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Euler–Bernoulli thermoelastic plate model with a control function in the thermal equa-
tion is considered. This paper is devoted to the analysis and construction of the min-
imization procedure related to the controllability of its trajectories by applying both
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schemes in time. Numerical results obtained on several test cases are shown.
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1. Introduction

Let Ω be a bounded, open, connected subset of R2, with a Lipschitz boundary

and ω any open subset of Ω. Let T > 0 and set Q := Ω × (0, T ), Σ := ∂Ω ×
(0, T ). We consider a model which describes the small vibrations of a homogeneous,

elastically and thermally isotropic Euler–Bernoulli plate, under the influence of a

control function f ∈ L2(ω× (0, T )). In an absence of other exterior forces, and with

hinged mechanical and Dirichlet thermal boundary conditions, the system we are

going to study is the following:






utt + ∆2u+ ∆θ = 0 in Q

θt − ∆θ − ∆ut = χω f in Q

u = 0, ∆u = 0, θ = 0 on Σ

u(0) = u0 , ut(0) = u1 , θ(0) = θ0 in Ω.

(1.1)
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Here, u is the vertical deflection of the plate and θ is the variation of temperature of

the plate with respect to its reference temperature. The subscript “t” denotes time

derivative, χω is the characteristic function of ω, and u0, u1, θ0 are initial data in

a suitable space.

1.1. The control problem

We introduce the Hilbert space

H :=
(
H2(Ω) ∩H1

0 (Ω)
)
× L2(Ω) × L2(Ω)

equipped with the inner product

〈z, s〉H :=

∫

Ω

(∆z1 ∆s1 + z2 s2 + z3 s3) dx ,

where z := [z1, z2, z3]
>, s := [s1, s2, s3]

> and M> is the transpose of the related

matrix M . The induced norm is denoted by ‖ · ‖H . Putting v := ut and

z(t) := [u(t), v(t), θ(t)]>, z0 := [u0, u1, θ0]
>,

problem (1.1) can be rewritten as an abstract linear evolution equation in H of the

form





zt = A z +B f in Q

z(0) = z0 in Ω

z1 = 0, ∆z1 = 0, z3 = 0 on Σ

(1.2)

where we set the operator A : D(A) → H by

A =




0 I 0

−∆2 0 −∆

0 ∆ ∆


 (1.3)

with domain

D(A) =
{
z ∈ H : ∆u, v, θ ∈ H2(Ω) ∩H1

0 (Ω)
}
.

The initial data are z0 ∈ H , the control operator B : L2(ω) → H is defined as

B f =
[
0, 0, χω f

]>
. (1.4)

In our paper we present some results about the controllability of trajectories at

any time T > 0 for thermoelastic model (1.1). This problem can be formulated in

the following way. Given ẑ0 ∈ H and f̂ ∈ L2(ω × (0, T )), let ẑ = z(T ; ẑ0, f̂) be the

related solution for PDE system (1.2). Given any different initial data z̃0 ∈ H , we

look for a control function f̃ ∈ L2(ω × (0, T )) such that

z(T ; z̃0, f̃) = ẑ.
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We can solve this problem as follows. We consider system (1.2) with initial data

z0 := ẑ0 − z̃0 and f := f̂ − f̃ . We try to find a control function f ∈ L2(ω × (0, T ))

such that the solution

z(T ; z0, f) = 0 ,

or equivalently, such that the state z0 can be transferred to 0 at the time T .

Definition 1.1. The PDE system (1.2) is said to be null controllable, if for any T >

0 and arbitrary initial data z0 ∈ H , there exists a control function f ∈ L2(ω×(0, T ))

such that the corresponding solution z(t; z0, f) to (1.2) satisfies

z(T ; z0, f) = 0 . (1.5)

Thus, the above problem of the controllability of trajectoires corresponds to

prove the null controllability for system (1.2).

Our aim is: for each T > 0, we look for a control f which steers the solution

z of (1.2) to zero, and such that its L2(ω × (0, T ))-measurement is minimal with

respect to all such steering controls. This is to say to look for the solution of the

minimum problem

min
f∈V

J(f), J(f) :=
1

2
‖f‖2

L2(ω×(0,T )) , (1.6)

where

V :=
{
f ∈ L2(ω × (0, T )) : the solution z of (1.2) satisfies (1.5)

}
.

It is easy to verify that V is a convex, closed, non-empty subset of L2(ω × (0, T ))

and then the minimum problem (1.6) has a unique solution. Nevertheless, V is

not a vector space and we cannot construct the optimality system related to the

minimum problem (1.6). We choose to replace the cost functional J(f) with the

penalized functional

Jk(f) :=
1

2

∫ T

0

‖f(t)‖2
L2(ω)dt+

k

2
‖z(T ; z0, f) − zT ‖2

H , (1.7)

with k > 0 “large”, and to look for the solution of

min
f∈L2(ω×(0,T ))

Jk(f) . (1.8)

In this way the constraint is penalized inside the functional and we look for the

minimum on the vector space L2(ω× (0, T )). This choice enables us to reformulate

the minimum problem (1.8) in terms of an optimality system.

The question of the null controllability for thermoelastic plates has already

received attention in the literature (see Sec. 1.2). In Ref. 8 the approximation, based

on FEM, is introduced for thermoelastic systems with boundary control and point

observation. No numerical results are known about the approximation of control

problems for thermoelastic system.
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Our paper contains the numerical implementation of the theoretical result pre-

sented in Ref. 5, in particular we focus our attention on both the construction of the

cost functional Jk(f) (as defined in (1.7)) and numerical solution of the minimum

problem (1.8) in order to choose the control f in two-dimensional geometries.

Being the state equation (1.2) linear and the cost functional quadratic, instead

of solving directly a minimum problem on the control f (say minf Jk(f)), we solve

the equivalent problem

min
ζT

J∗
k (ζT ) , (1.9)

obtained by applying Convex Duality Theory.11,29,30 The dual problem (1.9), that

can be viewed as an identification problem for the final data (ζT ∈ H) of a backward

in time adjoint system,23 is better suited to numerical calculations than the original

one.

To solve the minimum problem (1.9) we extend the ideas used by Glowinski and

Lions16 in the context of linear diffusion equations to the thermoelastic system. We

rewrite the minimum problem in a variational form and we solve it by the Conjugate

Gradient (CG) method. At each CG-iteration, both a primal system (1.2) and an

adjoint system to (1.2) have to be solved.

Spectral Element Methods15 are used to approximate the solution in space vari-

ables, while classical finite difference schemes like Newmark and Crank-Nicolson27

are used for time advancing. The fourth-order term in the first equation of sys-

tem (1.2) is faced by a mixed approach, for which a new unknown w := −∆u is

introduced in the system.

In this paper we show several numerical results obtained through the approx-

imations described above. We refer to a future work14 for both the study of the

discretized problem and the convergence of the approximate solution to the solution

of (1.2).

The paper is organized as follows. In Sec. 2 we sketch the modelling procedure

of a thin homogeneous thermoelastic plate subject to thermal deformations. The

resulting model is derived in the framework of the well-established theory of heat

flow due to Fourier and according to the standard approximation for the Kirchhoff

plate.

Section 3 contains the formulation of the dual problem and the construction

of the optimality systems. Finally, Secs. 4 and 5 are devoted to the numerical

approximation of the control problem and numerical results, respectively.

1.2. Literature

Questions related to controllability of thermoelastic plates have attracted consid-

erable attention in recent years.

In (1.1)1 the plate component does not contain a rotational inertia term which

otherwise gives hyperbolic characteristics. Then, underlying dynamics of thermoe-

lastic model, system (1.1) is governed by analytic semigroups (cf. Refs. 1, 9 and
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21). Owing to smoothing effect associated to analyticity, the exact controllability for

thermoelastic plates has been proved for large spaces of controls. Avalos2 shows the

exact controllability at any time T > 0 for thermoelastic plates, with and without

rotational inertia,




utt − γ∆utt + ∆2u+ α∆θ = f1 in Q

θt − ∆θ + σ θ − α∆ut = f2 in Q

u = 0,
∂u

∂ν
= 0, θ = 0 on Σ

u(0) = u0 , ut(0) = u1 , θ(0) = θ0 on Ω

(1.10)

in the absence of control forces (f1 ≡ 0), and by means a control f2 ∈
L2(0, T ;H−1(Ω)) in the whole Ω. In the control space L2(0, T ;H−1(Ω)) this re-

sult is optimal.

De Teresa and Zuazua10 study the thermoelastic plate system (1.10) in the

presence of a control function f1 ∈ L1(0, T ;H−1(Ω)), with supp f1(·, t) ⊂ ω ⊂ Ω, in

the absence of heat sources (f2 ≡ 0), and with σ ≡ 0 and γ 6= 0. Clamped boundary

conditions are imposed on u. By using both a decoupling result (see Ref. 17) for

three-dimensional thermoelasticity, and a variational approach to controllability

(see Ref. 12), and some observability inequalities for the system of thermoelastic

plate, a result of exact-approximate controllability is obtained. In other words, by

the geometric control conditions introduced in Ref. 4, they find sufficient conditions

on control time T and control region ω such that for every initial and final data

(u0, u1, θ0), (v0, v1, ϑ0), belonging to the space of states where system (1.10) evolves,

and for every ε > 0, there exists a control function f1 such that the solution of (1.10)

satisfies

u(T ) = v0 , ut(T ) = v1 , ‖θ(T ) − ϑ0‖L2(Ω) ≤ ε .

Lasiecka and Triggiani20 consider the controllability problem for the thermoe-

lastic plate equation, without rotational inertia term, with hinged mechanical and

Dirichlet thermal boundary conditions, under the influence of either mechanical or

thermal control on the whole domain, namely




utt + A2 u−A θ = g1 in Q

θt + A θ + Aut = g2 in Q

u = 0, Au = 0, θ = 0 on Σ

u(0) = u0 , ut(0) = u1 , θ(0) = θ0 on Ω ,

where A is a strictly positive, self-adjoint partial differential operator with compact

resolvent, and either (g1, g2) = (0, h) or (g1, g2) = (k, 0), with h, k ∈ L2(Q) and

h, k 6≡ 0. With respect to result of Ref. 2, in this paper the set of controls is taken in

the narrower space L2(Q) and the null controllability is proved for any T > 0. This

result has been complemented by providing optimal blow-up estimates of norms of

fast controls in Refs. 3 and 31.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
04

.1
4:

70
1-

73
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
A

` 
D

E
G

L
I 

ST
U

D
I 

D
I 

B
R

E
SC

IA
 -

 F
A

C
U

L
T

Y
 O

F 
E

N
G

IN
E

E
R

IN
G

 L
IB

R
A

R
Y

 o
n 

10
/2

9/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



April 23, 2004 10:49 WSPC/103-M3AS 00341

706 P. Gervasio & M. G. Naso

The case where g1 ≡ 0 and the control function g2 is such that supp g2(·, t) ⊂
ω ⊂ Ω has been tackled by Benabdallah and Naso in Ref. 5. By applying an

iterative method and thanks to the observability estimates on the eigenfunctions

of the Laplacian operator (see Ref. 22), the null controllability for system (1.1) is

proved at any time T > 0 by L2(ω × (0, T ))-thermal control. In this proof both

the analyticity property of semigroup associated to the thermoelastic system (see

Ref. 21) and the commutative property of the operators, which comes from the

hinged boundary conditions, are crucial.

2. Preliminary Results

2.1. The plate model

We consider a plate of uniform thickness d. When the plate is in equilibrium, we

assume it occupies a fixed bounded domain D ⊂ R3 placed in a reference frame

x := (x1, x2, x3). The plate has a middle surface midway between its faces in a

region Ω ⊂ R2 of the plane x3 = 0. We suppose that the plate is hinged along its

Lipschitz boundary ∂Ω.

The material composing the plate is homogeneous and (elastically and ther-

mally) isotropic, so that its stress–strain law is given by

T(x, t) = L0 [ε(x, t) − α0 θ(x, t) I] , (2.1)

where the elastic strain ε, the stress T are second-order tensors, I is the second-

order identity tensor, and L0 is a fourth-order tensor. The last term in (2.1) rep-

resents the thermal strain and the positive constant α0 is called the coefficient of

thermal expansion. Moreover, θ := Θ − Θ0 denotes the temperature variation with

respect to the reference value Θ0. According to this constitutive equation, in Ref. 19

a mathematical model for a Kirchhoff thermoelastic plate is derived.

Let q: Ω × R → R3 be the mean heat flux vector in the plate. Fourier law of

the heat conduction for a thermally isotropic body in the approximation theory is

written as

q(x, t) = −k0 ∇θ(x, t) , (2.2)

where the positive constant k0 denotes the coefficient of thermal conductivity.

The usual energy balance equation is replaced by

ρ0 h(x, t) = −∇ · q(x, t) + ρ0 r(x, t) , (2.3)

where h is the thermal power, which denotes the rate of heat absorption per unit

of volume, ρ0 > 0 is the mass density in the reference initial configuration, and r is

the external heat supply per unit of mass. Neglecting any hereditary contribution

to mechanical dissipation, h is described by the following linearized constitutive

equation (see Ref. 13):

ρ0 h(x, t) = Θ0 B: εt(x, t) + ρ0 cv θt(x, t) , (2.4)
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where B is a symmetric second-order tensor, cv > 0 is the specific heat of the body

and “:” represents the tensorial scalar product.

The motion equation for the bending component u, via a variational formu-

lation, can be obtained by application of the Principle of Virtual Work. Finally,

substituting (2.2) and (2.4) into (2.3), and paralleling the procedures of Ref. 19 in

the framework of thermoelastic materials, we obtain system (1.1).

2.2. Existence results

We define the positive self-adjoint operator

Ah := −∆h with A : D(A) = H2(Ω) ∩H1
0 (Ω) → L2(Ω) ,

so that

A2 h = ∆2h with D(A2) =
{
h ∈ H4(Ω) : h|∂Ω = 0, ∆h|∂Ω = 0

}
.

Theorem 2.1. Let T > 0 be arbitrary and f ∈ L2(ω× (0, T )). For any initial data

(u0, u1, θ0) ∈ H, there exists a unique solution to problem (1.1), such that

(u, ut, θ) ∈ L2(0, T ;H3(Ω) ∩H1
0 (Ω) ×H1

0 (Ω) ×H1
0 (Ω)) .

Proof. The proof follows the same guidelines given in Refs. 25 and 26, where

different regularity assumptions are taken on both f and initial data. Here we

report only the part of the proof to obtain a priori estimate on the energy.

Multiplying (1.1)1 for ut and (1.1)2 for θ, integrating in Ω, we found

d

dt
E(t) = −‖(−∆)1/2θ(t)‖2 + 〈f(t), θ(t)〉 ≤ −

(
1 − ε

2

)
‖(−∆)1/2θ(t)‖2 +

1

2ε
‖f(t)‖2 ,

where

E(t) :=
1

2

[
‖(−∆)u(t)‖2 + ‖ut(t)‖2 + ‖θ(t)‖2

]
.

We consider

d

dt
〈(−∆)u, ut〉 = 〈(−∆)u, utt〉 + ‖(−∆)1/2ut‖2

= −‖(−∆)3/2u‖2 + ‖(−∆)1/2ut‖2 + 〈(−∆)1/2θ, (−∆)3/2u〉

≤ −1

2
‖(−∆)3/2u‖2 + ‖(−∆)1/2ut‖2 +

1

2
‖(−∆)1/2θ‖2 (2.5)

and

d

dt
〈θ, ut〉 = 〈θt, ut〉 + 〈θ, utt〉

= −‖(−∆)1/2ut‖2 + ‖(−∆)1/2θ‖2 − 〈(−∆)θ, ut〉 − 〈θ, (−∆)2u〉 + 〈f, ut〉

≤ −1

2
‖(−∆)1/2ut‖2 +

ε

2
‖(−∆)3/2u‖2 +

(
3

2
+

1

2ε

)
‖(−∆)1/2θ‖2 + 〈f, ut〉
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≤ −1

4
‖(−∆)1/2ut‖2 +

ε

2
‖(−∆)3/2u‖2 +

(
3

2
+

1

2ε

)
‖(−∆)1/2θ‖2

+
1

2δ
‖f‖2 , (2.6)

with δ > 0. Let us introduce the functional

L(t) := N E(t) + 〈ut, (−∆)u〉 +M〈θ, ut〉

with N,M > 0. We have

d

dt
L ≤ N

[
−1

2
‖(−∆)1/2θ‖2 +

1

2
‖f‖2

]
− 1

2
‖(−∆)3/2u‖2 + ‖(−∆)1/2ut‖2

+
1

2
‖(−∆)1/2θ‖2 − M

4
‖(−∆)1/2ut‖2 +

ε̄

2
‖(−∆)3/2u‖2

+M

(
3

2
+
M

2ε̄

)
‖(−∆)1/2θ‖2 +

M

2δ
‖f‖2

≤ −
(

1

2
− ε̄

2

)
‖(−∆)3/2u‖2 −

(
M

4
− 1

)
‖(−∆)1/2ut‖2

−
[
N

2
− 1

2
− 1

2

(
M2

ε̄
+ 3

)]
‖(−∆)1/2θ‖2 +

(
N

2
+
M

2δ

)
‖f‖2 .

We set

E1(t) :=
1

2

[
‖(−∆)3/2u(t)‖2 + ‖(−∆)1/2ut(t)‖2 + ‖(−∆)1/2θ(t)‖2

]
,

and choose

ε̄ < 1, M > 4, N > 4 +
M2

ε̄
.

Then, there exists c0 > 0 such that

d

dt
L ≤ −c0 E1 +

(
N

2
+
M

2δ

)
‖f‖2 .

If we choose N such that N > max(1,
√
M2 + 1) there exist two positive constants

c1 and c2 such that

c1 E(t) ≤ L(t) ≤ c2 E(t) .

Thus, we obtain

E(t) + C

∫ t

0

E1(τ) dτ ≤ E(0) + C

∫ t

0

‖f(τ)‖2 dτ

and our conclusion follows.

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
04

.1
4:

70
1-

73
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
A

` 
D

E
G

L
I 

ST
U

D
I 

D
I 

B
R

E
SC

IA
 -

 F
A

C
U

L
T

Y
 O

F 
E

N
G

IN
E

E
R

IN
G

 L
IB

R
A

R
Y

 o
n 

10
/2

9/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



April 23, 2004 10:49 WSPC/103-M3AS 00341

Controllability of Trajectories for Euler–Bernoulli Thermoelastic Plates 709

3. Formulation of the Controllability Problem

Let us introduce the operator Lt : L2(ω × (0, T )) → H defined by

Lt f :=

∫ t

0

eA(t−s)B f(s) ds , ∀ t ∈ [0, T ] . (3.1)

Suppose that the null controllability property, as defined in Definition 1.1, holds

true for system (1.2).

Remark 3.1. In terms of the previous notation, the null controllability property

is equivalent to the statement that

Im eA T ⊂ ImLT .

This containment is in turn equivalent to establishing the observability inequality

(see for instance Ref. 32):

∃ CT > 0 : ‖eA∗T ζT ‖2
H ≤ CT ‖L∗

T ζT ‖2
L2(ω×(0,T )), ∀ ζT ∈ H , (3.2)

where

L∗
T : H −→ L2(ω × (0, T ))

ζT 7−→ B∗ eA∗(T−·) ζT ,
(3.3)

and A∗ and B∗ are the adjoint operators of A and B, respectively.

Remark 3.2. It is proved that the observability constant CT = O(T−5) is optimal

(see Refs. 3 and 31).

3.1. The dual problem and the optimality system

The minimum problem (1.8) is solved by the duality theorem of Fenchel–

Rockafeller.11,29,30

The idea is to construct the “optimality system” equivalent to the minimum

problem (1.8), whose solution immediately gives the optimal control fk.

To this aim we introduce the functionals F : L2(ω× (0, T )) → R and Gk : H →
R, such that

F (f) :=
1

2
‖f‖2

L2(ω×(0,T )) , (3.4)

Gk(LT f) :=
k

2
‖z(T ; z0, f) − zT ‖2

H =
k

2
‖LT f + eA T z0 − zT ‖2

H . (3.5)

We set

Jk(fk) := inf
f∈L2(ω×(0,T ))

Jk(f) = inf
f∈L2(ω×(0,T ))

[F (f) +Gk(LT f)]

J∗
k (ζT

k ) := inf
ζT ∈H

J∗
k (ζT ) = inf

ζT ∈H

[
F ∗(L∗

T ζT ) +G∗
k(−ζT )

]
, (3.6)
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where F ∗ and G∗
k are the conjugate functions of F and Gk, respectively, and L∗

T

is defined in (3.3). We denote by ζ(t) = e(T−t)A∗

ζT the solution of the following

adjoint system with respect to (1.1):





ζt = −A∗ ζ in Q

ζ(T ) = ζT in Ω

ζ1 = 0, ∆ζ1 = 0, ζ3 = 0 on Σ,

(3.7)

where

A∗ =




0 −I 0

∆2 0 ∆

0 −∆ ∆




and ζT := [ζT
1 , ζ

T
2 , ζ

T
3 ]> ∈ H , ζ := [ζ1, ζ2, ζ3]

> ∈ D(A∗). By simple calculation

D(A∗) = D(A) holds.

Moreover, by putting

ξ(x, t) = ζ(x, T − t) , (3.8)

system (3.7) is equivalent to find ξ := [ξ1, ξ2, ξ3]
> ∈ D(A):





ξt = A∗ ξ in Q

ξ(0) = [ζT
1 , −ζT

2 , ζ
T
3 ]> in Ω

ξ1 = 0, ∆ξ1 = 0, ξ3 = 0 on Σ,

(3.9)

or, again, to find [ϕ, ϕt, ψ]> ∈ D(A):





ϕtt + ∆2ϕ+ ∆ψ = 0 in Q

ψt − ∆ψ − ∆ϕt = 0 in Q

ϕ = 0 , ∆ϕ = 0 , ψ = 0 on Σ

ϕ(0) = ζT
1 , ϕt(0) = −ζT

2 , ψ(0) = ζT
3 in Ω .

(3.10)

By considering the homogeneous problem (3.10), with initial data [ϕ0, ϕ1, ψ0]
> in

H , inequality (3.2) is equivalent to (see Refs. 2, 5 and 20)

∃ CT > 0 : ‖[ϕ(T ), ϕt(T ), ψ(T )]>‖2
H ≤ CT ‖ψ‖2

L2(ω×(0,T )) (3.11)

for any solution [ϕ(t), ϕt(t), ψ(t)]> of problem (3.10).

By application of the duality theorem of Fenchel–Rockafeller, we obtain the

so-called conditions of optimality

Jk(fk) = −J∗
k (ζT

k ), L∗
T ζT

k = F ′(fk), −ζT
k = G′

k(LT fk) . (3.12)

Let h̃ := ĥ + h0 and ĥ, h0 be in H . For any h ∈ H , the conjugate function G∗
k of

Gk is

G∗
k(h) = sup

ĥ∈H

[
〈h, ĥ〉H − k

2
‖ĥ + h0‖2

H

]

= −〈h,h0〉H + sup
h̃∈H

[
〈h, h̃〉H − k

2
‖h̃‖2

H

]

︸ ︷︷ ︸
:=H(h̃)

= −〈h,h0〉H +
1

2k
‖h‖2

H
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since H′(h̃) = 0 when h̃ =
1

k
h. Considering ĥ = LT fk and h0 = eA T z0 − zT , we

obtain

G∗
k(h) = −〈h, eA T z0 − zT 〉H +

1

2k
‖h‖2

H . (3.13)

By integrating by parts, the functional J∗
k (ζT ) becomes

J∗
k (ζT ) : = F ∗(L∗

T ζT ) +G∗
k(−ζT )

=
1

2

∫ T

0

‖B∗ ζ‖2
L2(ω) dt+ 〈ζ(0), z0〉H − 〈ζT , zT 〉H +

1

2k
‖ζT ‖2

H .

Recalling definition (1.4) of the operator B, it holds

J∗
k (ζT ) =

1

2

∫ T

0

‖ζ3‖2
L2(ω) dt+ 〈ζ(0), z0〉H − 〈ζT , zT 〉H +

1

2k
‖ζT ‖2

H .

Remark 3.3. Since we are interested to study the null controllability problem, the

term zT is equal to zero and the dual functional becomes

J∗
k (ζT ) =

1

2

∫ T

0

‖ζ3‖2
L2(ω) dt+ 〈ζ(0), z0〉H +

1

2k
‖ζT ‖2

H . (3.14)

From observability inequality (3.11), rewritten as

‖ζ(0)‖2
H ≤ CT

∫ T

0

‖ζ3‖2
L2(ω) dt , (3.15)

and Young inequality, we find that for any δ > 0

J∗
k (ζT ) ≥

(
1

2CT
− δ

)
‖ζ(0)‖2

H − Cδ‖z0‖2
H +

1

2k
‖ζT ‖2

H , ∀ k > 0 , (3.16)

so that the functional J∗
k (ζT ) is coercive. Moreover, it is convex and continuous,

then the minimum problem minζT J∗
k (ζT ) admits a unique solution, denoted by ζT

k .

By both conditions of optimality (3.12) and definitions (3.4)–(3.5), we get

L∗
T ζT

k = F ′(fk) = fk

−ζT
k = G′

k(LT fk) = k
(
LT fk + eA T z0 − zT

)
= k[z(T ; z0, fk) − zT ] ,

and recalling that L∗
T ζT

k = ζk3 and zT = 0, we have

fk = ζk3 and ζT
k = −k z(T ; z0, fk) . (3.17)

By setting zk(T ) := z(T ; z0, fk), from (3.17) we obtain

‖zk(T )‖H =
1

k
‖ζT

k ‖H . (3.18)

By considering (3.7) with ζT ≡ 0, we find that ζ(t) ≡ 0, for any t ∈ [0, T ]. This

implies that (3.14) evaluated for ζT ≡ 0 becomes J∗
k (0) = 0, and recalling (3.6) we

obtain

J∗
k (ζT

k ) ≤ J∗
k (0) = 0 , for any k > 0 ,
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and, from the following inequalities
∫ T

0

∫

ω

|ζ3k(x, t)|2 dx dt ≤ −2〈ζk(0), z0〉H − 1

k
‖ζT

k ‖2
H

≤ 2‖ζk(0)‖H ‖z0‖H

≤ 2

[
CT

∫ T

0

∫

ω

|ζ3k(x, t)|2 dx dt
]1/2

‖z0‖H

we have

‖ζ3k‖L2(ω×(0,T )) =

[∫ T

0

∫

ω

|ζ3k(x, t)|2 dx dt
]1/2

≤ 2C
1/2
T ‖z0‖H . (3.19)

By (3.19), ζ3k is bounded in L2(ω × (0, T )), and there exists a subsequence

(ζ3kn
) such that

ζ3kn
⇀ f in L2(ω × (0, T )) .

Then, f satisfies the same previous estimate (3.19) and it is chosen as the control

function. We observe that ‖zkn
(t)‖H is bounded in (0, T ). In fact

‖zkn
(t)‖2

H ≤ ‖eAt z0‖2
H +

∥∥∥∥
∫ t

0

eA(t−τ)B ζ3kn
dτ

∥∥∥∥
2

H

≤ (1 + 4CT ) ‖z0‖2
H .

Thus, we can extract a subsequence zknm
such that

zknm
⇀ z in H, a.e. t ∈ (0, T ) . (3.20)

Recalling that

‖z(T )‖H ≤ lim inf
k→∞

‖zk(T )‖H = 0

we find z(T ) = 0.

Finally, given k, the optimality system for problem (1.8) follows from (3.17) and

it reads 




zt = A z +B ζ3 in Ω × (0, T )

z(0) = z0 in Ω

z1 = 0, ∆z1 = 0, z3 = 0 on Σ

(3.21)





ζt = −A∗ ζ in Ω × (0, T )

ζ(T ) = −k z(T ; z0, ζ3) in Ω,

ζ1 = 0, ∆ζ1 = 0, ζ3 = 0 on Σ .

(3.22)

The optimal control fk is given by χωζ3 where ζ3 is the third component of the

vector function ζ obtained by solving (3.21)–(3.22).
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The next step is to solve the optimality system. We introduce the operator

Λ : H → H such that

ΛζT := LTL
∗
T ζT = z(T ; z0, ζ3) − eAT z0 , (3.23)

and the identity operator I , so that the solution of the optimality system (3.21)–

(3.22) satisfies the functional equation

(k−1I + Λ)ζT = −eAT z0 . (3.24)

Problem (3.24) admits the following variational formulation:

find ζT ∈ H : 〈(k−1I + Λ)ζT ,ηT 〉H = 〈−eAT z0,ηT 〉H ∀ ηT ∈ H . (3.25)

By defining the bilinear form ak : H ×H → R:

ak(ζT ,ηT ) := 〈ΛζT ,ηT 〉H + k−1〈ζT ,ηT 〉H (3.26)

and the linear functional L : H → R :

L(ηT ) := 〈−eATz0,ηT 〉H , (3.27)

problem (3.25) reads:

find ζT ∈ H : ak(ζT ,ηT ) = L(ηT ) ∀ ηT ∈ H . (3.28)

We can apply the Lax–Milgram lemma to problem (3.28) (the space H is a

Hilbert space, the bilinear form ak is continuous and coercive, the linear functional

L is continuous, the operator Λ is self-adjoint and nonnegative definite, cf. for

instance Ref. 32) and conclude that it has a unique solution ζT . Moreover, there

exists a positive constant C such that:

‖ζT ‖H ≤ C‖eAT z0‖H . (3.29)

Remark 3.4. By 〈ΛζT , ζT 〉H = ‖ζ3‖L2(ω×(0,T )) and by both (3.13) and (3.14), it

holds

J∗
k (ζT ) =

1

2
〈Λζ

T , ζT 〉H + 〈ζT , eAT z0〉H +
1

2k
‖ζT ‖H . (3.30)

We recognize that minimizing (3.30) is equivalent to solve the variational equation

(3.28).

Now we can summarize the steps to find the solution and the control for problem

(1.2) in the following way:

(1) solve problem (3.28) to find ζT (this is equivalent to solve the optimality system

(3.21)–(3.22))

(2) solve the adjoint system (3.7) to find ζ

(3) set f = ζ3
(4) solve the primal system (1.2) to find z.
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Remark 3.5. From the computational point of view the most heavy step is the

first. Problem (3.28) is solved by the Conjugate Gradient method27, an iterative

method that, under suitable assumptions on the bilinear form ak, converges to the

solution in a finite number of iterations and it requires to solve a primal and an

adjoint system at each iteration.

Remark 3.6. In view of (3.8), for given initial data and external forces, both prob-

lem (3.7) and (1.2) are of the same type. Their numerical approximation constitutes

the computational kernel of the whole minimization procedure.

The following section is devoted to the numerical approximation of problem

(3.26)–(3.28) and to the numerical approximation of a problem like (1.1) with a

given right-hand side f .

4. Numerical Approximation

In this section we briefly describe the numerical methods used to discretize problems

(3.25), (3.7) and (1.2).

Given an initial guess (ζT )(0) ∈ H , the CG algorithm iteratively constructs a

sequence (ζT )(n) ∈ H , that converges, for n = 1, 2, . . ., to the solution ζT of (3.26)–

(3.28). The most expensive step of a CG-iteration is the evaluation of a function

q ∈ H such that

〈q,ηT 〉H = ak(p,ηT ) ∀ ηT ∈ H , (4.1)

given p ∈ H .

This is equivalent to:

• given p ∈ H , compute the solution σ = [σ1, σ2, σ3]
> of






σt = −A∗ σ in Ω × (0, T )

σ(T ) = p in Ω ,

σ1 = 0, ∆σ1 = 0, σ3 = 0 on Σ

(4.2)

• extract the third component σ3 of σ

• compute the solution s of





st = A s +B σ3 in Ω × (0, T )

s(0) = s0 in Ω

s1 = 0, ∆s1 = 0, s3 = 0 on Σ

(4.3)

• set q = s(T ) +
1

k
p.
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Then, the CG algorithm to solve (3.28) reads:

find q : 〈q,ηT 〉H = ak((ζT )(0),ηT ) ∀ ηT ∈ H

set r(0) = e−AT z0 − q

set p(0) = r(0)

for n ≥ 0

find q(n) : 〈q(n),ηT 〉H = ak(p(n),ηT ) ∀ ηT ∈ H

αn = 〈r(n), r(n)〉H/〈q(n),p(n)〉H

(ζT )(n+1) = (ζT )(n) + αnp(n)

r(n+1) = r(n) − αnq(n)

βn = 〈r(n+1), r(n+1)〉H/〈r(n), r(n)〉H

p(n+1) = r(n+1) + βnp(n)

(4.4)

Our aim now is to solve numerically both systems (4.2) and (4.3). We note that

system (4.2) is like (3.7) while system (4.3) is like (1.2), and in view of Remark

3.6 they can be viewed as particular cases of problem (1.1), so that we focus our

attention on the approximation of thermoelastic system (1.1) with f given.

Remark 4.1. In the next sections we describe the approximation used, but we refer

to a work in progess14 for a detailed analysis of the convergence of the numerical

solution to the continuous one.

4.1. Approximation of the thermoelastic system

We introduce the following weak formulation of problem (1.1) for f ∈ L2(ω×(0, T ))

and [u0, u1, θ0]
> ∈ H given.

For any t ∈ (0, T ] find z(t) = [u(t), ut(t), θ(t)]
> such that






d2

dt2
(u(t), ϕ) + (∆u(t),∆ϕ) − (∇θ(t),∇ϕ) = 0 ∀ ϕ ∈ H2(Ω) ∩H1

0 (Ω)

d

dt
(θ(t), ψ) + (∇θ(t),∇ψ) + (∇ut(t),∇ψ) = (χωf, ψ) ∀ ψ ∈ H1

0 (Ω)

u(0) = u0, v(0) = u1, θ(0) = θ0 in Ω,

(4.5)

where (·, ·) denotes the L2(Ω) inner product. By Theorem 2.1, problem (4.5) is

well-posed.

The approximation of the term ∆2u in (1.1) by variational numerical methods,

such as finite elements or spectral elements, should require C1-continuity across

the interfaces between the elements, thus the use of Hermite’s elements, which are

cumbersome to implement.
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A classical alternative consists of using a mixed formulation for problem (4.5) in

which we introduce a new unknown w = −∆u. Under the assumption of Theorem

2.1, problem (4.5) reads: for any t ∈ (0, T ] find u(t), w(t), v(t) = ut(t), θ(t) such

that





(∇u(t),∇ϕ1) − (w(t), ϕ1) = 0 ∀ ϕ1 ∈ H1
0 (Ω)

d2

dt2
(u(t), ϕ2) + (∇w(t),∇ϕ2) − (∇θ(t),∇ϕ2) = 0 ∀ ϕ2 ∈ H1

0 (Ω)

d

dt
(θ(t), ϕ3) + (∇θ(t),∇ϕ3) + (∇v(t),∇ϕ3) = (χωf, ϕ3) ∀ ϕ3 ∈ H1

0 (Ω)

u(0) = u0, v(0) = u1, θ(0) = θ0 in Ω

u = 0, w = 0, θ = 0 on Σ.

(4.6)

Problem (4.6) has a unique solution. As a matter of fact, integrating Eq. (4.6)1
by parts in the space variable, we get

(w(t), ϕ1) + (∆u(t), ϕ1) = 0 ∀ ϕ1 ∈ H1
0 (Ω) ∀ t ∈ (0, T ] . (4.7)

Hence w(t) = −∆u(t) ∀ t ∈ (0, T ]. This result joined to equations (4.6)2−5 leads to

system (4.5), which has a unique solution satisfying u ∈ L2(0, T ;H3(Ω) ∩H1
0 (Ω)).

Then w(t) = −∆u(t) is also unique and belongs to L2(0, T ;H1
0(Ω)).

A first step to the approximation of problem (4.6) entails the discretization of

the space variable only. This leads to a system of ordinary differential equations

whose solution [uH(t), wH(t), vH(t), θH(t)]> is an approximation of the exact

solution for each t ∈ (0, T ].

The generalized Galerkin approach is followed to reformulate problem (4.6)

in finite-dimensional spaces. This method is obtained from a Galerkin method in

which each integral is replaced by suitable quadrature formulas. Spectral Element

Methods are employed to choose finite-dimensional spaces, quadrature formulas and

derivatives discretization.

4.2. Spectral element approximation of the space variable

In order to discretize space derivatives we consider the Spectral Element

Methods.24,15 They are among the most commonly used methods for the approx-

imation of partial differential equations which join the high accuracy of Spectral

Methods6,7 with the great versatility of Finite Element Methods. Historically, spec-

tral methods have been associated with Fourier expansion and they have been

applied to approximate periodic functions. However, nowadays they are used in-

differently for periodic as well as general boundary-value problems. For the latter,

algebraic polynomial expansions (especially Chebyshev’s and Legendre’s) are used

in lieu of Fourier trigonometric polynomials. We introduce a conformal, regular and
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quasi-uniform (see, e.g., Ref. 18) partition Th of Ω in Ne quadrilaterals Tk such that

Ω̄ =

Ne⋃

k=1

T̄k , (4.8)

with

h = max
Tk∈Th

hk, hk = diam(Tk), k = 1, . . . , Ne . (4.9)

Let QN(Tk) be the set of algebraic polynomials, defined on Tk, of degree less

than or equal to N in each direction, and set

QH(Ω) = {v ∈ C0(Ω̄) : v|Tk
∈ QN(Tk), ∀ Tk ∈ Th} . (4.10)

Given uH, vH ∈ QH(Ω), we set

(uH, vH)H,Ω =

Ne∑

k=1

(uN,k, vN,k)N,Tk
, (4.11)

where uN,k = uH|Tk
, vN,k = vH|Tk

and where (·, ·)N,Tk
denotes the discrete in-

ner product in L2(Tk), based on the Gauss–Lobatto Legendre (GLL) quadrature

formulas.27

From now on, the index H characterizes the spectral element discretization we

are considering; it stands for the couple H = (h,N), i.e. the mesh size and the

polynomial degree on each element Tk, while NH denotes the total number of grid

points in Ω.

We note that when N = 1, the Spectral Element Methods coincides with Finite

Element Method Q1 with lumped mass matrix.

We define the finite-dimensional spectral element space:

VH = H1
0 (Ω) ∩ QH(Ω) (4.12)

and we look for the finite-dimensional solution [uH, wH, vH, θH]> ∈ [VH]4 approx-

imating the solution of (4.6).

Remark 4.2. For an extensive description of Spectral Methods we refer to Canuto

et al.7 and Bernardi and Maday.6 Here it is worth noting the interpolation error

estimate for spectral elements, which is proved in Ref. 15. For every Tk ∈ Th let

Ik
N : C0(Tk) → QN (Tk) the local Lagrange interpolation operator on the GLL

nodes in Tk, and let IH : C0(Ω) → QH(Ω) the global interpolation operator such

that (IHu)|Tk
= Ik

N (u|Tk
), for every Tk ∈ Th. the following estimate holds:

there exists a constant C > 0 such that

‖u− IHu‖Hm(Ω) ≤ Chmin(N+1,s)−mNm−s‖u‖Hs(Ω) m = 0, 1, (4.13)

provided u ∈ Hs(Ω) with s ≥ 2.

The above estimate characterizes the high properties of approximation of spec-

tral element methods.
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Let {ϕHi}NH

i=1 denote the Lagrange basis of VH with respect to the GLL quadra-

ture nodes in Ω, then uH, wH, vH, θH can be written as expansion of the Lagrange

basis as

uH =

NH∑

i=1

ui(t)ϕHi, wH =

NH∑

i=1

wi(t)ϕHi ,

vH =

NH∑

i=1

vi(t)ϕHi, θH =

NH∑

i=1

θi(t)ϕHi .

(4.14)

Moreover, we set u(t) = [ui(t)]
NH

i=1, w(t) = [wi(t)]
NH

i=1, v(t) = [vi(t)]
NH

i=1, θ(t) =

[θi(t)]
NH

i=1. Lastly we define the mass matrix M

Mij := (ϕHi, ϕHj)H,Ω, i, j = 1, . . . , NH (4.15)

and the stiffness matrix A

Aij := (∇ϕHj ,∇ϕHi)H,Ω, i, j = 1, . . . , NH. (4.16)

The semi-discretization of system (4.6) by Spectral Element Methods reads:

given uH0, uH1, θH0, suitable approximations of u0, u1, θ0, respectively, in VH
and given f ∈ L2(ω × (0, T )), for any t ∈ (0, T ], find u(t), w(t), v(t), θ(t) ∈ RNH

such that





Au(t) − Mw(t) = 0

M
d2

dt2
u(t) + Aw(t) − Aθ(t) = 0

M
d

dt
θ(t) + Aθ(t) + Av(t) = F(t)

u(0) = u0, v(0) = v0, θ(0) = θ0 ,

(4.17)

where u0, v0 and θ
0 are the arrays in RNH whose components are the coefficients of

the expansions of uH0, uH1, θH0 with respect to the Lagrange basis {ϕHi}NH

i=1, while

F(t) is the array whose components are Fi(t) = (χωf(t), ϕHi)H,Ω, for i = 1, . . . , NH.

System (4.17) is a system of ordinary differential equations that we are going

to discretize by Newmark and Crank–Nicolson schemes.28

4.3. Time-advancing

The Newmark method is a widely used method in structural mechanics to integrate

systems of ordinary differential equations of second order in time. Its most impor-

tant feature consists in the fact that it is a non-dissipative scheme, that is it does

not introduce numerical damping. This fact is as much important as one looks for

a null solution, as in the case of null controllability problems.

Let us consider the problem y′′(t) = g(t, y(t), y′(t)), t ∈ (t0, T ), y(t0) = y0,

y′(t0) = y1, where g : [t0, T ]×R×R → R is a continuous function. Given ∆t ∈ (0, T )
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we set t0 = 0 and tn = t0+n∆t, with n = 1, . . . ,M andM =
[

T−t0
∆t

]
. The Newmark

method generates the following sequences:

{
yn+1 = yn + ∆tzn + (∆t)2[αgn+1 + (0.5 − α)gn]

zn+1 = zn + ∆t[βgn+1 + (1 − β)gn]
(4.18)

for n = 0, . . . ,M , where y0 = y0, z
0 = y1, α and β are some non-negative parame-

ters, gn = gn(tn, y
n, zn) and zn is an approximation of y′(tn).

For β = 1/2 and α = 1/4, the Newmark method is second-order accurate in

time and it is unconditionally stable. This popular choice is, however, unsuitable

for long time integration, as the discrete solution may be affected by parasitic

oscillations that are not damped as far as t increases. When this occurs, one can

use α ≥ (β + 1/2)2/4 for a suitable β > 1/2, although the method downgrades to

a first order one.

The Crank–Nicolson scheme is used to approximate first-order ordinary differ-

ential equations like y′(t) = g(t, y(t)), t > 0, y(t0) = y0, where g : [0, T ]×R → R is

a continuous function. It generates the sequence

yn+1 = yn +
∆t

2
(gn + gn+1) (4.19)

for n = 0, . . . ,M , where y0 = y0 and gn = g(tn).

The Crank–Nicolson scheme is second-order accurate in time and it is also un-

conditionally stable.

By approximating the second-order (resp. first-order) time derivative in (4.6)

by the Newmark (resp. Crank–Nicolson) method we have: given u0, v0, θ
0 ∈ RNH

for n ≥ 1 we look for the solution un+1,wn+1, vn+1, θn+1 ∈ RNH of the linear

system






Aun+1 − Mwn+1 = 0 ,

1

α(∆t)2
Mun+1 + Awn+1 − Aθn+1 =

1

α(∆t)2
M(un + ∆tvn) +

1 − α

α
A(θn −wn) ,

Awn+1 +
1

β∆t
Mvn+1 − Aθn+1 =

1

β∆t
Mvn +

1 − β

β
A(θn −wn) ,

Avn+1 +
2

∆t
Mθn+1 + Aθn+1 = Fn+1 + Fn +

2

∆t
Mθn − A(vn + θn) .

The matrix of this linear system is sparse, unsymmetric and independent of

time. Since we have to solve the system many times along the CG-algorithm (we

remember that every evaluation of type (4.1) involves both a backward and a for-

ward in time resolution), it is preferable to factorize the matrix at the beginning of

the process and to solve the triangular systems at each time step, instead of solving

the system by an iterative method.

Following the same notation as introduced in (4.14), the approximation of the
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solution [u, w, v, θ]> of (4.6) is, for any n = 1, . . . ,M ,

u∆t
H (tn) =

NH∑

i=1

un
i ϕHi, w

∆t
H (tn) =

NH∑

i=1

wn
i ϕHi

v∆t
H (tn) =

NH∑

i=1

vn
i ϕHi, θ

∆t
H (tn) =

NH∑

i=1

θn
i ϕHi,

(4.20)

where un = [un
i ]NH

i=1, vn = [vn
i ]NH

i=1, wn = [wn
i ]NH

i=1, θn = [θn
i ]NH

i=1, and then we set

z∆t
H (tn) = [u∆t

H (tn), v∆t
H (tn), θ∆t

H (tn)]>.

Remark 4.3. Recalling also that the control f is unknown for the controllabil-

ity problem and that it is computed through the approximation of the optimality

system (3.21)–(3.22), we will denote the approximation of f(tn) by f∆t
H (tn) for

n = 1, . . . ,M .

5. Numerical Results

First of all we present some numerical results attesting to the high accuracy in

both space and time of the approximation described in Sec. 4. To this aim, given

a function u on Ω and its approximation u∆t
H , we define the relative error in the

discrete L∞-norm, at time T , as

Eu(T ) =
‖u(T ) − u∆t

H (T )‖∞,H,Ω

‖u(T )‖∞,H,Ω
, (5.1)

where ‖u(T )‖∞,H,Ω := maxxi,i=1,...,NH
|u(xi, T )| and xi, i = 1, . . . , NH are the

GLL quadrature nodes in Ω.

We consider problem (1.1) on the computational domain Ω = (0, 0.5)2, ω ≡ Ω

T = 1 , with the initial data:

u0(x, y) = sin(2πx) sin(2πy) ,

u1(x, y) = − sin(2πx) sin(2πy) ,

θ0(x, y) =
1 + 64π4

8π2
sin(2πx) sin(2πy)

(5.2)

and right-hand side

f(x, y, t) =

(
−1 + 64π4

8π2
+ 1 + 64π4 − 8π2

)
sin(2πx) sin(2πy)e−t .

The corresponding exact solution is

u(x, y, t) = sin(2πx) sin(2πy)e−t ,

θ(x, y, t) =
1 + 64π4

8π2
sin(2πx) sin(2πy)e−t.

(5.3)
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Fig. 1. At left, the relative errors in the discrete L∞−norm at time T = 10−3. The time-step is
∆t = 10−5. At right, the relative errors in L∞−norm at time T = 1. The polynomial degree in
each spectral element is N = 12.

We consider problem (1.1) on the computational domain Ω = (0, 0.5)2, ω ≡ Ω

T = 1 , with the initial data:

u0(x, y) = sin(2πx) sin(2πy)

u1(x, y) = − sin(2πx) sin(2πy)

θ0(x, y) =
1 + 64π4

8π2
sin(2πx) sin(2πy)

(5.68)

and right hand side

f(x, y, t) =

(
−1 + 64π4

8π2
+ 1 + 64π4 − 8π2

)
sin(2πx) sin(2πy)e−t .

The corresponding exact solution is

u(x, y, t) = sin(2πx) sin(2πy)e−t

θ(x, y, t) =
1 + 64π4

8π2
sin(2πx) sin(2πy)e−t.

(5.69)

We take a partition of Ω in 2 × 2 squared elements whose side is h = 0.25 and

we choose α = 1/4, β = 1/2 as parameters of the Newmark methods, so that it is

second-order accurate in time.

In Figure 1 (left) we show the space approximation errors on all the component

of the solution, which decays with exponential rate with respect to the polynomial

degree N , for fixed ∆t = 10−5. We note that, for these data, for N ≥ 9 the time-

approximation error prevails over the space-approximation error. In Figure 1 (right)

we show the second-order accuracy of the Newmark/Crank-Nicolson time-advancing

scheme with polynomial degree N = 12.

(a) (b)

Fig. 1. (a) The relative errors in the discrete L∞-norm at time T = 10−3. The time-step is
∆t = 10−5. (b) The relative errors in L∞-norm at time T = 1. The polynomial degree in each
spectral element is N = 12.

We take a partition of Ω in 2 × 2 squared elements whose side is h = 0.25 and

we choose α = 1/4, β = 1/2 as parameters of the Newmark methods, so that it is

second-order accurate in time.

In Fig. 1(a) we show the space approximation errors on all the component of

the solution, which decays with exponential rate with respect to the polynomial

degree N , for fixed ∆t = 10−5. We note that, for these data, for N ≥ 9 the time-

approximation error prevails over the space-approximation error. In Fig. 1(b) we

show the second-order accuracy of the Newmark/Crank–Nicolson time-advancing

scheme with polynomial degree N = 12.

5.1. Test case #1: ω ≡ Ω

We consider the computational domain Ω = (0, 1)2 and w ≡ Ω. The initial data

will be (5.2) or the following:

u0(x, y) = [x(x − 1)y(y − 1)]4 ,

u1(x, y) = −[x(x − 1)y(y − 1)]4 ,

θ0(x, y) = [x(x − 1)y(y − 1)]4 .

(5.4)

In Fig. 2 (resp. Fig. 3) we show the numerical solution of (4.7) without control f

and with initial data (5.2) (resp. (5.4)). For this test case we consider a discretization

in 2 × 2 spectral element of size h = 0.5, polynomial degree N = 9 and we choose

the parameters of the Newmark scheme α = 1/4 and β = 1/2. For initial data

(5.2) we set ∆t = 10−2, while for initial data (5.4) we set ∆t = 10−3 in order to

avoid spurious oscillations due to the choice of α = 1/4 and β = 1/2. The choice

∆t = 10−2 for initial data (5.2) and ∆t = 10−3 for initial data (5.4) will be taken

in this section.

Next, we compare the solution of problem (1.1) with f ≡ 0, that is without

control, with the solution of the controllability problem (1.7) and (1.8), obtained
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Fig. 2. Test case # 1. The approximate solution without control in T = 1 for k = 106 and initial
data (5.68).

5.1. Test case # 1: ω ≡ Ω

We consider the computational domain Ω = (0, 1)2 and w ≡ Ω. The initial data

will be (5.68) or the following ones

u0(x, y) = [x(x− 1)y(y − 1)]4

u1(x, y) = −[x(x− 1)y(y − 1)]4

θ0(x, y) = [x(x− 1)y(y − 1)]4.

(5.70)

In Figure 2 (resp. 3) we show the numerical solution of (4.53) without control

f and with initial data (5.68) (resp. (5.70)). For this test case we consider a dis-

cretization in 2 × 2 spectral element of size h = 0.5, polynomial degree N = 9 and

we choose the parameters of the Newmark scheme α = 1/4 and β = 1/2. For initial

data (5.68) we set ∆t = 10−2, while for initial data (5.70) we set ∆t = 10−3 in

order to avoid spurious oscillations due to the choice of α = 1/4 and β = 1/2. The

choice ∆t = 10−2 for initial data (5.68) and ∆t = 10−3 for initial data (5.70) will

be taken along all this section.

Next, we compare the solution of problem (1.1) with f ≡ 0, that is without con-

trol, with the solution of the controllability problem (1.7) and (1.8), obtained with

various penalization parameters k. To this aim we introduce the discrete counterpart

of ‖z∆t
H (tn)‖H as

‖z∆t
H (tn)‖H,H :=

(
‖w∆t

H (tn)‖2
H,Ω + ‖v∆t

H (tn)‖2
H,Ω + ‖θ∆t

H (tn)‖2
H,Ω

)1/2
. (5.71)

Fig. 2. Test case #1. The approximate solution without control in T = 1 for k = 106 and initial
data (5.2).
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Fig. 3. Test case # 1. The approximate solution without control in T = 1 for k = 106 and initial
data (5.70).

In Table 1 we show the norm (5.71) for both the solution depending on the initial

data (5.68) and the solution depending on the initial data (5.70). From (3.34) it

holds that there exists a positive constant C independent of k such that ‖zk(T )‖H ≤
Ck−1. From Table 1 we can infer that the same relation holds for the approximate

solution z∆t
H . We note that the order of magnitude of the error strongly depends on

the initial data, for the two sets of initial data used there is a difference of about

three orders of magnitude in correspondence of the same penalization parameter

k. In the same table we report the number of CG iterations needed to satisfy the

stopping criterium ‖r(n)‖/‖r(0)‖ < 10−10, being r(n) the residual of equation (3.44)

at the n−th iteration. The number of CG iterations grows like the logarithm of the

penalization parameter k.
In Figures 4 and 5 the norm ‖f∆t

H (t)‖H of the approximation of the control f is

shown. We observe that the functions ‖f∆t
H (t)‖H tend to assume the same behavior

in [0, T ] when k ↗. The discretization parameters and the initial data are those

used for the results of Table 1.

In Figure 6 we show the approximation of the quantity

E∆t
H (T ; z0) =

(∫ T

0

‖f∆t
H (t)‖2

L2(Ω)

)1/2/
‖z0‖H

for different values of T , by suitable quadrature formulas. We observe that the

behavior of E∆t
H (T ; z0) obeys to the theorem given in both Avalos and Lasiecka3

Fig. 3. Test case #1. The approximate solution without control in T = 1 for k = 106 and initial
data (5.4).
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Table 1. Test case #1. Norm of the approximate solutions of (1.1) with and
without control. We show the norm (5.5) of the solution at time T = 1 for
the problem with initial data (5.2) (resp. (5.4)). The discretization parameters
are N = 9, 2 × 2 spectral elements with side h = 0.5 and ∆t = 10−2 (resp.
∆t = 10−3).

Initial data (5.2) Initial data (5.4)

‖z∆t
H (T )‖H,H CG it. ‖z∆t

H (T )‖H,H CG it.

Without control 2.98E-05 – 8.59E-02 –

With control and k = 102 1.83E-05 2 2.43E-02 10

With control and k = 104 4.64E-07 6 3.38E-04 33

With control and k = 106 4.71E-09 9 3.39E-06 50

With control and k = 108 4.71E-11 9 3.39E-08 54

with various penalization parameters k. To this aim we introduce the discrete coun-

terpart of ‖z∆t
H (tn)‖H as

‖z∆t
H (tn)‖H,H :=

(
‖w∆t

H (tn)‖2
H,Ω + ‖v∆t

H (tn)‖2
H,Ω + ‖θ∆t

H (tn)‖2
H,Ω

)1/2
. (5.5)

In Table 1 we show the norm (5.5) for both the solution depending on the initial data

(5.2) and the solution depending on the initial data (5.4). From (3.18) it holds that

there exists a positive constant C independent of k such that ‖zk(T )‖H ≤ Ck−1.

From Table 1 we can infer that the same relation holds for the approximate solution

z∆t
H . We note that the order of magnitude of the error strongly depends on the

initial data, for the two sets of initial data used there is a difference of about

three orders of magnitude in correspondence of the same penalization parameter

k. In the same table we report the number of CG iterations needed to satisfy the

stopping criterium ‖r(n)‖/‖r(0)‖ < 10−10, being r(n) the residual of equation (3.28)

at the nth iteration. The number of CG iterations grows like the logarithm of the

penalization parameter k.

In Figs. 4 and 5 the norm ‖f∆t
H (t)‖H of the approximation of the control f is

shown. We observe that the functions ‖f∆t
H (t)‖H tend to assume the same behavior

in [0, T ] when k increases. The discretization parameters and the initial data are

those used for the results of Table 1.

In Fig. 6 we show the approximation of the quantity

E∆t
H (T ; z0) =

(∫ T

0

‖f∆t
H (t)‖2

L2(Ω)

)1/2/
‖z0‖H

for different values of T , by suitable quadrature formulas. We observe that the

behavior of E∆t
H (T ; z0) obey the theorem given in both Avalos and Lasiecka3 and

Triggiani31, which states that, with reference to the null controllability problem for

the thermoelastic system (1.1) with ω ≡ Ω, it holds

E(T ) := sup
‖z0‖H=1

(∫ T

0

‖f(t; z0)‖2
L2(Ω)

)1/2

= O(T−5/2), (5.6)
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Fig. 4. Test case #1. The norm ‖f∆t
H (t)‖H vs. time t for the initial data (5.2) and ω ≡ Ω. The

discretization parameters are those used for the results of Table 1.
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Fig. 5. Test case #1. The norm ‖f∆t
H (t)‖H vs. time t for the initial data (5.4) and ω ≡ Ω. The

discretization parameters are those used for the results of Table 1.

where f(t; z0) denotes the control obtained by solving (1.1) with initial condition

z0. The results reported in Fig. 6 refer to a penalization parameter k = 106 and a

discretization with 2× 2 squared elements with h = 0.5 and N = 9 and ∆t = 10−2

(resp. ∆t = 10−3) for initial data (5.2) (resp. (5.4)).
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Fig. 6. Test case #1. The function E
∆t
H

(T ; z0) vs. the final time T , compared with the function

T−5/2.
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Fig. 7. Test case # 1. The approximate solution and control in T = 1, for initial data (5.68),
ω ≡ Ω, k = 106. The discretization parameters are those used for the results of Table 1.

(resp. (5.70)). We built a C2(Ω) regularization of the characteristic function χω, in

order to avoid numerical oscillations and very poor numerical solutions.

Also for this test case we consider a discretization in 2×2 spectral element of size

h = 0.5, polynomial degree N = 9 and we choose the parameters of the Newmark

scheme α = 1/4 and β = 1/2. For initial data (5.68) we set ∆t = 10−2, while for

initial data (5.70) we set ∆t = 10−3 in order to avoid spurious oscillations due to

the choice of α = 1/4 and β = 1/2.

As done for the previous test case we compare the solution of problem (1.1) with

f ≡ 0, that is without control, with the solution of the controllability problem (1.7)

and (1.8), obtained with various penalization parameters k. In Table 2 we show

the norm (5.71) and the number of CG iterations needed to satisfy the stopping

criterium ‖r(n)‖/‖r(0)‖ ≤ 10−10. First of all we note that, for k fixed, the norm

‖z∆t
H (T )‖H,H is greater for ω ⊂ Ω than for ω ≡ Ω and the difference is as much as

k is bigger. Even if the theory ensures that there exists a control on ω ⊂ Ω that

put the final state to zero in all the domain Ω, in practice the numerical solution

strongly depends on both the form and amplitude of ω.

We also note that the convergence of CG algorithm is slower when ω ⊂ Ω than when

ω ≡ Ω. In particular the number of CG iterations needed to obtain convergence

varies like
√
k.

In Figure 9 the norm ‖χωf
∆t
H (t)‖H of the approximation of the control f is

shown. We observe that differently from the case ω ≡ Ω, here the functions

Fig. 7. Test case #1. The approximate solution and control in T = 1, for initial data (5.2),
ω ≡ Ω, k = 106. The discretization parameters are those used for the results of Table 1.

Lastly, in Fig. 7 (resp. Fig. 8) we show the approximate solution

[u∆t
H (T ), v∆t

H (T ), θ∆t
H (T )]>

and the control f∆t
H (T ) of the penalized controllability problem with initial data

(5.2) (resp. (5.4)), at time T = 1, for k = 106.
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Fig. 8. Test case # 1. The approximate solution and control in T = 1, for initial data (5.70) and
ω ≡ Ω, k = 106. The discretization parameters are those used for the results of Table 1

Table 2. Test case # 2. Comparison among the solution with and without control. We show the
norm (5.71) of the solution at time T = 1. The discretization parameters are N = 9, 2×2 spectral
elements with side h = 0.5 and ∆t = 10−2 (resp. ∆t = 10−3) for solving with initial data (5.68)
(resp. (5.70)) and ω = (0.3, 0.7)2 (resp. ω = (0.2, 0.5)2).

initial data (5.68) initial data (5.70)

ω = (0.3, 0.7)2 ω = (0.2, 0.5)2

‖z∆t
H (T )‖H,H CG it. ‖z∆t

H (T )‖H,H CG it.

without control 2.98E-05 - 8.59E-02 -

with control and k = 102 2.81E-05 7 5.80E-02 10

with control and k = 104 6.29E-06 46 5.60E-03 50

with control and k = 106 3.03E-07 316 2.90E-04 428

‖χωf
∆t
H (t)‖H,H do not tend to assume the same behavior in [0, T ] when k ↗.

Remark 5.1. At the end of this subsection we want to analyze the norm

‖z∆t
H (T )‖H,H versus both the choice of the domain ω and the penalization pa-

rameter k. We consider the initial data (5.70), k = 102, 104, 106, 108 and

ω = ω0 ≡ Ω, ω = ω1 = (0.1, 0.9)2, ω = ω2 = (0.2, 0.8)2, ω = ω3 = (0.3, 0.7)2,

ω = ω4 = (0.4, 0.6)2. We fix the stopping criterium of the CG algorithm and the

discretization parameters N = 9, h = 0.5 and ∆t = 10−3. From Table 3 we ob-

Fig. 8. Test case #1. The approximate solution and control in T = 1, for initial data (5.4) and
ω ≡ Ω, k = 106. The discretization parameters are those used for the results of Table 1.

5.2. Test case #2: ω ⊂ Ω

We show here some numerical results when the domain ω ⊂ Ω. We consider the

domain Ω = (0, 1)2, ω = (0.3, 0.7)2 (resp. ω = (0.2, 0.5)2) and initial data (5.2)

(resp. (5.4)). We built a C2(Ω) regularization of the characteristic function χω, in

order to avoid numerical oscillations and very poor numerical solutions.

Also for this test case we consider a discretization in 2 × 2 spectral element

of size h = 0.5, polynomial degree N = 9 and we choose the parameters of the

Newmark scheme α = 1/4 and β = 1/2. For initial data (5.2) we set ∆t = 10−2,

while for initial data (5.4) we set ∆t = 10−3 in order to avoid spurious oscillations

due to the choice of α = 1/4 and β = 1/2.

As done for the previous test case we compare the solution of problem (1.1) with

f ≡ 0, that is without control, with the solution of the controllability problem (1.7)

and (1.8), obtained with various penalization parameters k. In Table 2 we show

the norm (5.5) and the number of CG iterations needed to satisfy the stopping

criterium ‖r(n)‖/‖r(0)‖ ≤ 10−10. First of all we note that, for k fixed, the norm

‖z∆t
H (T )‖H,H is greater for ω ⊂ Ω than for ω ≡ Ω and the difference is as much as

k is bigger. Even if the theory ensures that there exists a control on ω ⊂ Ω that

put the final state to zero in all the domain Ω, in practice the numerical solution

strongly depends on both the form and amplitude of ω.

We also note that the convergence of CG algorithm is slower when ω ⊂ Ω

than when ω ≡ Ω. In particular the number of CG iterations needed to obtain

M
at

h.
 M

od
el

s 
M

et
ho

ds
 A

pp
l. 

Sc
i. 

20
04

.1
4:

70
1-

73
3.

 D
ow

nl
oa

de
d 

fr
om

 w
w

w
.w

or
ld

sc
ie

nt
if

ic
.c

om
by

 U
N

IV
E

R
SI

T
A

` 
D

E
G

L
I 

ST
U

D
I 

D
I 

B
R

E
SC

IA
 -

 F
A

C
U

L
T

Y
 O

F 
E

N
G

IN
E

E
R

IN
G

 L
IB

R
A

R
Y

 o
n 

10
/2

9/
12

. F
or

 p
er

so
na

l u
se

 o
nl

y.



April 23, 2004 10:49 WSPC/103-M3AS 00341

Controllability of Trajectories for Euler–Bernoulli Thermoelastic Plates 727

Table 2. Test case #2. Comparison among the solution with and without con-

trol. We show the norm (5.5) of the solution at time T = 1. The discretiza-
tion parameters are N = 9, 2 × 2 spectral elements with side h = 0.5 and
∆t = 10−2 (resp. ∆t = 10−3) for solving with initial data (5.2) (resp. (5.4)) and
ω = (0.3, 0.7)2 (resp. ω = (0.2, 0.5)2).

Initial data (5.2) Initial data (5.4)

ω = (0.3, 0.7)2 ω = (0.2, 0.5)2

‖z∆t
H

(T )‖H,H CG it. ‖z∆t
H

(T )‖H,H CG it.

Without control 2.98E-05 – 8.59E-02 –

With control and k = 102 2.81E-05 7 5.80E-02 10

With control and k = 104 6.29E-06 46 5.60E-03 50

With control and k = 106 3.03E-07 316 2.90E-04 428

0 0.2 0.4 0.6 0.8 1.0

10
-4

10
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10
0

‖
χ

ω
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∆
t

H
(t

)‖
H

t

k = 102

k = 104

k = 106

Fig. 9. Test case #2. The norm ‖χωf∆t
H (t)‖H vs. time t for initial data (5.4) and ω = (0.2, 0.5)2.

The discretization parameters and the initial data are those used for the results of Table 2.

convergence varies like
√
k.

In Fig. 9 the norm ‖χωf
∆t
H (t)‖H of the approximation of the control f is shown.

We observe that different from the case ω ≡ Ω, here the functions ‖χωf
∆t
H (t)‖H,H

do not tend to assume the same behavior in [0, T ] when k increases.

Remark 5.1. At the end of this subsection we want to analyze the norm

‖z∆t
H (T )‖H,H versus both the choice of the domain ω and the penalization pa-

rameter k. We consider the initial data (5.4), k = 102, 104, 106, 108 and

ω = ω0 ≡ Ω, ω = ω1 = (0.1, 0.9)2, ω = ω2 = (0.2, 0.8)2, ω = ω3 = (0.3, 0.7)2,

ω = ω4 = (0.4, 0.6)2. We fix the stopping criterium of the CG algorithm and the

discretization parameters N = 9, h = 0.5 and ∆t = 10−3. From Table 3 we observe

that, when we fix k, the norm ‖z∆t
H (T )‖H,H increases as meas(ω) decreases, and

the increase speed of ‖z∆t
H (T )‖H,H is greater for high values of k.
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Table 3. The norm ‖z∆t
H (T )‖H,H vs. both the choice of the domain

ω and the penalization parameter k. Between brackets the number of
CG-iterations needed to obtain convergence is shown.

k = 102 k = 104 k = 106 k = 108

ω0 2.43E-02 (10) 3.38E-04 (33) 3.39E-06 (50) 3.39E-08 (52)

ω1 2.50E-02 (12) 3.78E-04 (62) 9.32E-06 (427) 1.42E-07 (1661)

ω2 2.87E-02 (11) 1.02E-03 (60) 5.85E-05 (451) 3.50E-06 (5369)

ω3 3.94E-02 (10) 2.47E-03 (47) 1.71E-04 (370) 9.28E-06 (5146)

ω4 6.32E-02 (9) 6.13E-03 (32) 4.42E-04 (231) 1.71E-05 (3916)

0.1 0.2 0.4 0.6 0.8 1
10

-4

10
-2

10
0

10
2

10
4

E
∆

t
H

(T
;z

0
)

initial data (5.2)
initial data (5.4)

T

T−5/2

Fig. 10. Test case #2. The function E
∆t
H

(T ; z0) vs. the final time T , compared with the function

T−5/2, for ω ⊂ Ω.

In Fig. 10 we show the approximation of the quantity E∆t
H (T ; z0), by suitable

quadrature formulas. For ω ⊂ Ω no theoretical results are known. Here we compare

the numerical values with the function T−5/2 and we note that, for the polynomial

initial data (5.4), E∆t
H (T ; z0) grows more than T−5/2. In Fig. 11 we compare the

norm of the components u∆t
H and θ∆t

H of the solution with the norm of the control,

for initial data (5.4), ω = (0.2, 0.5)2, k = 106. Lastly, in Fig. 12 (resp.13) we show

the solution of the penalized controllability problem at time T = 1 with initial data

(5.2) (resp. (5.4)), for k = 106.

5.3. Test case #3: An example of control of trajectories

We take Ω = {(x, y) ∈ R2: x2 + y2 < 1}, ω = {(x, y) ∈ R2 : (x − 0.2)2/0.36 + (y −
0.2)2/0.16 < 1} and T = 1. We look for the numerical solution of the problem of

controllability of trajectories (see Sec. 1.1) with the initial data and the right-hand
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Fig. 11. Test case #2. Comparison between the norm of the component u∆t
H

and θ∆t
H

of the
solution with the norm of the control, for initial data (5.4), ω = (0.2, 0.5)2 , k = 106 .
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Fig. 12. Test case # 2. The approximate solution and control in T = 1 for k = 106 and initial
data (5.68).

We consider a discretization of Ω in 12 spectral elements with N = 8, we take

α = 1/4, β = 1/2 for the Newmark scheme and ∆t = 10−3. The stopping criterium

for the CG algorithm, used to look for the solution and the control of the null

controllability problem, is ‖r(n)‖/‖r(0)‖ < 10−8. For k = 104 the CG algorithm

converges in 223 iterations and, following the same notations used in Section 1.1,

the discrete norm of the approximation of the solution z(T ; z0, f) is ‖z∆t
H (T )‖H,H =

4.09E − 03, while for k = 106 the convergence is attained in 2250 iterations and

‖z∆t
H (T )‖H,H = 4.27−04. In Figure 14 the norm ‖χωf

∆t
H (t)‖H of the approximated

control is shown versus time t, while in Figure 15 the approximation of the solution

z(T ; z0, f) is shown at time T .

6. Conclusions

We have used penalization and duality arguments to construct a cost functional in

order to solve the null controllability problem and the controllability of trajectories

for a thermoelastic plate.

Then, by applying the Conjugate Gradient algorithm, and classical approxi-

mation methods for partial differential equations, like spectral element methods e

finite difference schemes, we have computed the numerical solution and the numer-

ical control. For ω ≡ Ω our numerical results observe theoretical estimates given

in Avalos and Lasiecka3 and Triggiani31 (see (5.72): E(T ) = O(T−5/2)); while for

Fig. 12. Test case #2. The approximate solution and control in T = 1 for k = 106 and initial
data (5.2).

side ẑ0, f̂ , z̃0:

ẑ0 = [φ1(ρ), −φ1(ρ), φ1(ρ)]
>, φ1(ρ) = 250(ρ2 − ρ)4, ρ =

√
x2 + y2 ,

f̂ = 100χω ,

z̃0 = [φ2(ρ), −φ2(ρ), φ2(ρ)]
>, φ2(ρ) = (ρ2 − 1)4 .

(5.7)
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Fig. 13. Test case # 2. The approximate solution and control in T = 1 for k = 106 and initial
data (5.70).

ω ⊂ Ω, for which theoretical results are absent, we see that E∆t
H (T ; z0) grows more

than T−5/2 when T tends to zero.

When ω ≡ Ω and the penalization parameter k tends to infinity, the numerical

control forces very well the solution to the null target at time T .

When ω ⊂ Ω, the norm of the numerical solution at time T tends again to zero

when k tends to infinity, but more slowly. On the other hand, from a practical point
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Fig. 13. Test case #2. The approximate solution and control in T = 1 for k = 106 and initial
data (5.4).

March 23, 2004 14:43 WSPC/INSTRUCTION FILE gn

Approximation of Controllability of trajectories for Euler-Bernoulli thermoelastic plates 31

0
0.5

1

0

0.5

1
−5

0

5

x 10
−6

x
y

0
0.5

1

0

0.5

1
−5

0

5

x 10
−4

x
y

0
0.5

1

0

0.5

1
−1

0

1

x 10
−3

x
y

0
0.5

1

0

0.5

1
−5

0

5

x
y

PSfrag replacements

u∆t
H (T ) ut

∆t
H (T )

θ∆t
H (T ) χωf

∆t
H (T )

Fig. 13. Test case # 2. The approximate solution and control in T = 1 for k = 106 and initial
data (5.70).

ω ⊂ Ω, for which theoretical results are absent, we see that E∆t
H (T ; z0) grows more

than T−5/2 when T tends to zero.

When ω ≡ Ω and the penalization parameter k tends to infinity, the numerical

control forces very well the solution to the null target at time T .

When ω ⊂ Ω, the norm of the numerical solution at time T tends again to zero

when k tends to infinity, but more slowly. On the other hand, from a practical point
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Fig. 14. Test case #3. The norm ‖χωf∆t
H (t)‖H vs. time t (a) and the norms ‖u∆t

H (t)‖H,
‖θ∆t

H (t)‖H (b) for k = 104.

We consider a discretization of Ω in 12 spectral elements with N = 8, we take

α = 1/4, β = 1/2 for the Newmark scheme and ∆t = 10−3. The stopping criterium

for the CG algorithm, used to look for the solution and the control of the null

controllability problem, is ‖r(n)‖/‖r(0)‖ < 10−8. For k = 104 the CG algorithm

converges in 223 iterations and, following the same notations used in Sec. 1.1, the

discrete norm of the approximation of the solution z(T ; z0, f) is ‖z∆t
H (T )‖H,H =

4.09E-03, while for k = 106 the convergence is attained in 2250 iterations and

‖z∆t
H (T )‖H,H = 4.27E-04. In Fig. 14 the norm ‖χωf

∆t
H (t)‖H of the approximated
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Fig. 15. Test case # 3. The approximation of the solution z in T = 1 for k = 106.

of view the use of large k is prohibitive, since the number of Conjugate Gradient

iterations needed to obtain convergence depends on
√
k.

Our future work will be about both the numerical analysis of the approximation

used and improvement of the computational algorithms efficiency.
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Fig. 15. Test case #3. The approximation of the solution z in T = 1 for k = 106.

control is shown versus time t, while in Fig. 15 the approximation of the solution

z(T ; z0, f) is shown at time T .

6. Conclusions

We have used penalization and duality arguments to construct a cost functional

in order to solve the null controllability problem and the controllability of trajec-

tories for a thermoelastic plate. Then, by applying the Conjugate Gradient algo-

rithm, and classical approximation methods for partial differential equations, like

spectral element methods and finite difference schemes, we have computed the

numerical solution and the numerical control. For ω ≡ Ω our numerical results ob-

serve theoretical estimates given in Avalos and Lasiecka3 and Triggiani31 (see (5.6):

E(T ) = O(T−5/2)); while for ω ⊂ Ω, for which theoretical results are absent, we

see that E∆t
H (T ; z0) grows more than T−5/2 when T tends to zero.

When ω ≡ Ω and the penalization parameter k tends to infinity, the numerical

control forces very well the solution to the null target at time T .

When ω ⊂ Ω, the norm of the numerical solution at time T tends again to zero

when k tends to infinity, but more slowly. On the other hand, from a practical point

of view the use of large k is prohibitive, since the number of Conjugate Gradient

iterations needed to obtain convergence depends on
√
k.

Our future work will be about both the numerical analysis of the approximation

used and improvement of the computational algorithms efficiency.
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