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1 Introduction

The INTERNODES (INTERpolation for NOnconforming DEcompositionS)
method is an interpolation based approach to solve partial differential equations
by means of non-overlapping domain decomposition methods featuring non-
conforming discretizations at the interfaces [3, 4]. The non-conformity at a given
interface is induced by independent discretizations (as, e.g., h-fem or hp-fem) on
two adjacent subdomains.

For second order elliptic problems, the well known mortar method uses a single
L2-projection operator per interface to match the non-conforming local solutions.
INTERNODES instead employs two interpolation operators: the first one is used to
enforce the continuity of the traces, the second one to enforce the conservation of
fluxes across the interface.

In this paper we sketch the formulation of INTERNODES when it is applied
to second-order elliptic problems on two-domains decompositions. Then we apply
it to two test problems: the Kellogg’s problem with piece-wise constant diffusion
coefficients, and a problem featuring an infinitely differentiable solution. In both
cases, the numerical results show that INTERNODES attains optimal rate of
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convergence (i.e., that of the best approximation error in each subdomain), as
predicted by the theoretical estimate proved in [4].

Let Ω ⊂ Rd , with d = 2, 3, be an open domain with Lipschitz boundary ∂Ω ,
Ω1 and Ω2 be two non-overlapping subdomains with Lipschitz boundary such that
Ω = Ω1 ∪ Ω2, and Γ = ∂Ω1 ∩ ∂Ω2 be their common interface.

Given α ∈ L∞(Ω), b ∈ W 1,∞(Ω), γ ∈ L∞(Ω), and f ∈ H−1(Ω), we look for
u1 in Ω1 and u2 in Ω2 such that

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−∇ · (αk∇uk) + b · ∇uk + γuk = f in Ωk, k = 1, 2

u2 = u1 on Γ

α1
∂u1
∂n1

+ α2
∂u2
∂n2

= 0 on Γ

boundary conditions on ∂Ω,

(1)

where nk is the outward unit normal vector to ∂Ωk and αk = α|Ωk . The transmission
condition (1)2 expresses the continuity of the solution across Γ , while (1)3 enforces
the conservation of normal fluxes across the interface, see [7].

2 Intergrid Operators for Non-conforming Discretization

We consider two a-priori independent families of triangulations: T1,h1 in Ω1 and
T2,h2 in Ω2, respectively. The meshes in Ω1 and in Ω2 can be non-conforming
on Γ and characterized by different mesh-sizes h1 and h2. Moreover, different
polynomial degrees p1 and p2 can be used to define the finite element spaces. Inside
each subdomain Ωk we assume that the triangulations Tk,hk are affine, regular and
quasi-uniform [6, Ch. 3].

For k = 1, 2, let Xk,hk = {v ∈ C0(Ωk) : v|T ∈ Ppk , ∀T ∈ Tk,hk } be
the usual Lagrangian finite element spaces associated with Tk,hh , while Yk,hk =
{λ = v|Γ , v ∈ Xk,hk } are the spaces of traces on Γ of functions in Xk,hk , whose
dimension is nk .

We denote by Γ1 and Γ2 the internal boundaries of Ω1 and Ω2, respectively,
induced by the triangulations T1,h1 and T2,h2 . If Γ is a straight segment, then Γ1 =
Γ2 = Γ , otherwise Γ1 and Γ2 can be different (see Fig. 1).

Fig. 1 Γ1 and Γ2 induced by the triangulations T1,h1 and T2,h2
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For k = 1, 2, let {x(Γk)
1 , . . . , x(Γk)

nk
} ∈ Γ k be the nodes induced by the mesh Tk,hk .

We introduce two independent operators that exchange information between the
two independent grids on the interface Γ : Π12 : Y2,h2 → Y1,h1 and Π21 : Y1,h1 →
Y2,h2 .

If Γ1 = Γ2, Π12 and Π21 are the classical Lagrange interpolation operators
defined by the relations:

(Π12μ2,h2)(x
(Γ1)
i ) = μ2,h2(x

(Γ1)
i ), i = 1, . . . , n1, ∀μ2,h2 ∈ Y2,h2, (2)

(Π21μ1,h1)(x
(Γ2)
i ) = μ1,h1(x

(Γ2)
i ), i = 1, . . . , n2, ∀μ1,h1 ∈ Y1,h1 . (3)

If, instead, Γ1 and Γ2 are geometrical non-conforming, we define Π12 and Π21

as the Rescaled Localized Radial Basis Function (RL-RBF) interpolation operators
introduced in formula (3.1) of [2]. More precisely, for i = 1, . . . , nk let φ̃

(k)
i (x) =

φ(
x−x(Γk)
i 
, r) = max{0, (1−
x−x(Γk)

i 
/r)4}(1+4
x−x(Γk)
i 
/r) be the locally

supported C2 Wendland radial basis function [8] centered at x(Γk)
i with radius r > 0.

For any continuous function f on Ω , for i = 1, . . . , nk let (γ
(k)
f )i ∈ R be the

solutions of the system

nk�

i=1

(γ
(k)
f )i φ̃

(k)
i (x(Γk)

j ) = f (x(Γk)
j ), j = 1, . . . , nk

and set

(Π
(k)
RBF f )(x) =

nk�

i=1

(γ
(k)
f )i φ̃

(k)
i (x).

Then, after setting g(x) ≡ 1, for any μ2,h2 ∈ Y2,h2 and μ1,h1 ∈ Y1,h1 , the RL-RBF
interpolation operators are defined by

(Π12μ2,h2)(x) = (Π
(2)
RBFμ2,h2)(x)

(Π
(2)
RBF g)(x)

, (Π21μ1,h1)(x) = (Π
(1)
RBF μ1,h1)(x)

(Π
(1)
RBF g)(x)

.

In both cases, the (rectangular) matrices associated with Π12 and Π21 are,
respectively, R12 ∈ Rn1×n2 and R21 ∈ Rn2×n1 and they are defined by

(R12)ij = (Π12μ
(2)
j )(x(Γ1)

i ) i = 1, . . . , n1, j = 1, . . . , n2,

(R21)ij = (Π21μ
(1)
j )(x(Γ2)

i ) i = 1, . . . , n2, j = 1, . . . , n1,
(4)

where {μ(k)
i } are the Lagrange basis functions of Yk,hk , for k = 1, 2 and i =

1, . . . , nk .
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Obviously, in the conforming case for which Γ1 = Γ2, h1 = h2 and p1 = p2, the
interpolation operators Π12 and Π21 are the identity operator and R12 = R21 = I

(the identity matrix of size n1 = n2). Finally, let

(MΓk )ij = (μ
(k)
j ,μ

(k)
i )L2(Γk)

, k = 1, 2, (5)

the interface mass matrices. We notice that only information associated with the
interface nodes (more precisely, the nodes coordinates) are needed to assemble both
the interface mass matrices and the interpolation matrices for both the Lagrange and
the RL-RBF interpolation approaches.

3 Mathematical Foundation of INTERNODES for Elliptic
Problems

Let us consider the transmission problem (1) and, for simplicity, we complete it with
homogeneous Dirichlet boundary conditions on ∂Ω . For k = 1, 2 we introduce the
local spaces Vk = {v ∈ H 1(Ωk) | v = 0 on ∂Ω ∩ ∂Ωk}, V 0

k = {v ∈ Vk | v =
0 on Γ }, the bilinear forms ak : Vk × Vk → R: ak(u, v) =

�

Ωk

(αk∇u · ∇v + (b ·
∇u)v + γuv)dΩ , and the finite dimensional spaces Vk,hk = Xk,hk ∩ Vk , V 0

k,hk
=

Xk,hk ∩ V 0
k , and Λk,hk = {λ = v|Γ , v ∈ Vk,hk }. Let Rk : Λk,hk → Vk,hk , s.t.

(Rkηk,hk )|Γ = ηk,hk , ∀ηk,hk ∈ Λk,hk be any linear and continuous discrete lifting
from Γk to Ωk (as, e.g., the finite element interpolant that is zero at all finite element
nodes not lying on Γk). Finally, we denote by Ik the set of indices i ∈ {1, . . . , nk}
of the nodes x(Γk)

i of Γk .
In order to apply the INTERNODES method to problem (1), for any vk,hk ∈ Vk,hk

and for k = 1, 2 we define the scalar quantities

(r
(k)
v )i = ak(vk,hk ,Rkμ

(k)
i ) − (f,Rkμ

(k)
i )L2(Ωk)

, i ∈ Ik,

(z(k)
v )j =

�

i∈Ik

(M−1
Γk

)ji(r
(k)
v )i, j ∈ Ik, (6)

and the functions

(rv)k,hk =
�

j∈Ik

(z(k)
v )jμ

(k)
j , (7)

belonging to Λk,hk . (The subscript v highlights the dependence of r on v.)

Remark 1 When non-homogeneous Dirichlet boundary conditions are assigned on
∂Ω , we can recover the homogeneous case by a lifting of the Dirichlet data, so that
only the right hand side has to be modified (see, e.g., [6]).
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The weak form of INTERNODES applied to (1) reads: find u1,h1 ∈ V1,h1 and
u2,h2 ∈ V2,h2 such that

⎧
⎪⎨
⎪⎩

ak(uk,hk , vk,hk ) = (f, vk,hk )L2(Ωk)
∀vk,hk ∈ V 0

k,hk
, k = 1, 2

u2,h2 = Π21u1,h1 on Γ2,

(ru)1,h1 + Π12(ru)2,h2 = 0 on Γ1.

(8)

For k = 1, 2, (ru)k,hk ∈ Yk,hk are the so-called residuals at the interface Γk .
In fact they are the discrete fluxes across the interface, i.e., they represent the
approximations of αk∂uk/∂nk on Γk .

Remark 2 The values (r
(k)
u )i are not the coefficients of (ru)k,hk w.r.t. the Lagrange

basis {μ(k)
i } (on which we can apply the interpolation). Rather, they are the

coefficients of (ru)k,hk w.r.t. the dual basis {ψ(k)
i }nk

i=1 of Y �
k,hk

defined by the relations

(ψ
(k)
i ,μ

(k)
j )L2(Γk)

= δij , for i, j = 1, . . . , nk (δij is the Kronecker delta), precisely,

(ru)k,hk =
�

i∈Ik

(ru)
(k)
i ψ

(k)
i .

Yk,hk and Y �
k,hk

are identical linear spaces and it can be proved that ψ
(k)
i =�

j∈Ik

(M−1
Γk

)jiμ
(k)
j for any i ∈ Ik , therefore (7) follows. The interface mass matrix

MΓk and its inverse play the role of transfer matrices from the Lagrange basis to the
dual one and vice versa, respectively.

Denoting by zk and rk the arrays whose entries are the values (z
(k)
u )j and (r

(k)
u )i ,

respectively, it follows that zk = M−1
Γk

rk.
Then, the algebraic form of the interface condition (8)3 reads

M−1
Γ1

r1 + R12M
−1
Γ2

r2 = 0,

or, equivalently, r1 + MΓ1R12M
−1
Γ2

r2 = 0.

For k = 1, 2 let uk denote the array of the Lagrange coefficients of uk,hk at the
nodes of Tk,hk and λk the array of the Lagrange coefficients of uk,hk at the nodes of
Tk,hk ∩ Γk . Denoting by Ak the finite element stiffness matrices associated with the
discretization of (8)1, the algebraic form of (8) reads:

⎧
⎪⎨
⎪⎩

Akuk = fk, k = 1, 2,

λ2 = R21λ1,

r1 + MΓ1R12M
−1
Γ2

r2 = 0,

(9)

with uk |Γk
= λk .
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Under the assumption that problem (1) is well posed (see, e.g., [4, 6]) the follow-
ing convergence theorem, assessing the optimal error bound for the INTERNODES
method, is proved in [4].

Theorem 1 Assuming that u ∈ Hs(Ω), with s > 3/2, λ = u|Γ ∈ H σ (Γ ), with

σ > 1, (αk∂u2/∂n2) ∈ H ν(Γ ), with ν > 0, if pk ≥ 1 is the finite element

polynomial degree in Ωk , k = 1, 2, and Lagrange interpolation is used to define

Π12 and Π21, there exist 1
2 ≤ q < 1 and 3

2 ≤ z < 2 s.t.


u − uh
∗ � h
�1−1
1 
u
Hs(Ω1) + h

�2−1
2 
u
Hs(Ω2)

+
�
h

01−1/2
1 + h

02−1/2
2 + h

01−1/2
1

�
h2

h1

�q�

λ
Hσ (Γ )

+
�
h

ζ1+1/2
1 + h

ζ2+1/2
2 + h

ζ1+1/2
1

�
h1

h2

�z�

r2
H ν (Γ ),

with �k = min(s, pk + 1), 0k = min(σ, pk + 1), ζk = min(ν, pk + 1), and being


v
∗ = {
v
2
H 1(Ω1)

+ 
v
2
H 1(Ω2)

}1/2 the broken norm on Ω .

Remark 3 Π21 is used to match the traces, while Π12 is used to match the residuals,
i.e. the fluxes.

Using instead only one intergrid interpolation operator would not guarantee an
accurate non-conforming method; for example using only Π21 yields to the so-
called point wise matching discussed, e.g., in [1]. At the algebraic level the latter
approach uses only the matrix R21 and its transpose RT

21, whereas INTERNODES
uses both R21 and R12.

Remark 4 (On the Conservation of Fluxes) The conservation of fluxes across the
interface at the discrete level is enforced by the interface condition (8)3. As this
property depends on the interpolation operator Π12, that in turns depends on the
choice of the local subspaces, the flux jump vanishes, as h1 and h2 go to zero, with
the same order of the broken norm of the error.

Remark 5 The INTERNODES method can be generalized to decompositions with
more than two subdomains, possibly featuring internal cross-points (i.e., points
shared almost among three subdomains). We refer to [4, Sect. 6] for a detailed
description of the algorithm. What follows is a sketch of the generalization of
INTERNODES when Ω ⊂ R2. Let Ωk and Ω� be two generic subdomains such
that Γk� = ∂Ωk ∩ ∂Ω� is neither empty nor reduced to a vertex, while γ

(i)
k and γ

(j)

�

denote the edges of ∂Ωk and ∂Ω�, respectively, such that Γk� = γ
(i)
k ∩ γ

(j)
� .

Two typical situations can occur: the end-points of γ
(i)
k coincide with those of

γ
(j)
� (as in Fig. 2), or not (as in Fig. 3). In the first case, each interface Γk� is handled

as in the case of only two subdomains and we build couples of intergrid matrices
R�k and Rk� from γ

(i)
k to γ

(j)
� and vice versa, as done in Sect. 2. In the second

case, let us suppose that the measure of γ
(i)
k is larger than that of γ

(j)
� . Here all the
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Fig. 2 At left, the decomposition of Ω into four subdomains. In the middle, the nonconforming P1
meshes for k = 10. At right, the Kellogg’s solution with γ = 0.4 and α1 = 9.472135954999585
computed by INTERNODES and P1

0 0.5 1 1.5 2
0

0.5

1

1.5

2

Fig. 3 At left, a partition of the computational domain into 10 subdomains; in each subdomain
the quad hp-fem mesh is plotted, different colours refer to different subdomains. At right, the
corresponding INTERNODES solution

basis functions living on γ
(i)
k whose support has non-empty intersection with γ

(j)

�

must be taken into account when building the interpolation matrices R�k and Rk�

and the interface mass matrices M�k and Mk�. Alternatively, one can build both the
interface mass matrices and the interpolation matrices on the larger interface γ

(i)
k by

assembling the contributions arising from all the shorter edges of the subdomains
adjacent to Ωk on the other side of γ

(i)
k .

Remark 6 Robin conditions could be used instead of Neumann ones. The for-
mulation of INTERNODES would not change, provided the interface conditions
are imposed weakly (as natural conditions). As a matter of fact, natural interface
conditions are automatically accounted for when evaluating the discrete residuals of
the differential problem as done in (6).
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4 Numerical Results: The Kellogg’s Test Case

We test INTERNODES on a very challenging problem whose solution features low
regularity. The so-called Kellogg’s function (see, e.g., [5]) is an exact weak solution
of the elliptic problem

$−∇ · (α∇u) = 0 in Ω = (−1, 1)2

Dirichlet boundary conditions on ∂Ω,
(10)

with piece-wise constant coefficient α: α = α1 > 0 in the first and the third
quadrants, and α = 1 in the second and in the fourth ones. It can be written in
terms of the polar coordinates r and θ as u(r, θ) = rγ μ(θ), where γ ∈ (0, 2) is
a given parameter, while μ(θ) is a 2π−periodic continuous function (more regular
only when γ = 1). The case γ = 1 is trivial since the solution is a plane. The
positive value α1 depends on γ and on two other real parameters σ and ρ. The set
{α1, γ , σ,ρ} must satisfy a nonlinear system (see formula (5.1) of [5]). In particular
we fixed ρ = π/4.

When γ �= 1, u ∈ H 1+γ−ε(Ω), for any ε > 0; the solution features low
regularity at the origin and its normal derivatives to the axis are discontinuous.

We solve problem (10) by applying INTERNODES to the 4-subdomains decom-
position induced by the discontinuity of α and by using either P1 or Q2 finite
elements in each subdomain (see the P1 mesh in Fig. 2). The meshes at the interfaces
are non-conforming as shown in Fig. 2, more precisely given k ∈ N, the subdomains
mesh-sizes are: h1 = 1/(k − 1), h2 = 1/(k − 2), h3 = 1/(k + 5) and h4 = 1/k.

By refining the meshes (we cycle on k = 20, 40, 80, 160), we measure the
convergence order of INTERNODES on the Kellogg’s solution for different values
of the parameter γ . The results are shown in Table 1 and the convergence estimate
provided by Theorem 1 for two subdomains is here confirmed, although this test
case involves four subdomains instead of two.

We highlight that, although INTERNODES is based on interpolation operators
rather than projections (as in the mortar methods), the best approximation error of
the finite element discretization is preserved and not downgraded.

Table 1 Convergence orders of INTERNODES for the Kellogg’s test solution

γ s σ ν min{� − 1, ρ − 1/2, ζ + 1/2} P1 order Q2 order

0.4 1.4 − ε 0.9 − ε 0.4 − ε 0.4 − ε 0.363 0.429

0.6 1.6 − ε 1.1 − ε 0.6 − ε 0.6 − ε 0.574 0.651

1.4 2.4 − ε 1.9 − ε 1.4 − ε 1 for P1, 1.4 − ε for Q2 0.955 1.394

1.8 2.8 − ε 2.3 − ε 1.8 − ε 1 for P1, 1.8 − ε for Q2 0.949 1.615

The case γ = 0.4 is not covered by the convergence Theorem 1 since s < 3/2 and σ < 1.
min{� − 1, ρ − 1/2, ζ + 1/2} is the expected convergence order provided by Theorem 1, the
measured convergence orders are shown in the last two columns
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5 Numerical Results: Infinite Differentiable Solution

Let us consider the problem (1) with α = 1, b = [1, 1], γ = 1 on Ω = (0, 2)2.
The boundary data and the function f are such that the exact solution is u(x, y) =
sin(3π exp(3(x − 2)/2)) cos(3π exp(3(y − 2)/2)).

A decomposition of Ω = (0, 2)2 in 10 subdomains as in Fig. 3 is considered,
and independent triangulations in each Ωk are designed so that on each interface
both polynomial non-conformity and geometric non-conformity may occur. Either
P1 and quadrilateral hp-fem (Qp) are used to approximate the numerical solution.
A non-conforming grid, obtained with Qp discretizations in each subdomain, is
shown in Fig. 3, left. In order to guarantee full non-conformity on each interface,
we have set on two adjacent domains the polynomial degree equal to either p = 3
or p = 4 and the local mesh size equal to either h = 1/4 or h = 1/3. In Fig. 3,
right, the corresponding numerical solution computed by INTERNODES is shown.

In order to measure the errors in broken norm, we take the same polynomial
degree p in each subdomain and we consider only geometric non-conformity as in
Fig. 3, left, but with a variable number k (or k − 1) of elements (more precisely,
k = 4 in Fig. 3, left). The reference parameter is the mesh size h = 1/k of the left-
bottom subdomain. In Fig. 4, the errors in broken norm are reported, w.r.t. to both h

and p.
The error behaviour versus h (see Fig. 4 left) agrees with the theoretical estimate

of Theorem 1, for which we expect 
u − uh
∗ ≤ c(u)hp (in this case p = 1, 2, 4),
as u is infinitely differentiable.

The convergence rate vs p shown in Fig. 4, right, is more than algebraic, as
typical in hp-fem.
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Fig. 4 At left, the broken norm error w.r.t. the mesh-size h of the bottom-left subdomain, p is
fixed. At right, the broken norm error w.r.t. p, here the meshes sizes are fixed: that of the left-
bottom subdomain is h = 1/4
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