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Summary. The virtual control method, recently introduced to approximate
elliptic and parabolic problems by overlapping domain decompositions (see
[7–9]), is proposed here for heterogeneous problems. Precisely, we address
the coupling of an advection equation with a diffusion-advection equation,
with the aim of modelling boundary layers.We investigate both overlapping
andnon-overlapping (disjoint) subdomaindecompositions. In the latter case,
several cost functions are considered and a numerical assessment of our
theoretical conclusions is carried out.

Mathematics Subject Classification (1991):65N30, 65N55, 93C20

1. Introduction

Domain decomposition methods provide a well consolidated approach for
an efficient solution of boundary-value problems. On one hand, they allow
to devise parallel algorithms by reducing the original problem to a sequence
of “independent” subproblems in smaller and simpler subdomain, see [3,
13,12].

On the other hand, subdomain splitting is an interesting path towards
multiphysics, i.e. the use of mathematical models based on different kind of
partial differential equations to address physical problems of heterogeneous
nature in different subregions of the given computational domains. This
approach is given the name heterogeneous domain decomposition: for an
introductory presentation see, e.g. [12, Ch. 8].
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In the framework of advection-diffusion equations with boundary-layer
solutions, heterogeneous domain decompositionmethods, with disjoint sub-
domains, have been proposed and analyzed in [4,5,11].

In this article, heterogeneous methods for advection-diffusion equations
are proposed in the context of virtual control-problems. Virtual control is
a powerful technique that has been introduced in domain decomposition
method with overlapping subdomains to treat “homogeneous” problems,
either elliptic and parabolic (see [7–9]).

In this paper, virtual control is used to achieve interface continuity for
both cases of overlapping or non overlapping (disjoint) subdomains. The
discussion (and analysis) is carried out on the differential problem, however
the theoretical conclusions that are drawn are assessed and verified at the
finite dimensional level afterwards.

A particularly interesting corollary of our theory is that in the non over-
lapping case the results obtained in this paper, through minimization of a
suitable cost functional, are coherent with those of [5] (and reported in [12,
Ch. 8]), that were achieved by a singular perturbation theory.

This paper is organized as follows.
In Sect. 2 we set up the domain decomposition problem in the over-

lapping situation. In Sect. 3 the virtual control method is introduced and a
convergence result is proven. In particular, the cost functionals are shown
to tend to zero when the viscosity coefficient tends to zero. Section 4 is
dedicated to 2D numerical results assessing the theoretical analysis given in
Sect. 3. These results are obtained by the spectral element method (which is
equivalent top-finite elements). When overlapping domains are considered,
entire spectral elements are overlapped. In Sects. 5 and 6 we consider the
non overlapping situation; the analysis on several cost functionals is given,
and both 2D and 1D numerical results are shown.

2. Overlapping situation

We consider a two-dimensional domainΩ. Remarks concerning the one-
dimensional particular case will be made later. We adopt the following no-
tation (see Figs. 1 and 2 for two possible examples):Ω1 andΩ2 are two
subdomains ofΩ such that

Ω̄ = Ω̄1 ∪ Ω̄2, Ω1 ∩Ω2 /= ∅,(1)

Γ = ∂Ω = Γ1 ∪ Γ2,(2)

∂Ω1 = Γ1 ∪ S1, ∂Ω2 = Γ2 ∪ S2.(3)
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Fig. 1. A decomposition of the domainΩ by two overlapping subdomains

Fig. 2. Another decomposition ofΩ, this time by “imbedded” subdomains

Note thatΓ1 ∩Γ2 /= ∅ in the case of Fig. 1, whereasΓ1 ∩Γ2 = ∅ in the case
of Fig. 2 (indeed, in Fig. 2Γ1 = ∅ andΓ2 = ∂Ω).

We define the differential operators

L1 ≡ div(b·) + b0, L2 ≡ −ν∆+ div(b·) + b0,(4)

whereν = const > 0, b andb0 are given data that satisfy
(1

2divb + b0
) ≥

µ0 for a suitable constantµ0 > 0.
The global Dirichlet problem inΩ is

L2u = f in Ω,
u = g onΓ,

(5)

a problem which admits a unique solution under “reasonable” hypotheses
on the dataf , g, b andb0, hypotheses that there is no need to present here.
Our decoupling of problem (5) is based on two steps:

1. the classical domain decomposition where we address the same differ-
ential problem (5) in bothΩ1 andΩ2;

2. the possibility of using inΩ1 the simplest operatorL1, instead of the
global operatorL2, this is what we call heterogeneous domain decom-
position (the homogeneous corresponds to usingL2 in Ω1 as well).

Remark 1The heterogeneous decomposition is for instance motivated by
the presence of boundary layers arising from (5) whenν is small compared
to |b| or |b0|. It is then more natural to take forΩ2 a strip aroundΓ and for
Ω1 an inner domain as described in Fig. 2.
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Remark 2All that follows is completely general, i.e. applies to any decom-
positionΩ = Ω1 ∪ . . . ∪Ωm with arbitrary operators.

3. The virtual control method

Let us define

Γ1D = {x| x ∈ Γ1, b(x) · n(x) < 0} ,
S1D = {x| x ∈ S1, b(x) · n(x) < 0} ,

wheren denotes the outward unit normal vector on the boundary at hand.
The heterogeneous decomposition is formulated through two unknown

functionsλ1 andλ2 as follows:

L1u1 = f in Ω1,
u1 = g onΓ1D,
u1 = λ1 onS1D,

(6)

L2u2 = f in Ω2,
u2 = g onΓ2,
u2 = λ2 onS2,

(7)

whereλ1 is thefirst virtual control. In the case where

S1D = ∅(8)

no virtual control is introduced, as there is no need to prescribe any boundary
data onS1 for problem (6). Thesecond virtual controlis λ2. The virtual
controlsλ1 andλ2 are chosen so thatu1 andu2 “adjust” in the best possible
way onΩ1 ∩Ω2.

The solutionu1 (respectively,u2) of (6) (respectively (7)) is a function
of λ1 (resp.λ2) (with the exception of case (8)),ui = ui(λi).

Remark 3Although we are focusing here on the Dirichlet boundary con-
ditions, accounting for other boundary conditions (Neumann’s or mixed)
would not introduce extra difficulties.

To express the “adjustment”, in the framework of (virtual) control theory,
we introduce the “cost” functional

J(λ1, λ2) =
1
2

∫
Ω1∩Ω2

(u1(λ1) − u2(λ2))2 dx,(9)

and consider the minimization problem:

inf
λ1,λ2

J(λ1, λ2).(10)
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Remark 4 (Thehomogeneousdecomposition)For thehomogeneousdecom-
position, one keepsL2 in Ω1, i.e. one considersu1 to be given now by

L2u1 = f in Ω1,
u1 = g onΓ1,
u1 = λ1 onS1,

(11)

and we consider again (9), (10).
In that caseinfλ1,λ2 J(λ1, λ2) = 0, which is achieved by takingλi equal

to the restriction (trace) onSi of the spacewhere the solutionuof (5) belongs
to.

Remark 5We have not made precise the space where the virtual controls
should be chosen. In the heterogeneous decomposition, this is not a simple
matter in the infinite dimensional (continuous) case, as we now explain.

Let us consider problem (10). The solutionu1 (resp.u2) of (6) (resp. (7))
is

u1 = u0
1 + v1, u2 = u0

2 + v2,

where, fori = 1, 2 u0
i depends on the dataf andg whereasvi depends on

λi as follows

L1u
0
1 = f in Ω1, u

0
1 = g onΓ1D, u

0
1 = 0 onS1D,

L1v1 = 0 in Ω1, v1 = 0 onΓ1D, v1 = λ1 onS1D,

and analogously

L2u
0
2 = f in Ω2, u

0
2 = g onΓ2, u

0
2 = 0 onS2,

L2v2 = 0 in Ω2, v2 = 0 onΓ2, v2 = λ2 onS2.

Then

J(λ1, λ2) =
1
2
Q(λ1, λ2) + L(λ1, λ2),(12)

where the quadratic functionalQ is given by

Q(λ1, λ2) =
∫

Ω1∩Ω2

(v1 − v2)2 dx,(13)

whileL is an affine functional. Consequently, if the functionsλi are smooth
enough, one can define a semi-norm

|||{λ1, λ2}||| = (Q(λ1, λ2))1/2,(14)

on the space of{λ1, λ2}.
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Actually, this is anorm. We prove it in the case of Fig. 1. Indeed, if
Q(λ1, λ2) = 0, thenv1 = v2 = v in Ω1 ∩ Ω2. Therefore,L2v − L1v =
−ν∆v = 0 in Ω1 ∩Ω2 andv = 0 on∂(Ω1 ∩Ω2) ∩ Γ .

Moreover, sinceL1v = 0 in Ω1 ∩Ω2, taking (formally) this equation to
the boundary, one finds

(b · n)
∂v

∂n
= 0 on∂(Ω1 ∩Ω2) ∩ Γ.(15)

Therefore if there existsΣ ⊂ ∂(Ω1 ∩Ω2) ∩ Γ , withmeasΣ /= 0, with

b · n /= 0 onΣ,(16)

the Cauchy data ofv are zero on∂(Ω1 ∩Ω2) ∩Σ, and∆v = 0 inΩ1 ∩Ω2
so thatv ≡ 0 inΩ1 ∩Ω2 by the unique continuation theorem. Thenλ1 = 0
andλ2 = 0, thus (14) is a norm.

Different arguments are needed in the case of Fig. 2.

Therefore if all data are smooth enough, and if (16) holds true,inf J(λ1,
λ2) admits a solution in the space of{λ1, λ2} obtained by completion for
the norm (14).

Remark 6The abstract space obtained by completion is ”very large”, but of
course this point is irrelevant when using finite dimensional approximations,
provided discrete versions of uniqueness theorems hold true.

Indeed, although our numerical results are in full agreement with the
theoretical conclusions drawn on the differential problem, the proof of the
uniqueness theorem at the finite dimensional level would require separate
investigation.

Remark 7Theprevious proof canbe carried out also in the caseofNeumann
boundary condition on∂(Ω1 ∩Ω2) ∩Γ . On the other hand, the same proof
does not apply (in general) whenb · n = 0 on∂(Ω1 ∩Ω2) ∩ Γ . However,
(14) can still be proven to be a norm by ad-hoc argument in some special
circumstances (cf. Remark 4.1 below). In any case, we didn’t experience
any difficulty with our numerical algorithms (cf. Sect. 4.1).

Remark 8Assume thatS1D = ∅. Thenv1 = 0 so thatv2 = 0 in Ω1 ∩Ω2.
ButL2v2 = 0 in Ω2, so that by the unique continuation theoremv2 ≡ 0 in
Ω2, henceλ2 = 0 and the same remarks as above apply. See Sect. 4.1 for
numerical results about this situation.

Remark 9In the 1D case let us consider the operatorsL1u = (bu)x + b0u,
L2u = −νuxx + (bu)x + b0u, whereb andb0 are constant. This case is
degenerate, since∂(Ω1 ∩Ω2)∩Γ does not make sense and the above proof
is not valid anymore. Ifb < 0 on S1, then v1 is defined as above and
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v1 = v2 = v inΩ1 ∩Ω2 impliesd2v2/dx
2 = 0 inΩ1 ∩Ω2. SinceL2v2 = 0

in Ω2, d2v2/dx
2 = 0 in Ω1 ∩ Ω2 implies thatv2 = 0 henceλ2 = 0. Then

v1 = 0 in Ω1 ∩Ω2 henceλ1 = 0.
If b > 0 on S1, there is no virtual controlλ1 again and one finds that

λ1 = 0. Numerical results for the 1D case are given in Sects. 4.4 and 4.5.

Let us prove now the following result.

Theorem 1 If we set

φ(ν) = inf
λ1,λ2

J(λ1, λ2)(17)

and if we letν → 0, all other data being fixed, then

φ(ν) → 0 asν → 0.(18)

Proof Let us denote byuν (resp.u0) the solution of

L2uν = f in Ω, uν = g onΓ,

(resp.L1u0 = f in Ω, u0 = g onΓD). We define

λ2 = trace ofuν onS2,
λ1 = trace ofu0 onS1D

(19)

(noλ1 is introduced ifS1D = ∅). Thenu2 = uν in Ω2, u1 = u0 onΩ1 and
therefore

J(λ1, λ2) =
1
2

∫
Ω1∩Ω2

(uν − u0)2dx,

Hence (18) follows, sinceuν → u0 in L2(Ω) (in particular). ��

Numerical evidence for this result is given in Sect. 4 (see Figs. 3, 4, 6, 7
and 8).

4. Numerical experiments for the overlapping case

The approximation of the boundary-value problems in (6) and (7) is done
by using conformal spectral elements (see [1,10]), whereN denotes the
polynomial degree used in each direction of each element. The overlapping
region contains entire elements, in general one spectral element along the
direction of the overlapping.

In order to minimize the cost functional (9) we use, for convenience, the
Principal Axis Method (see [2]), more efficient optimisation methods being
used in [6].
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Fig. 3. S1D = ∅. Test case #1. The overlap isΩ1 ∩Ω2 = (.5, .6)× (−1, 1). On the left the
spectral elements solution withν = 10−3 is shown. On the overlapping area we have plotted
the arithmetic mean of the two solutions inΩ1 andΩ2. On the right picture the maximum
interface errors (22) and the functionφ (17) and the error (23) are shown for different values
of the viscosityν

4.1. 2D case.S1D = ∅

Test case #1.We have considered the following data:

Ω = (−1, 1)2, Ω1 = (−1, .6) × (−1, 1), Ω2 = (.5, 1) × (−1, 1)(20)

b = [1, 0]t, b0 = 0, f ≡ 1.(21)

We have imposed homogeneous Dirichlet conditions on the vertical sides
ofΩ and null normal derivative on the horizontal sides ofΩ. In this case we
haveS1D = ∅. Spectral elements with polynomial degreeN = 3 in both
directionsx andy are used ifx ≤ .99, while in the strip[0.99, 1] × [−1, 1]
spectral elements are used withN = 8 along thex coordinate andN = 3
along they coordinate.

In Fig. 3 we show the numerical solution obtained with viscosityν =
10−3, the maximum interface error

σi(ν) = max
x∈Si

|u1,ν(x) − u2,ν(x)|(22)

and the error inH1-norm with respect to the global elliptic solution, i.e.

E1 =
‖uJ − u‖H1(Ω)

‖u‖H1(Ω)
,(23)

whereuJ andu are the numerical solutions corresponding to problems (10)
and (5), respectively. Moreover we assess the conclusion of Theorem 1.
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Fig. 4. S1D = ∅. Test case #2. The overlap isΩ1 ∩Ω2 = (.5, .6)× (−1, 1). On the left the
spectral elements solution withν = 10−2 is shown. On the overlapping area we have plotted
the arithmetic mean of the two solutions inΩ1 andΩ2. On the right picture the maximum
interface errors (22), the functionφ (17) and the error (23) are shown for different values of
the viscosityν

Test case #2.Another test case withS1D = ∅ is obtained with the same data
given in (20)-(21), but now withf ≡ 0. We have imposed homogeneous
Dirichlet conditions (g ≡ 0) on the right vertical side ofΩ, g ≡ 1 on the
left vertical side, and null normal derivative on the horizontal sides. Spectral
elements with polynomial degreeN = 4 are used ifx ≤ .9, while in the
strip [0.9, 1] × [−1, 1] spectral elements are used withN = 8 along thex
coordinate andN = 4 along they coordinate.

In Fig. 4 the solution obtained withν = 10−2 is shown, together with
the maximum interface errors (22) and the functionφ (17).

Remark 10In this test case,b · n = 0 on ∂(Ω1 ∩Ω2) ∩ Γ so that the
reasoning that was used in Sect. 3, to prove that (14) is a norm, does not
apply. However, sincev1 = v2 = v, we have on one hand thatL1v1 = 0,
i.e. ∂v1

∂x = 0 so thatv = v(y). Hence,L2v2 = 0 reduces to−ν ∂2v
∂y2 = 0, i.e.

v = c0 + c1y, c0, c1 constants.

But v = 0 for y = ±1 impliesc0 = c1 = 0, hencev = 0 and (14) is a norm
in this case as well.

Test case #3.We considered the following data:

Ω = (−1, 1)2, Ω1 = (−1, 0) × (−1, 0.75),
Ω2 = Ω \ (−1,−0.25) × (−1, 0.5),

b =
1
2
[(1 − x2)(1 + y),−x(4 − (1 + y)2)]t, b0 = 10−4, f ≡ 0.
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Fig. 5. On the left the domain decomposition used for the test case #3, on the right the vector
fieldb on the computational domainΩ

Fig. 6. S1D = ∅. Test case #3. On the left the numerical solution withν = 10−3 is shown.
On the right picture the maximum interface errors (22), the functionφ (17) and the error
(23) are shown for different values of the viscosityν

We have imposed the Dirichlet conditiong(x, y) = (1 − y)/2 on the hori-
zontal sides and on the right vertical side ofΩ, while null normal derivative
was prescribed on the left vertical side.

Spectral elements of degreeN = 4 are used and the mesh is finer near
to both upper horizontal side and right vertical side. In Fig. 5 the domain
decomposition and the vector fieldb are plotted. In Fig. 6 the numerical
solution computed withν = 10−2 is shown.
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Fig. 7. S1D = S1. Test case #4. The overlap isΩ1 ∩ Ω2 = (.6, .7) × (−1, 1). On the left
the spectral elements solution withν = 10−1 and with polynomial degreeN = 4 is shown.
On the overlapping area we have plotted the arithmetic mean of the two solutionsu1 and
u2. On the right picture the maximum interface errors (22), the functionφ (17) and the error
(23) are shown for different values of the viscosityν

4.2. 2D case.S1D = S1

Test case #4.We have considered the following data:

Ω = (−1, 1)2, Ω1 = (−1, .7) × (−1, 1), Ω2 = (.6, 1) × (−1, 1)(24)

b = [−1, 0]t, b0 = 1, f ≡ 1.(25)

We have imposed homogeneous Dirichlet conditions on the right vertical
side ofΩ and null normal derivative on the horizontal sides ofΩ. In Fig. 7
we show the numerical solution obtained with viscosityν = 10−1, the
behaviour of the maximum interface errors (22) and the functionφ (17)
versus the viscosityν.

4.3. 2D case.S1D /= ∅, S1D � S1

Test case #5.We have considered the following data:

Ω = (−1, 1)2, Ω1 = (−1, .8) × (−1, 1), Ω2 = (.7, 1) × (−1, 1),(26)

b = [y, 0]t, b0 = 1, f ≡ 1.(27)

We have imposed homogeneous Dirichlet conditions on the right vertical
sideofΩ,g ≡ 1on{−1}×[0, 1]andnull normal derivativeon thehorizontal
sidesofΩ andon{−1}×(−1, 0). In this casewehaveS1D = {.8}×(−1, 0).
Along they coordinate the mesh is uniform, while along thex coordinate
the mesh is finer near the boundary layer. In Fig. 8 we show the numerical
solution obtained with viscosityν = 10−1, the maximum interface errors
(22) and we assess the thesis of Theorem 1.
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Fig. 8. Test case #5.S1D = {x = .8, −1 < y < 0}, ν = 10−3. The overlap isΩ1 ∩Ω2 =
(.7, .8) × (−1, 1). On the overlapping area we have plotted the arithmetic mean of the two
solutions inΩ1 andΩ2. On the right picture the maximum interface errors (22), the function
φ (17) and the error (23) are shown for different values of the viscosityν

4.4. 1D case.S1D = ∅

Test case #6.We have considered the following data:

Ω = (0, 1), Ω1 = (0, 0.7), Ω2 = (0.6, 1),(28)

b1 = 1, b0 = 0, f ≡ 1, g ≡ 0,(29)

henceS1D = ∅.
In Fig. 9 the solution of (10) is comparedwith the global elliptic solution

of (5). Both solutions are computed with spectral elements of diameterH =
0.5 and degreeN = 5.

Remark 11We have computed the solution with variousN (spectral poly-
nomial degree) andH (elements diameter) and we have observed that the
difference between the solution and the global elliptic solution does not de-
pend onN nor onH, but only on the viscosity coefficient. In particular, this
difference tends to zero whenν → 0.

4.5. 1D case.S1D = S1

Test case #7.We have considered the following data:

Ω = (0, 1), Ω1 = (0, 0.7), Ω2 = (0.6, 1).(30)

b1 = −1, b0 = 1, f ≡ 1, g ≡ 0,(31)
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Fig. 9. Test case #6. Coupling with overlapping withν = 10−1 and ν = 10−2. The
overlapping isΩ1 ∩Ω2 = (0.6, 0.7). On the overlapping area we have plotted the arithmetic
mean of the two solutions inΩ1 andΩ2. On the right picture the maximum interface errors
(22), the functionφ (17) and the error (23) are shown for different values of the viscosityν

Fig. 10. Test case #7. Coupling with overlapping withν = 10−1 andν = 10−2. The
overlapping isΩ1 ∩Ω2 = (0.6, 0.7). On the overlapping area we have plotted the arithmetic
mean of the two solutions inΩ1 andΩ2. On the right picture the maximum interface errors
(22), the functionφ (17) and the error (23) are shown for different values of the viscosityν

We have thatS1 = S1D.
In Fig. 10 we report the solution of (10) forν = 10−1 andν = 10−2,

computed with spectral elements of diameterH = 0.5 and degreeN = 4.
Moreover the numerical behaviour ofφ(ν) (17) and the maximum interface
errors (22) are shown.

Remark 12In all cases considered above, themethod provides the expected
(correct) results in the sense thatφ(ν) → 0 asν → 0.

5. The non overlapping situation

Weconsider now the situation represented in Fig. 11 which refers to the case
whereΩ is partitioned into two disjoint subdomains whose interface isS.
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Fig. 11. A disjoint partition ofΩ

We defineu1 in Ω1 by

L1u1 = f in Ω1,
u1 = g onΓ1D,
u1 = λ1 onSD,

(32)

whereSD = {x ∈ S| b(x) · n(x) < 0}, n being the unit normal vector on
S directed fromΩ1 toΩ2.

Remark 13If SD = ∅, there is no condition onSD and no virtual control is
attached tou1. This situation in somewhat paradoxical, however, one should
notice that in this caseS is an outflow boundary for the advection problem
(32).

We then defineu2 in Ω2 by

L2u2 = f in Ω2,
u2 = g onΓ2,
u2 = λ2 onS.

(33)

Remark 14The situation described above corresponds to the heterogeneous
case. If we takeL1 = L2 in (32) (andΓ1D = Γ1, SD = S), we are dealing
with the homogeneous case.

We want now to chooseλ = {λ1, λ2} so thatu1 andu2 ”adjust” in the
best possible way onS. Contrary to the overlapping case where there is
“reasonable uniqueness”of the adjustment functional, several cases have
to be considered in the non overlapping case. The natural functionals to
introduce are the following ones (their properties are analyzed below):

J1(λ1, λ2) =
1
2

∫
S
(u1 − u2)2ds,(34)

whereui = ui(λi) is the solution of (32) or (33);

J2(λ1, λ2) =
1
2

∫
S
(u1 − u2)2ds+

1
2

∫
S
(φ1 − φ2)2ds,(35)
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where

φ1 = −b · nu1 onS,(36)

φ2 = νn · ∇u2 − b · nu2 onS;(37)

finally,

J3(λ1, λ2) =
1
2

∫
S
(φ1 − φ2)2ds.(38)

We want now to analyze the respective advantages of (34), (35) and (36).
We proceed as in Sect. 2, and introducev1 andv2 by

L1v1 = 0 in Ω1,
v1 = 0 onΓ1D,
v1 = λ1 onSD;

(39)

L2v2 = 0 in Ω2,
v2 = 0 onΓ2,
v2 = λ2 onS.

(40)

We note that

if SD = ∅ thenv1 = 0 and noλ1 is introduced.(41)

Then

Ji(λ) =
1
2
Qi(λ) + Li(λ), i = 1, 2, 3, λ = {λ1, λ2},

whereLi is an affine functional ofλ, while

Q1(λ) =
∫

S
(v1 − v2)2ds,(42)

Q2(λ) =
∫

S
(v1 − v2)2ds+

∫
S
(φ1 − φ2)2ds,(43)

Q3(λ) =
∫

S
(φ1 − φ2)2ds,(44)

whereφ1 andφ2 are defined in (36) withui replaced byvi.
There will beexistenceof λ achievinginf Ji(λ), possibly in a very large

”abstract” space, and if all data are smooth, provided that

(Qi(λ))1/2 is a norm on the space ofλ(45)
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whereλ is smooth enough. Then one introduces the completion of theλ’s
for the above norm and it is in this space that theinf Ji is achieved. Of
course all these spaces reduce to finite dimensional spaces for the numerical
approximations introduced hereafter, but it is essential thatQi be a norm.

Let us examine now the three cases.

The expressionQ1(λ)1/2.
If SD = ∅, (41) thenv1 = 0 so that ifQ1(λ) = 0 thenv2 = 0 onS, i.e.

λ2 = 0. Therefore,

if SD = ∅, Q1(λ)1/2 is a norm(46)

and we can expect this functional to lead to interesting numerical results.
If SD /= ∅, thenQ1(λ)1/2 is not a normand the numerical approximation

are of dubious value. This will be confirmed by the numerical results (cf.
Fig. 14, 15).

The expressionQ2(λ)1/2.
We assume thatSD /= ∅, since otherwise,Q1(λ)1/2 is already a norm, so

a fortioriQ2(λ)1/2 is a norm. IfQ2(λ) = 0 then bothv1 = v2 andφ1 = φ2
on S. Therefore,n · ∇v2 = 0 on S (notice thatφ1 − φ2 = −νn · ∇v2).
But this boundary condition used in (40) shows thatv2 ≡ 0 in Ω2, so that
λ2 = 0. Then,v1 = 0 onS, so thatλ1 = 0.

Thus, the expressionQ2(λ)1/2 is a norm. We can therefore expect the
minimization ofJ2(λ) to lead always to reasonably good results as our
numerical tests will confirm.

The expressionQ3(λ)1/2.
We have

if SD = ∅, Q3(λ)1/2 is a norm.(47)

Indeed, in that case,v1 = 0 andQ3(λ) = 0 implies thatφ1 = φ2 which thus
reduces toφ2 = 0. This boundary condition, together with (40), implies that
λ2 = 0 hence (47) follows.

If SD /= ∅, it seems dubious thatQ3(λ)1/2 is a norm (in fact there are
examples where it is not a norm, cf. Remark 16 below), so that the use of
J3(λ) is not recommended.

Remark 15The heterogeneous coupling for the advection-diffusion prob-
lem (5) proposed in [4] reads as follows (see also [12], pag. 289):

L1u1 = f in Ω1,
L2u2 = f in Ω2,

ui = g on Γi, i = 1, 2,
u1 = u2 on SD,
φ1 = φ2 on S.

(48)
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This coupled system is obtained by a perturbation analysis as the limit of
the original problem (5) when the viscous coefficientν is going to zero in
Ω1.

The corresponding solution will be referred to as theheterogeneous so-
lution.

Remark 16There is a more straightforward (but less systematic) way of
deriving a priori properties ofJ1, J2, J3.

Let us begin withJ1, and let us assume first thatSD /= ∅. Then, given
λ1 (reasonably) smooth onSD, (32) defines a functionu1 in Ω1. Then one
can defineu2 by (33) whereλ2 is equal to the trace ofu1 onS. With this
choice,J1(λ1, λ2) = 0 and this can be achieved ininfinitely many ways.
As observed before,J1 is not going to be a “good ” functional,except if
SD = ∅. In that caseu1 is uniquely defined (noλ1 is introduced) and there
is aunique way to achieveJ1 = 0.

If we consider nowJ3, the same comments can be applied. IfSD /= ∅,
one starts with an arbitrary (smooth) functionλ1 and one definesu2 as
the solution ofL2u2 = f in Ω2, u2 = g on Γ2 andφ2 (given by (37))
= νn · ∇u1 − b · nu1 on S. ThenJ3 = 0 and this can be achieved in
infinitely many ways, except ifSD = ∅ in which case there is uniqueness.

Similar arguments do not apply toJ2 as defined in (35). But if we replace
J2 by its variantJ ′

2 (cf. (53) hereafter) then the problem infJ ′
2 admits a

unique solutionwhichcoincideswith the heterogeneous solution introduced
in Remark 15 above.

6. Numerical experiments for the non overlapping case

6.1. 2D case.SD = ∅

Test case #1 without overlapping.We have considered the data (21), with

Ω = (−1, 1)2, Ω1 = (−1, .6) × (−1, 1), Ω2 = (.6, 1) × (−1, 1).(49)

In this case we haveSD = ∅. We have imposed homogeneous Dirichlet
conditions on the vertical sides ofΩ and null normal derivative on the
horizontal sides ofΩ.

In Fig. 12 we show the numerical solution obtained by minimizingJ1,
J2 andJ3, and the solution of (48) whenν = 5 · 10−2.

The 3 functionals give satisfying results (see Fig. 12).
We denote byuJi the solutions ofinf Ji, for i = 1, 2, 3 respectively and

by uhe the heterogeneous solution of (48).
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Fig. 12. Test case #1 without overlapping.SD = ∅. The solution ofinf J1 (top left), the
solution of inf J2 (top right), the solution ofinf J3 (bottom left) and the heterogeneous
solution (48) (bottom right)

Fig. 13. Test case #1 without overlapping. The quantitiesEi(ν) (50) versus the viscosityν.
We haveSD = ∅
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Fig. 14. Test case #4 without overlapping.S = SD. The solution ofmin J1 (top left), the
solution ofmin J2 (top right), the solution ofmin J3 (bottom left) and the heterogeneous
solution (bottom right). A non uniform mesh with polynomial degreeN = 4 is considered.
Note that thex-axis has been reversed in these pictures

In Fig. 13 we show the quantities:

Ei(ν) =


 2∑

j=1

‖uJi − uhe‖2
H1(Ωj)

‖uhe‖2
H1(Ωj)




1/2

.(50)

6.2. 2D case.SD = S

Test case #4 without overlapping.We have considered the data (25) with

Ω = (−1, 1)2, Ω1 = (−1, .7) × (−1, 1), Ω2 = (.7, 1) × (−1, 1).(51)

In this case we haveSD = S.
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We have imposed homogeneousDirichlet conditions on the right vertical
side ofΩ and null normal derivative on the horizontal sides ofΩ. In Fig. 14
we show the numerical solution obtained by minimizingJ1, J3 andJ2,
and the heterogeneous solution (48) (the last two solutions do coincide) for
ν = 10−1. The solutions obtained by minimizing bothJ1 andJ3 depend
strongly on the initial guess. The numerical results of Fig. 14 refer toλ1 = .2
andλ2 = .8.

We have computed the errorE2(ν) (see (50)) forν = 10−1, 10−2, 10−3.
In all the cases we have obtainedE2(ν) � 10−13.

6.3. 2D case.∅ /= SD ⊂ S

Test case #5 without overlapping.We have considered the data (27) with

Ω = (−1, 1)2, Ω1 = (−1, .8) × (−1, 1), Ω2 = (.8, 1) × (−1, 1).(52)

In this case we haveSD = {.8} × (−1, 0).
We have imposed homogeneousDirichlet conditions on the right vertical

sideofΩ,g ≡ 1on{−1}×[0, 1]andnull normal derivativeon thehorizontal
sides ofΩ and on{−1} × (−1, 0).

We define a variant of the cost functionalJ2 (35) as follows:

J ′
2(λ1, λ2) =

1
2

∫
SD

(u1 − u2)2ds+
1
2

∫
S
(φ1 − φ2)2ds.(53)

The associated quadratic functional is

Q′
2(λ) =

∫
SD

(v1 − v2)2ds+
∫

S
(φ1 − φ2)2ds(54)

wherev1 andv2 are the solutions of (39) and (40). It is easy to see that
[Q′

2(λ)]1/2 is a norm. In fact, as we have already pointed out in Remark 16,
the infimum ofJ ′

2 is achieved for the heterogeneous solution (48).
In Fig. 15 we show the numerical solution obtained by minimizingJ1,

J2, J3, J ′
2 and the heterogeneous solution (48) forν = 10−2. We note that

the solution obtained by minimizingJ ′
2 and the heterogeneous solution (48)

coincide (in agreementwith our general remarks).Obviously, the algorithms
used here and those used in [12] are totally different, so that we obtain a
further validation of our analysis.

6.4. 1D numerical results without overlapping

Wenote that, for 1D problems, whenb·n = b1 > 0wehaveSD = ∅. In this
case the interface conditions in (48) ensure the continuity of the flux solely,
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Fig. 15. Test case #5 without overlapping. The sign ofb · n changes alongS = {x =
.8, −1 ≤ y ≤ 1}. The solution corresponding to the minimization ofmin J1 (top left), the
solution corresponding to theminimization ofmin J2 (top right), the solution corresponding
to theminimization ofmin J3 (medium left), the solution corresponding to theminimization
ofmin J ′

2 (medium right) and the heterogeneous solution (48) (bottom left). A non uniform
mesh with polynomial degreeN = 5 is considered
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Fig. 16. Test case #6 without overlapping.SD = ∅. The viscosity isν = 10−1 (left) and
ν = 10−2 (right). InΩ1 the solutions computed by minimizingJ1, J2 andJ3 coincide and
the jump across the interface is independent ofN andH

i.e. φ2 = φ1 on S. Therefore, the natural candidate for the minimization
problem is the functionalJ3.

Otherwise, whenb · n = b1 < 0 we haveS = SD. In this case the
interface conditions in (48) ensure the continuity of both the solution (u1 =
u2) and the fluxes (φ2 = φ1) onS. It follows that the natural candidate for
the minimization problem is the functionalJ2.

Test case #6 without overlapping.We have considered the data (29) with

Ω = (0, 1), Ω1 = (0, 0.6), Ω2 = (0.6, 1).(55)

In Fig. 16 we show the numerical results forν = 10−1 andν = 10−2. The
multidomain solutions have been computed with one spectral element of
degreeN = 6 in Ω1 = (0, 0.6) and six spectral elements of degreeN = 6
in Ω2 = (0.6, 1), while the global elliptic solution has been computed with
one spectral element of degreeN = 50.

Remark 17WhenSD = ∅, if we assess the quality of the heterogeneous
solution by measuring the jump of the solution across the interface[u]|S =
u2|S − u1|S , we conclude that minimizingJ1 is better than minimizingJ2
andJ3 (see Fig. 16 and Table 1). Otherwise, if we measure the jump of the
flux across the interface[φ]|S = φ2|S − φ1|S , we conclude that minimizing
J3 is better than minimizingJ1 andJ2 (see Fig. 16 and Table 1).

From Fig. 16 we observe that the solution obtained by minimizingJ3
and the heterogeneous solution (48) coincide, as previously pointed out.

Test case #7 without overlapping.Finally we have considered the data (31)
with

Ω = (0, 1), Ω1 = (0, 0.6), Ω2 = (0.6, 1).(56)
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Table 1. Test case #6 without overlapping. 1D case.SD = ∅. The jump of the solution and
of the flux on the interface, relative to the numerical solutions of Fig. 16.εM 
 2.2204e−16
denotes the floating point machine accuracy

ν = 10−1 [u] [φ]

min J1 εM 8.1342e-2
min J2 4.0664e-2 3.9919e-2
min J3 7.9852e-2 εM

global ell. 0.0000e+0 0.0000e+0
heterog. 7.9852e-2 εM

ν = 10−2 [u] [φ]

min J1 εM 1.0000e-2
min J2 5.0000e-3 4.9999e-3
min J3 1.0000e-2 εM

global ell. 0.0000e+0 0.0000e+0
heterog. 1.0000e-2 εM

Fig. 17. Test case #7 without overlapping.SD = S. The viscosity isν = .1 (left) and
ν = .01 (right), The discretization is: 1 spectral element of degreeN = 6 in Ω1 = (0, 0.6)
and 6 spectral elements of degreeN = 6 inΩ2 = (0.6, 1). The initial guess isλ0 = [.5, .7]

The numerical solutions forν = 10−1 and ν = 10−2 are shown in
Fig. 17. We observe that those solutions obtained by minimizingJ1 andJ3
depend on the initial guessλ0 and are not reliable.

Wehave computed the errorE2(ν) (see (50)) forν = 10−1, 10−2, 10−3.
In all the cases we have obtainedE2(ν) � 10−13.
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