use for the pressure the (N — 1)? Legendre Gauss-Lobatto
quadrature nodes internal to the computational domain (see Fig. 4, right); the
incompressibility condition is enforced by a discrete quadrature formula which is no
more a Gaussian quadrature formula ([5]).

An alternative approach to those mentioned above is to use equal order inter-
polation spaces (122) and consequently stabilize the Stokes equations d la Galerkin
Least Squares, or ¢ la Douglas-Wang (see [40], [39]).

The stabilization techniques, initially proposed in the finite element context,
have then been extended to spectral methods (see [17], [61]) and the spectral element
methods (see [34]) with a suitable design of the stabilization parameters.

We briefly describe the stabilization ¢ la Douglas-Wang on the spectral element
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approximation of (118). It consists of finding u, and p, in the spaces (122), such
that:

aN(uN7vN) + bN(vN7pN) - bN(uN7qN)

+(au, —vAu, +Vp,,7(av, —VvAv, +VqN))N,Q (128)
128
= (faT(avN - VAVN + VqN))N,Q

Vv, €V,, Vg, €Q,,

where 7 is the stabilization parameter which depends on the viscosity v, on the
domain size, and on the polynomial degree. A particular choice for 7 is

m meas()

T =
The bilinear form

+(auy —vAuy + Vpy, m(avy —vAvVy +Vay))ya>

associated to the approximation (128), is coercive with a coercivity constant equal
to one. Consequently the solution satisfy the following stability inequality: 38 > 0
independent of N such that

iy, 2 )llle < AlEllyq (131)
where
iy pullle == (eluyl2, , +vIVayl?,

o ENY: (132
/2 oy — vAu, +p)[2, )

Furthermore, the solution of (128) satisfies the following error estimate: if the solu-
tion of (116) is such that u € H*(Q), s > 2,p€ H(Q), I > 1and f € H"(Q), r > 1,
then there exists a positive constant C' independent of N such that

Hl(Q)

Il — wy.p— 2o < C [Ny + Nl + N WLy | - (133)

Other stabilization approaches are possible, for instance based on streamline up-
wind Galerkin methods, or else on the bubble stabilized spectral method proposed by
Canuto and Van-Kemenade ([17]). Stabilization methods for the so-called hp—FEM
are analyzed in [75] and [76].

3 Time-differentiation of Navier Stokes equations

We focus now our attention on the discretization of the temporal derivative in (113)
and review some of the schemes which have been more successfully used in the past
years.
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3.1 Finite difference schemes

The most classical approach consists in advancing in time by suitable explicit, im-
plicit or semi-implicit finite difference schemes.
The explicit schemes are easy to implement, the basic computational kernel required
is a matrix-vector product, but an obvious restriction on the choice of the time step
is needed to ensure stability to the scheme.

On the other hand, a fully implicit scheme requires the solution of a non-linear
system at every time step, but no bounds on the time step are needed.
One way to avoid the resolution of a non-linear system is to use semi-implicit
methods in which the nonlinear convective term is replaced by a linearised one.
An example is provided by the Euler semi-implicit scheme that reads as follows.
Given At € (0,T) we set t° = 0 and t" = t9 + n - At with n = 1,..,A and
N = [Azt] (where [a] stands for integral part of a). Then, for n = 0,...,N' — 1,
find [u" ™!, p" eV xQ:

n+1 n

I vAu"t! 4 vpth = £ (. V) u™! in Q
V-u"t!l =0 in Q.

u —u

(134)

Otherwise the non linear terms can be treated fully explicitly, and the other ones
fully implicitly as in the Crank-Nicolson/Adams-Bashforth (CN-AB) second order
scheme, that, on system (113), reads as follows:

un+1 —u” v 1
- = _ZA(u""! n - n+1 ny
A 5 (u"™ 4+ u") + 2V(p +p")
1 1
§(fn+1 + f") _ 5 [3(11" . V)un _ (un—l i v)un—l] in Q (135)

V-u"tt =0 in

with a suitable second order approximation of u!. At each time step a generalized
Stokes problem as (114) has to be solved. If the spectral collocation method is used
for space discretization, this method is stable under the condition that At < CN 2.
Another semi-implicit scheme is based on the second-order backward finite-difference
formula (see [37]):

Ju! —4u" 4 unt pAU 4 vpntl =

2At
fn+1 _ ((211" _ un—l) . V) (211” _ un—l) in Q (136)
V-urtl =0 in Q.

Also in this case at each time step a generalized Stokes problem has to be solved.
We refer also to Simo and Armero (see [79]) for other finite difference schemes of

various order, explicit, implicit or semi-implicit, with very-good stability properties

in time, that may be applied to spectral approximation. In particular, a second
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order accurate algorithm that retains the key property of unconditional stability
and linearity within the time step, reads

un+1A; u” B %A(un+1 +u”) + Vpn+1 _
%(f”“ 4 ) - % [(Bu” —u™ ) - V(™! +u")] i Q (137)
V.l +u") =0 in Q.

Now we show how to combine finite difference schemes for time-discretization with
space-stabilized Galerkin methods. As an instance, we use the Euler semi-implicit
scheme (134) for the Douglas-Wang stabilization method that was formerly used in
(128) on the Stokes problem (114) (we refer to [34] for a more detailed description
and analysis). For n = 0,..,N — 1, find [u”",p"* e V xQ, :

1
S v+ ay (W v) 4 by (a0 g)

tey (U, upthvy) + by (v, PR + (V- ul () Ve vy )y g

un+1
+< A7 +L(u?v,uZ“,p’,é“),T(X)L(uZ,vN,qN)) = (138)

N,Q
un
= (v + (1074 0D vy 0,
N,Q

Vv, €V,, q, €Q,

with u?v = ug, , Where
L(w,u,p) = —Au+ (w-V)u+ Vp, (139)
and
ey (Wy,uy,vy) = ((wy - V)uN7vN)N,Q’ Vwy,uy, vy € V. (140)

We observe that if in (138) we put ¢, = 0 then we obtain the stabilized momentum
equation, while, if we put v, = 0 we obtain the stabilized continuity equation.
The stabilization parameters 7(x) and (x) can be defined as follows:

o) = D (e, () = I D e, (14
where:
e = I, ety = { T ZRE) S o)

(143)

" )P+ [(u})2(x)P)/P i 1<p < oo
[u’ (x)|p

max|(uy )i (x)] if p = oo.
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For each n = 0,.., N/ there exists a unique solution of (138). Moreover, if u €
[H(Q)NH Q)] with s > 1, p € LZ(Q)NHY(Q) with[ > 1, w € Wmax(sbr)00(Q),
f € H"(Q?) with 7 > 1, then there exists a positive constant C' independent of N
such that:

M=y, p = pylllle < O (N lllye gy + N ol gy + N7l ey ) (144)

HI(Q)

Another possible choice for 7 and +y is given in [17], where 7 is locally defined on
each quadrilateral T}, arising from the Legendre Gauss-Lobatto grid in the following
way:

hy

mf(Rek(x))a (145)

(%) =

h n
w if 0 < Reg(x) <1

£(Rex(x)) = i (146)
1 if Reg(x) > 1,
with
hyy = /2Res (k) or  hy=hg, cosO+ hy sind (147)
k= diag(k) kb Dha ky
and
6 = arctan(|uf, ,|/[uf ), (148)

while =y is taken equal to zero. This strategy is more sensible to local changes of the
ratio |u, |/v than the former one (141).

We notice that in (138) the velocity components are unfortunally coupled through
the term (V - uzf,“,'y(x)v * Vy)n.» Whose presence is necessary in order to prove
the stability of the numerical solution.

3.2 Projection methods

The idea of these schemes, introduced by Chorin (1968) and Temam (1969) consists
in decoupling the resolution of the velocity and the pressure in order to overcome
the incompressibility constraint V - u = 0.

First, a non-linear elliptic advection-diffusion problem of the following form

tp41

"t —u” ~n+1 ~nta ~n+fl 1 :

g AR BT a) = o / f(t)dt in Q (149)
tn

amtl =0 on OS2,

is solved, where B(u,v) = (u-V)v+1/2(V -u)v is the skew-symmetric form of the
non-linear term, a, B € [0,1]. Therefore the numerical solution u™*! is computed
as the projection of @™*! on the free-divergence space

VdiVZ{VEV:V-VZO} (150)
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with respect to the scalar product in [L?(2)]?, i.e.

~n+1

(un+1 _ (u

;W) »W)

Vw € Viiy. (151)

L2(Q) L2(Q)

For the projection step (151) the method and all its variants are known as “projection
methods”.

As a consequence of the so-called Helmholtz decomposition principle ([71]), the
computation of u"*! by (151) is reduced to the resolution of an elliptic problem
with Neumann boundary conditions for the pressure p"*!:

Apntl = 1yv.a o
At (152)
oy 80
on o o2%

from which we recover the end-of-step velocity field

ntl — grtl _ A¢vpt L (153)

u
Karniadakis et al. ([42], [78]) proposed a family of high-order time accurate splitting
methods with improved boundary conditions of high order in time that minimize the
effect of erroneous numerical boundary layers induced by splitting methods. The
schemes read:

( g el
Zﬁ nJ.V)u in
ﬁ o :
{ A —Vp" in Q (154)
2 Jp—1
n+l _ A P .
% =v Z fyjAu”‘H_J in
\ j=0

with Dirichlet boundary conditions on u”t!. The incompressibility constraint is

satisfied by the intermediate solution & and p" ! is a scalar field that ensures that
final velocity field is incompressible at the end of time level (n + 1). The coefficients
Bj, for 7 =0, ...,J.—1, and v;, for j =0, ..., J, — 1, can be the coefficients of Adams-
Bashforth and Adams-Moulton methods (respectively of order J, and J,), or more
general multistep schemes. For other splitting methods see [16], Sec. 7.3.2.
Rannacher ([74]) has made a thorough analysis of the projection method and of
its relation with stabilization methods (penalty methods). He has considered the
following form of the projection method: for n =0,..,.N — 1:

( un+1/2A_tlln1/2 yAun+1/2 +B(un+1/2’un—|—1/2)
s 155
< Vg = o / £(t)dt in 0 (155)
tn
u"tl/2 = on 09
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then find ¢"*1:

Ag'tt = Ly.u+2 o
At (156)
aqn-i—l
o 0 on 01},

with u='/2 = ug, ¢° = 0 and {¢"} a sequence approximating {p"}.

The velocity and the pressure are proven to be convergent at the first order with
respect to the norms of [L2(2)]? and of the dual space of H'(Q)NL3(R), respectively.
The analysis of Rannacher indicates that in the interior of the computational domain
Q the pressure ¢" is indeed a reasonable approximation of the exact pressure p at
time t,, as the effects of the non-physical Neumann boundary condition in (156)
decay exponentially with respect to dist(x, 9Q)vV/At.

Shen ([77]) proposed the following scheme:

n+1/2 _ ;.n
A AW w4 B (

un+1/2+un un+1/2+un
2 ’ 2

_ (157)
+Vp" = f(tn11/2) in
a2 Logn = g on 012,
A(ptt —pn) = iV ~u"t2 in Q
At (158)
Bpn+1 8pn

- om on 0f)
and he proved that the scheme (157)-(158) is second order accurate in time for the
velocity and at least first order accurate for the pressure. He proposed to use first-
order accurate boundary conditions for the pressure as analysed by Karniadakis et
al. ([42]) in the framework of spectral element approximation.

Pinelli et al. ([66]) use the Van Kan scheme ([41]) based on the CN-AB method
(135):

~n+1 _ ..n 1
% - %A(ﬁ"+1 +u") + Vp" = 3 (fr + fog1)
1 159
—5(3B(u”,u") — B(u" 1 u" ) in O (159)
a"tl =0 on 09,
i(unJrl _ ﬁn+1) + lv( n+l n) =0 inQ
At 9 v \P p (160)
V-urtl =0 in Q.

Legendre collocation in two directions and Fourier expansion in the third direction
are considered in order to simulate a turbulent flow in 3D. At each time level a
Projection Decomposition solver (see Sec. 4) on the generalized Stokes problem is
used on the directions approximated by Legendre collocation.
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Figure 5: A decomposition of 2 in two subdomains.

4 Domain decomposition methods

The domain decomposition techniques are combined to the spectral methods for
their good versatility to treat general geometries, as well as for the good properties
that they enjoy as parallel preconditioners for the algebraic system arising from the
spectral approximation.

Let us assume that €2 is partitioned into M non-overlapping subdomains (2;,
i =1,...,M, such that © = UM ©;. We set QO = UM, Q; and we define the interface
between the subdomains as T’ = Q\(.

4.1 The Poisson problem

The first computational kernel used in the approximation of the Navier-Stokes equa-
tions is the Poisson problem

—Au=f inQ
{ u=>0 on 0f). (161)

We indicate by u; the restriction to €; of the solution u to (161) and by n; the
outward unit normal vector to 0€2; N T.
For simplicity, we consider a rectangular domain Q C R? split in two rectangular
subdomains (see Fig. 5). For details and generalisation, see [72].

The multidomain formulation of (161) reads:

( —Au1 = f in Ql
u; =0 on 091 NN
UL = Us onT
§ Our Ougy (162)
8—111 = _8—112 onT
—Aus = f in Qo
[ u2 =0 on 9y N N

The third and fourth equations of (162) are said transmission conditions for u; and
uo and they ensure the necessary regularity of the multidomain solution.

The equivalence between (161) and (162) is shown by resorting to the weak form of
both problems. The variational form of (161) reads:

find u € V = H}(Q) : a(u,v) = (f,v)LZ(Q) YoeV (163)
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with a(u,v) = (Vu, Vo) while the variational multidomain form is: find u; €

LQ(Q)’
Vi, ug € Vo :
a1(u1,01) = (f,01) 5 Vo € VP
_ 0
ag(ug, v2) = (f,02) 15 ., Vug € Vg (164)
U] = U onT
ag(uz, Bop) = (f, Bopp) o — 01 (ur, Brp) + (f, Bapt) 1o, VR E A
where:
Vi = {v; € H' () : vilpanon, =0}  i=1,2, (165)
(vi|r denotes the trace of v; on T'),
VP2 = H} (), i=1,2 (166)
A={peHY*): p=nuv|r for a suitable v € V}, (167)
ai(wi, v;) = (Vw;, Vv;) i=1,2 (168)

L2(9;)

and E; denotes any possible (continuous) operator from A to V; which satisfies
(Eip)|r = p, i.e. E; is an extension operator from A to V;.

The variational multidomain problem (164) can be equivalently written in terms
of the Steklov Poincaré operator (see [1], [70]), where the determination of u, solution
of (161) is reduced to find the trace A of u on I" and then to solve M independent
Dirichlet problems on the subdomains €2;.

As a matter of fact, we note that the solution u to (162) can be represented as
being u = ug + v, where ug is the solution to the following problems:

—Aup; =f inQ; .
{ up,; =0 on 0% 1=1,2 (169)
(with uo; = uo|g;), while v is the solution of
—A’UZ' =0 in Qz’
v; =0 on 99; NN i=1,2 (170)

v; = A on 092; NT

(With V; = ’UlQl)
The equivalence with the original problem (162) is achieved provided that the fol-
lowing relation holds:

8u1 o BUQ
a—nl = an2 on F, (171)

or:

ovy n vy _ (BUO,l T 8“0,2) onT. (172)

n;  Ony  \ On; = Ony
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Noticing that the functions ug; only depend on f (say ug; = G;(f)) and v; on X (say
v; = Hi(N\)), we can formally write the equation (172) as:

SA=yx onT (173)
where
Oup  Ougpo 0Gi(f) = 0Ga(f)
_ _ ( 9uo, 2\ _ _ 174
X (8n1 + 8n2 ) ( 61’11 + 8n2 ( 7 )
and

a’Ul + 8’02 _ 8?-[1()\) + 87'[2()\)

SA = 81’11 {“)ng 8n1 81’12

(175)

The equation (173) is said interface equation and S is the Steklov-Poincaré operator;
S is self-adjoint and coercive.

To solve the interface equation amounts to solve two Poisson problems as (169) in
order to built x, to solve the interface equation to obtain A = v|r, then to solve two
problems like (170) in order to obtain v;.

When the differential multidomain problem (162) is approximated by spectral
methods with a generalized Galerkin approach (or any other discretization method),
the Steklov-Poincaré equation (173) has a finite dimensional counterpart and it takes
the algebraic form Au = f, or equivalently:

A 0 Air Uy S
O A22 AQF u9 = fQ . (1 76)
Arm Aro Arr ur Jr

uy (resp. wusg) is the vector of unknowns at the collocation nodes of Q¢\I' (resp.
Q2\I'), ur is the unknowns vector of the nodes of I'. A block Gauss elimination on
the matrix A gives:

Sur = fr (177)

with
S = (Arr — A AT Arr — Aro A Aor) (178)

and
fr=fr— AriAp fi — Are Ay fo. (179)

The matrix S is referred to as the Schur complement of Arr in A and the equation
(177) is a discrete approximation of the interface equation (173).

The matrix S is never explicitly assembled, but it is common practice to solve
the system (177) by preconditioned iterative procedures where each matrix-vector
product with S involves two (in general M) subdomain solvers. The iterative pro-
cedures for solving equation (173) are traditionally referred to as iterative substruc-
turing methods, since they introduce a sequence of differential subproblems in €2;,
for which the transmission conditions of (162) provide Dirichlet or Neumann data
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at the internal boundary T'.
We note that the Steklov-Poincaré operator S can be split in § = &1 + Sy with
SiA = 0H;(\)/On; and, if we consider the Richardson method with preconditioner
P = 81 we obtain the so called Dirichlet-Neumann scheme ([8], [54], [11]). Other-
wise the so-called Neumann-Neumann scheme ([9]) amounts to solve (173) by the
preconditioned conjugate gradient with P = (aS; '+ (1 —@)S; )L 0< a < 1,
The Dirichlet Neumann scheme was considered, e.g. by Bjorstad and Widlund
([8]), Bramble, Pasciak and Schatz ([11]) and Marini and Quarteroni ([54]) in the
framework of finite element method and by Funaro, Quarteroni and Zanolli ([31])
for spectral methods. It reads as follows: given X0 VE > 0 solve:

—AuFY = f iny
W =0 on 09, N o0 (180)

ugkﬂ) =A% onT,
N in €,
ugkﬂ) =0 on 0¥ N 0N (181)
au(k—f—l) 6u(k+1)

2 =1 on I,

Bng 6n1

then set \k+1) = 0u§k+1)|r + (1 — 0)X*). 0 being a positive acceleration parameter
in (0,1) that can be computed dynamically ([54], [68]). The method can be general-
ized to more complex decompositions, with M > 2; in this case the subdomains are
divided in two sets as in a chess-board; all the domains of the first set are treated
as €21, the others as €.

If a domain decomposition without internal cross-points is considered (a cross point
is a subdomain vertex which is common to almost four subdomains) and the param-
eter @ is computed in the optimal way by the minimal contraction constant approach
([54], [68]), the condition number of the preconditioned system is independent of the
polynomial degree N of the spectral approximation but it linearly depends on the
number of subdomains M. If we set H = max; meas(€);) then there exists C > 0
independent of N and H such that

x(P'8)<CH™! (182)

where P is the matrix associated to P. Otherwise, in presence of internal cross
points, we have

x(P18) < CH %(1 +1log?(HN?)) (183)

in accordance with ([68], [69]) and the numerical results in [33] (Fig. 2).
The Neumann-Neumann scheme was considered by Bourgat, Glowinski, Le Tal-
lec and Vidrascu ([9]) and reads: given A\(*), V& > 0 solve:

—AulF = £ in @
W = ¢ on 9, N 9N i=1,2, (184)

7
ugkﬂ) =2k onT,
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At — ¢ in Q;

3

(k+1) _
otV _ouf) ouh
Bni N 8n1 anz ’

then set Ak+1) = \(k) _ 0(alv§k+1)\r — nggﬁ_l)\p), 0 being a positive acceleration
parameter in (0,1) and o1, o2 two positive averaging coefficients.

Also for the Neumann-Neumann scheme a behaviour like (183) holds. Note that
the computational cost of each iteration of the Neumann-Neumann method is double
with respect to the computational cost of one iteration of the Dirichlet-Neumann
scheme. Nevertheless this is balanced by the fact that the Neumann-Neumann
scheme is twice faster than the Dirichlet-Neumann scheme in terms of number of
iterations to converge with a given accuracy.

Another iterative substructuring approach is the Robin method proposed by
Agoshkov and Lebedev ([1]) and analysed by P.L. Lions ([48]). It reads: given

ugo), Vk > 0 solve:

(k+1) ou®) J# i
] J

where 0, is a non-negative acceleration parameter.
The Dirichlet-Neumann and the Robin methods are particular cases of the Le-

bedev-Agoshkov method ([46]) that reads: given uéo), VEk > 0 solve:

—AuSFTD < in O
’ng+1/2) =0 on 891 N o9 (187)
uk+1/2) (k+1/2) ou'k) )
laT + pruy = _B—Ifz + prugy on 0, NT
then set
u&kﬂ) = ugk) + ak+1(“§k+1/2) - ng)) in Qy; (188)
solve:
—Augﬁ_lﬂ) =f in o
’U,gk_'—l/Q) =0 on 892 N 89 (189)
oy kt+1/2) (k+1/2) kD) (ht1)
_ngT-l‘Uz :_Qkalinl'i‘“l on 9y NT
then set
S P s (P — ) S

with Pk > Oa 9k > 07 O5.’4:—{—1518145-1-1 € R.
For py = g = 0 and oy, = B = 1 we obtain the Dirichlet-Neumann scheme (180)-
(181) where the role of 21 and Q5 are reversed; for p, =0, gy = 1/6 and a, = B = 1
we obtain the Robin method (186).
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Another approach to solve the Poisson problem via domain decomposition is the
so-called Projection Decomposition Method (PDM) ([58], [33]). The main idea of
this method consists of solving the interface equation (173) by the Galerkin pro-
jection method. The use of a piecewise-polynomial well-conditioned basis (in the
sense of Mikhlin [55]) leads to a well-conditioned linear system for the coordinates
of the Galerkin approximation in this basis, which can be solved effectively by the
Conjugate Gradient method with the convergence rate independent of the system
dimension. The combination of the piecewise-polynomials Galerkin approximation
on the interface and the spectral collocation method in the subdomains results in
high accuracy of the numerical solutions.

For the details on the construction of the well-conditioned basis we refer to ([58],
[33]), here we briefly summarise the algorithm induced by the PDM:

e solve by spectral methods M Poisson problems as (169) to obtain ug and
compute the right hand side of the interface equation (written in weak form)
with respect to the well-conditioned basis;

e solve by conjugate gradient the interface equation: at each conjugate gradient
iteration we have to apply the discrete counterpart of the Steklov-Poincaré
operator to a vector, that amounts to solve M Poisson problems by spectral
methods;

e solve by spectral methods M Poisson problems as (170) to obtain v.

We note that at each step of this procedure the Poisson problems on the subdomains
Q; are independent, thus this algorithm can be easily parallelised. The numerical
results in [33] show that the rate of convergence of PDM depends on H and N as
for the Dirichlet Neumann scheme (see 183) with a constant C which is about 1/10
of the Dirichlet Neumann constant.

A way to improve the performance of domain decomposition methods, in terms

of convergence rate, consists of incorporating a mechanism for global coupling, such
as through a coarse grid problem based on a coarse mesh inside the computational
domain.
For example, the Bramble, Pasciak and Schatz method ([11]) consists of precondition-
ing the Schur complement system by a block Jacobi matrix plus a coarse refinement
involving the vertices of the subdomains. The condition number becomes logarith-
mic in H/h (h is the finite element mesh size), i.e. 3C > 0 independent of H and h
such that

x(P1S)<C (1 + log? (%)) . (191)

The performance of domain decomposition methods can be improved again by in-
troducing overlapping decompositions as in the additive Schwarz method with coarse
correction ([22], [27]), or the 2D wvertex space method of Smith ([80], [81]). For both
these schemes it has been proved that 3C > 0 independent of H and h, but possibly
dependent on the overlap # such that

x(P718) < C(B) (1 + log (%)) : (192)
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The overlapping methods have been largely applied to finite element discretiza-
tion, but seldom to spectral context for the intrinsic difficulty of this approaches to
combine “little” overlapping (i.e. little extensions of the elements) with Gaussian
quadrature formulas. As a matter of fact these formulas have a fixed distribution of
nodes and the addition of other nodes to the existing Gaussian set, in general causes
the loss of precision of the quadrature formula.

Pavarino ([63], [64]) has proposed an overlapping additive Schwarz method for
p—type finite elements. This idea amounts to consider quadrilateral finite elements
Q; (of size H and with high polynomial degree p), and to define the extended ele-
ments ), as the union of four elements Q1 ...., Qx4 which have a common vertex (see
Fig. 6). The elements ), are defined for each vertex internal to the computational
domain  and they form an overlapping decomposition with an overlap of the same
size of the original elements (H). Then an additive Schwarz method is considered
to solve the multidomain problem with a coarse refinement involving the vertex of
the original decomposition. The rate of convergence of this domain decomposition

Figure 6: The original elements {2; and the extended elements of the overlapped
decomposition ) used by Pavarino.

solver is independent of both the size H of the elements and the polynomial degree
p ([63]).

Remark 4.1 We have seen in Sec. 1 that when a differential problem is approxi-
mated by spectral methods, an optimal preconditioner is the matrix obtained by the
bilinear finite element approximation of the same problem on the Legendre Gauss-
Lobatto grid. This preconditioner can be also used inside a multidomain approach.
The system (162), approximated by spectral methods, can be faced by a precondi-
tioned iterative method (e.g. the Richardson or conjugate gradient method) where
the preconditioner is referred to the global grid of collocation nodes, i.e. the union
of the Legendre Gauss-Lobatto nodes of all the subdomains Q; (i = 1,..., M) (see
[18], [26], [73]). Each step of the iterative solver consists of evaluating the residual
of the spectral multidomain system and then solving a finite element problem in the
global domain. The method converges with a rate that is substantially independent
of the number of gridpoints ([73], [82]).0

Another way to use the bilinear finite element preconditioner consists of building
the inexact additive Schwarz preconditioner as described in Sec. 1.5 for the spectral
element method.
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4.2 The Stokes problem

Consider now the generalized Stokes system (114), and the notations introduced
in the previous subsection. The multidomain form of the Stokes system reads: for
i=1,..., M find (u;,p;) such that:

(au; —vAuw; +Vp; =f in Q;
u; = uj on P,'j = 8Qz N 8Qj
ou; ou,
¢ Van: —pin; = _Va—n; —p;n; on Ty (193)
u, =0 on 0€); N 0N
L V. u; = 0 in Qi-

The transmission conditions on I';; enforce the continuity of the solution and of the
normal component of the stress tensor.
As for the Poisson problem, one can prove the equivalence between the systems (114)
and (193) and introduce the Steklov-Poincaré operator, the interface equation and
the iterative methods based on transmission conditions.

We take into account the variational form (116)-(117) of (114); the variational
multidomain form of (193) with M = 2 reads:
find (ul,pl) €V x L2(Ql), (ug,pg) € Vg X LQ(QQ):

(ai(uy,vi) +bi(vi,p1) = (£, Vl)Lz(Ql) Vv € [V?
bi(u,q1) =0 Vg1 € L* ()
u]. = Vl on F
az(ug, ve) + ba(ve,p2) = (f, V2)L2(92) Vvy € [V20]2
) b2(u2,42) =0 Yoz € L7(%%) (194)
ag(ug, Bop) + bo(Eop, po) = (£, Bop) 5
+(E, Bipn) o, — a1 (ur, Bup) — bi(Erp,p1) Vi € [A]?
/pldﬁl + /deQQ =0

\ O Qo

where Yw;, v; € [Vi]?, Vg; € L2(Q;):

= [535 (P o (B 2.

gil=1

bi(wi,qi) = —/(V - w;i)qid;, (196)
Q;
and E; : [A]2 — [V;]? is a Stokes extension operator.

To construct the interface equation for the Stokes problem, we write u = ug + v
and p = pg + m, where (ug,pg) is the solution of

oug; —vAug; +Vpo,; =f in
V-oug; =0 in Q; 1=1,2 (197)
up; =0 on 0€;
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(as usual ug; = wglg,, po,i = polo,), while (v, ) is the solution of

av;, —VAv; + Vr; =0 in

V-V,'ZO inQi .
v; =0 on 9Q; N ON 1=1,2 (198)
vi=A on 0Q; NI

(with v; = v|q,, mi = 7|q,)-
In order to achieve the equivalence with problem (193), A has to be chosen in a
way that the following interface equation be satisfied:
Ouy Ouy

et - = _ T. 1
Vo piny V8n2 pony on (199)

This can be equivalently written as:

SsA = Xxg (200)
with
Oug,1 Oug 2
_ A _ 2 _ 201
XS (V By ping +v By p2n2) (201)
and
ovy O0va
SsA =SiA+SZA = (”a—m — 7r1n1) + <1/8—n2 — 7T2n2) : (202)

Equation (200) is the interface equation for the generalized Stokes problem and
Sgs is the associate Steklov-Poincaré operator. To solve the interface equation (200)
amounts to solve again two generalized Stokes problems on ; in order to find (ug, pg)
and compute xg. Then, solve the equation on A and, finally, solve two generalized
Stokes problems on €; in order to find (v, 7).

As for the Poisson problem we can formulate the finite dimensional counterpart of
(200) and obtain the Schur complement matrix.

Some iterative procedure to solve the discrete interface equation on non-over-
lapping decompositions are the Dirichlet-Neumann scheme ([67], [54], [70], [11]) and
the Neumann-Neumann scheme ([9]).

The Dirichlet-Neumann method for the generalized Stokes system on the two-
domain decomposition reads: given A, vk > 0 solve:

augkﬂ) — Augkﬂ) + Vpgkﬂ) =f in

uF =0 on 09, N 89
ugkﬂ) = Ak on I' N 09y,
cu D — AufEH 4 7D g o,
V- ug = 0 in QQ
ugkﬂ) -0 on 099 N 0N (204)
Bu(kH) 6u(lc+1)
2 (kD gy — — e P 0, on TN o0y,
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then set A1) = 9uék+1)|r + (1 —0)A®), 9 being a positive acceleration parameter
in (0,1).

The initial datum A(® has to satisfy a compatibility condition with respect to the
continuity equation V- u = 0. As a consequence of the divergence theorem, for any

Q. C Q, it holds
/V-u:/u-nkzo (205)
Qp,

8,

and, under the assumption that u|sn = 0, we have

/u-nk:—/u-nk:(). (206)

r O\T

It follows that A must satisfy the condition

/ A®.n, =0, (207)
r

which guarantees that

/ A®) . n, =0, VE > 1. (208)
T

(See [72]).

The Dirichlet-Neumann method converges with a rate independent of N, pro-
vided that the inf-sup condition (121) is satisfied with a constant § uniformly
bounded from below ([67]). It can also be used as an iterative substructuring pro-
cedure to solve the global system arising from a spectral element approximation of
the Stokes equations.

Projection Decomposition Method can be considered to solve the interface equa-
tion (200) (see [59]). As for the Poisson problem, a well-conditioned basis is con-
structed to approximate the equation on the interface I' by the projection Galerkin
method. Its rate of convergence is independent of the number of basis functions on
the interface as well as the polynomial degree which is used inside each subdomain.

4.3 The Navier-Stokes equations

A multidomain formulation of Navier-Stokes equations can be based on the stabilized
SEM. Using the notations of Sec. 1.5 and a decomposition of Q like (97), a system
similar to (138) is obtained. However, now the discrete solution [u,,,p,, | is sought
in V,, x Q,,, with

V, =V, NH(QP, Q= V, NI}, (209)

and any discrete inner product (-,)y is replaced with its spectral element coun-
terpart. Also the stabilization parameters ar referred to the spectral element dis-
cretization, in particular T} plays the role of 2 in (141)-(142).
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At each time level the matrix of the system is sparse and its condition number
depends heavily on the parameters of the spectral element discretization, say the
mesh size H and the polynomial degree N on each element. Numerical results (see
[34]) show that the condition number of the matrix A, , arising from the stabilized
spectral element approximation, is

X(A,) < CNSH, (210)

for a suitable constant C independent of N and H. Then it is mandatory to solve
the system by a preconditioned iterative method. Instead of a global preconditioner,
that requires many storage locations to be stored and incompletely factorized, an
element by element bilinear preconditioner based on the same stabilized approach
used for the primary problem can be used.

We denote by Ay, the square matrix of dimension 3(N + 1)2 which is the block
matrix associated to the stabilized spectral element approximation of Navier Stokes
problem on the element T}, € Ty. Besides, Rf is a rectangular matrix of dimensions
3N? x 3(N +1)2, (N, is the total number of nodes in the computational domain ()
which is the extension matrix associated to T} (see Sec. 1.5). Then

Ne
A, =) R{ARy. (211)
k=1

Now we denote by A,]:e the block matrix associated to the stabilized bilinear spectral
element matrix on T, (it has the same dimensions of A;) and we define a block Jacobi
preconditioner as follows:

Ne
Pt =3 "RE(A]) 'Ry, (212)
k=1
Numerical results on a decomposition of €2 in Ne = M; x M; elements of size H
([32]) show that
x(P7'A,) < CN*H™2. (213)

Even if this preconditioner is non optimal, the numerical results point out substan-
tial reduction of the iteration number with respect to an unpreconditioned system,
but also to a diagonally preconditioned system. All results presented in the following
section are obtained using the BiCGStab iterative method ([24]) with the precondi-
tioner (212).

5 Numerical results

We present here some numerical results obtained by the approximation of incom-
pressible Navier-Stokes equations (113) with the stabilized spectral element method.
Different test cases are addressed.
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Figure 7: Profiles of u velocities along vertical lines through geometric center of the
cavity.

5.1 Driven cavity flow

This test case shows the motion of a flow inside a plane square domain Q = (0, 1)2
with tangential velocity prescribed on the top boundary us, = (1,0)7. We define
the Reynolds number as Re = D|luy||/v where D is the measure of the side of Q
and uy is the prescribed tangential velocity on the top side. On the vertical sides
and on the bottom horizontal side a no-slip boundary condition is imposed.

The problem has been solved by the stabilized spectral elements (SSE), and by
the Euler semi-implicit time advancing scheme (134).

We compare our results with those of Ghia et al. ([35]) about the profiles of
the velocity components u and v along vertical and horizontal (respectively) lines
through geometric center of the cavity (see figures 7 and 8). The solid lines represent
the numerical solution obtained by SSE at different Reynolds numbers, while the
symbols represent the numerical data reported in Tables I and II in [35].

In Tab. 3 we compare the space discretization used in [35] and by SSE. N and
M stand for the polynomial degree in each spectral element (in each direction) and
the number of elements in each direction respectively. Unless otherwise specified the
decomposition of €2 is uniform.

In figures 9 and 10 we report the streamline contours for the cavity flow config-
urations, that we have obtained for Re=400, 1000, 5000, 10000. Finally in Fig. 11
we show the pressure for Re=5000 and Re=10000.

5.2 Creeping flow in a wedge

The computational domain (2 for this test case ([50]), and its spectral element parti-
tion are represented in figure 12. Inside each element, polynomials of degree N = 6
have been considered and the Euler semi-implicit scheme with At = .01 has been
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Figure 8: Profiles of v velocities along horizontal lines through geometric center of
the cavity.

Re 100 400 1000 5000 10000
Ghia | 129 x 129 | 129 x 129 | 129 x 129 | 257 x 257 | 257 x 257
discretization 16641 16641 16641 66049 66049

SSE N=28 N =28 N=6 N=6 N=6
discretization M=6 M=6 M =10 M =12 M =12
(2401) (2401) (3721) (5329) (5329)

Table 3: The number of nodes of the space discretization used in the “Driven Cavity”
test case. M denotes the number of elements in each space direction.

Figure 9: Streamlines for Re=400 (left) and Re=1000 (right).
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Figure 10: Streamlines for Re=5000 (left) and Re=10000 (right).

Figure 11: The pressure for Re=5000 (left) and Re=10000 (right).
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Re=0.17

Figure 12: The geometry of the problem creeping flow in a wedge (left), the domain
partition (center) and the stream-functions (right) relative to the creeping flow in a
wedge.
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Figure 13: The geometry (left) and a zoom on the stream-function (right) relative
to the test case: Uniform flow past a fence.

used. The motion is driven by steady motion of the fluid at the top of the edge; the
Reynolds number is Re = 0.17 and it is based on the peripheral speed uy, = (1,0)7,
v = 36.39 and the top side length D = 2x. In figure 12 (right) the computed stream
functions are shown.

5.3 Uniform flow past a fence

We consider the motion of a fluid in the domain © = (0, 10) x (0,5) in the presence
of a fence of height D = 1 and width equal to 0.1. We set the inflow velocity
us = (1,0)7, a viscosity v = 71.43 so that Re = 0.014. The problem geometry
and the boundary conditions used are shown in Fig. 13. The domain has been
partitioned in 24 elements with polynomial degree N = 6 in each element. The
computed stream functions are shown in Fig. 13.
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Figure 14: The geometry (left) and the partition of the computational domain (right)
for the test case of uniform flow past a circular cylinder.
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Figure 15: The vorticity at ¢ = 111 (left) and ¢t = 112(right).

5.4 Uniform flow past a circular cylinder

This unsteady problem represents the motion of a flow past a circular obstacle. The
computational domain is Q = (—4.5,15.5) x (—4.59,4.5) and a circular obstacle,
with diameter D = 1, is centered at (0,0). The lack of symmetry on the geometry
has been adopted on purpose in order to generate periodic motion of the fluid (see
[79]). This motion is known in the literature as Von Karman vortex street.

The computational domain has been discretized in 64 spectral elements with
polynomial degree N = 6 in each direction. The total number of nodes is 1700. The
boundary conditions are assigned as they can be observed in figure (14), where t;
and t, represent the two components of the normal component of the stress tensor
Tn = —pn+ (n-V)u. The semi-implicit Euler scheme has been used with At = .05.
After an initially phase of transition, the motion becomes periodic in time with a
period T = 6, corresponding to a Strouhal number St = D/(|jus||T) = 0.167.

In figure (14) the discretization of the computational domain is shown while in
figures (15)-(17) we show the vorticity for Re=200 at six different time steps of a
period.

T T T T T
q = = i - -
4 & N 4 &
_2, —2,
T T T T T T T
25 0 10 155 25 0 10 155

Figure 16: The vorticity at t = 113 (left) and ¢ = 114(right).
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Figure 17: The vorticity at ¢ = 115 (left) and ¢ = 116 (right).
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Figure 18: The spectral element mesh on the branching plane (left) and the time-
dependent velocity profile g(z2,t).

5.5 Two dimensional model of pulsatile Newtonian flow in the hu-
man carotid bifurcation

This model problem is considered in biomechanical literature as a simplification of
the more complex 3-D problem.

The computational domain and its spectral elements decomposition are shown in
Fig. 18. The basic shape of the model agrees with the model of Bharadvaj ([7])
and the geometry parameters are based upon the data described by Ku et al. ([65],
[45]). Using the common carotid diameter D = 0.62cm as characteristic length
and a reference blood viscosity v = 0.035, the maximum Reynolds number inside a
period of the motion is Reyax =~ 800. The assumed pulse frequency is 80 strokes per
minute.

At the inflow boundary (the left vertical side) a fully developed time-dependent
velocity profile g = g(z2,t) is prescribed (according to [45], see Fig. 18); at the
rigid walls the no slip condition u = 0 is applied, while at the outflow boundary a
no-friction condition is imposed (i.e. Tn = —pn + (n-V)u = 0).

The discretization is based on 25 spectral elements with polynomial degree N = 4
and the global number of nodes is 461. The velocity field and the stream functions
in the branching plane during the pulse cycle (7' = 0.83) are shown in Figures 19-22,
in accordance with the results of ([65]).
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Figure 19: The velocity field and the stream functions in the branching plane during
the pulse cycle at ¢ = 0.0 (left) and ¢ = 0.05 (right).
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Figure 20: The velocity field and the stream functions in the branching plane during
the pulse cycle at ¢ = 0.09 (left) and ¢t = 0.14 (right).
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Figure 21: The velocity field and the stream functions in the branching plane during
the pulse cycle at ¢ = 0.17 (left) and ¢ = 0.26 (right).

1.625 r r r r T r r 1.625 T T T T T
1 2 1 1 1
=
o 4 o 4
-0.7018 T T T T T T T -0.7018 T T T T T T T
0 1 2 3 3.565 0 1 2 3 3.565

Figure 22: The velocity field and the stream functions in the branching plane during
the pulse cycle at ¢ = 0.36 (left) and ¢ = 0.8 (right).
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