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Abstract. In this paper we analyze the family of Yosida algebraic fractional step schemes
proposed in [A. Quarteroni, F. Saleri, and A. Veneziani, Comput. Methods Appl. Mech. Engrg., 188
(2000), pp. 505–526], [F. Saleri and A. Veneziani, SIAM J. Numer. Anal., 43 (2005), pp. 174–194],
and [P. Gervasio, F. Saleri, and A. Veneziani, J. Comput. Phys., 214 (2006), pp. 347–365] when
applied to time-dependent Stokes equations. Under suitable regularity assumptions on the data,
splitting error estimates both for velocity and pressure are established. In particular we analyze the
first three methods of this family, providing, respectively, convergence (of the fractional step solution
towards the numerical solution achieved without any operator splitting) of orders 3/2, 5/2, 7/2 for
the velocity and 1, 2, 3 for the pressure. Moreover a general way to set up higher-order schemes is
proposed. The present analysis is carried out when spectral element methods are employed for space
discretization.
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1. Introduction. The aim of this paper is to provide convergence estimates for
the class of Yosida methods proposed in [12, 13, 15, 8] for the numerical solution of
time-dependent Stokes equations in the primitive variables velocity and pressure.

Yosida schemes are algebraic fractional step schemes in which the incompressibil-
ity constraint is relaxed in order to earn computational efficiency, and they are based
on an inexact LU factorization of the matrix A arising from the full discretization (in
space and time) of Stokes equations. The basic Yosida scheme was introduced in [13].
The accuracy analysis, carried out in [12], shows that when the time discretization
is based on a backward Euler method, Yosida splitting still maintains the first order
accuracy in time both for velocity and pressure (with respect to appropriate norms).

Successively, in [15, 8] two improved versions of the basic Yosida method (named
Yosida-3 and Yosida-4 in the present paper) have been proposed. A pressure correc-
tion step is introduced in these schemes, with the aim of increasing the accuracy in
time for both velocity and pressure. A preliminary analysis of the consistency error
has been carried out for Yosida-3 (resp., Yosida-4) in [15] (resp., [8]) proving that the
perturbation on the discretization matrix A is of third (resp., fourth) order in time
with respect to the time-step. However, a complete splitting error analysis, i.e., the
convergence analysis of the fractional step solution towards the numerical solution
achieved without any operator splitting, is still missing. The aim of the present pa-
per is essentially to perform such analysis when the space discretization is based on
spectral element methods of QN −QN−2 type [11, 1, 3, 4], but we also emphasize the
derivation of Yosida methods from a more general point of view than that given in
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[15, 8], suggesting the formulation of higher-order schemes. The main result of the
paper is Theorem 3.7, in which we prove that the splitting error induced by Yosida
schemes (when they are coupled to BDFq (with q = 1, 2) for time discretization
of the time-dependent Stokes equations) behaves like Δtp+3/2 (resp., Δtp+1) for the
velocity (resp., for the pressure), where p = 0 for basic Yosida, p = 1 for Yosida-3,
and p = 2 for Yosida-4. The thesis of Theorem 3.7 when q = 3, 4 has not been proved
yet. Nevertheless in this paper we consider the more general contest with q = 1, . . . , 4
since numerical results relative to the choice q = p + 2 are encouraging and provide
global approximation errors on the velocity of order q with respect to Δt. In the
present paper no evidence is given to computational aspects concerned with Yosida
methods, since the topic has been extensively discussed in [8].

This paper is organized as follows. In section 2 we recall notation and settings
about Stokes equations, spectral elements discretization, and some useful proper-
ties on symmetric positive definite matrices. In section 3 we present the derivation of
Yosida methods for the unsteady Stokes equations, perform the splitting error analysis
when spectral element methods are used for space discretization, and give some per-
spective for extending the analysis to unsteady Navier–Stokes equations. In section 4
we present some numerical results corroborating the convergence analysis developed
in section 3. Even if the theory presented in this paper holds in Rd, with d = 2, 3,
only numerical results for the case d = 2 are reported here.

2. Problem statement and settings. We consider time-dependent Stokes
equations for Newtonian incompressible fluids in the velocity-pressure formulation.
For any open bounded domain Ω ⊂ Rd (d = 2, 3) with a Lipschitz boundary ∂Ω,
and a positive T fixed, given a solenoidal datum u0 ∈ [H1(Ω)]d, an external field
f ∈ [L2(0, T ;H−1(Ω))]d, and a boundary datum g ∈ [L2(0, T ;H1/2(∂Ω))]d, we look
for the velocity field u ∈ [L2(0, T ;H1(Ω))]d and the pressure field p ∈ L2(0, T ;L2

0(Ω))
solutions of ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∂u

∂t
− νΔu + ∇p = f in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),

u = g on ∂Ω × (0, T ),

u = u0 in Ω × {0},

(2.1)

where ν > 0 is the kinematic viscosity. It is well known that problem (2.1) admits a
unique solution (see, e.g., [16]).

We approximate the time derivative by a backward differentiation formula (BDF)
of order q. Given Δt ∈ (0, T ), we set t0 = 0, tn = t0 + nΔt (for any n ≥ 1) and
NT =

[
T
Δt

]
; therefore, for any integer n = n0(= q − 1), . . . , NT − 1, we look for the

solution (un+1, pn+1) of the system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
β−1

Δt
un+1 − νΔun+1 + ∇pn+1 = fn+1 +

q−1∑
j=0

βj

Δt
un−j in Ω,

∇ · un+1 = 0 in Ω,

un+1 = gn+1 on ∂Ω,

(2.2)

where u0 = u0 and βj (for j = −1, . . . , q) are the coefficients of BDF of order q.
When BDF with order greater than one are used, initial data could be provided by
suitable explicit schemes (e.g., Runge–Kutta) of the same order as the BDF used.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1684 PAOLA GERVASIO

About the space discretization, we choose quadrilateral conforming spectral ele-
ments [11]. In order to overcome instabilities due to the mixed formulation of Stokes
equations, we make use of the QN −QN−2 scheme with staggered grids [1], according
to which local polynomials of degree N in each variable are used to approximate every
component of the velocity field, and local polynomials of degree N−2 in each variable
are used to approximate the pressure (QN denotes the space of polynomials of degree
less than or equal to N in each variable). By this choice, the inf-sup condition is
satisfied with a constant β which is proportional to N (1−d)/2 [1].

We introduce a conformal, regular, and quasi-uniform (see, e.g., [14]) partition
Th of Ω in Ne quadrilaterals Tk such that

Ω =

Ne⋃
k=1

T k, with h = max
Tk∈Th

hk, hk = diam(Tk), k = 1, . . . , Ne.

Let us assume that every Tk ∈ Th is the image of the reference square T̂ = (−1, 1)2

through a smooth invertible mapping Fk : T̂ �→ Tk with Jacobian JFk
satisfying

det JFk
(x̂) > 0 ∀x̂ ∈ T̂ . We set

(2.3) QH(Ω) = {vH ∈ C0(Ω) : vH|Tk
◦ Fk ∈ QN ∀Tk ∈ Th}

and vN,k := vH|Tk
∀Tk ∈ Th. The subscript H represents the discretization level and

it stands for the couple (h,N). Given uH, vH ∈ QH(Ω), we set

(2.4) (uH, vH)H,Ω =

Ne∑
k=1

(uN,k, vN,k)N,Tk
,

where (·, ·)N,Tk
denotes the discrete inner product in L2(Tk), based on the Gauss–

Lobatto–Legendre (GLL) quadrature formulas [3]. In each element Tk of the partition
we define a local GLL grid of (N + 1)2 points and a local Gauss–Legendre (GL) grid
of (N − 1)2 points. The last grid is staggered with respect to the former one and
is internal to Tk. The unknowns of the discrete problem will be both the set of the
velocity values on the GLL grid and the set of the pressure values on the GL grid [1].
By setting the finite-dimensional spaces

VH := [QH(Ω)]
2
, V0

H :=
[
QH(Ω) ∩H1

0 (Ω)
]2

,

QH := {qH ∈ L2
0(Ω) : qH|Tk

◦ Fk ∈ QN−2 ∀Tk ∈ Th},

we reformulate problem (2.1) following the Galerkin approach and replace all exact
integrals in L2(Ω) with GLL quadrature formulas; the resulting approach is named the
spectral element method with numerical integration (SEM-NI) [4]. For any tn ∈ (0, T ),
we denote by g̃(tn) ∈ [H1(Ω)]2 the extension of g(tn) to Ω by any possible continuous
operator from [H1/2(∂Ω)]2 to [H1(Ω)]2; moreover, we denote its discrete counterpart
by g̃n

H ∈ VH. At each time-step tn+1 (for n = n0, . . . , NT − 1) we look for the
numerical solution (un+1

H , pn+1
H ) ∈ VH ×QH, satisfying (un+1

H − g̃n+1
H ) ∈ V0

H and⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

β−1

Δt
(un+1

H ,vH)H,Ω + ν(∇un+1
H ,∇vH)H,Ω

− (pn+1
H ,∇ · vH)H,Ω =

⎛⎝fn+1 +

q−1∑
j=0

βj

Δt
un−j
H ,vH

⎞⎠
H,Ω

∀vH ∈ V0
H,

(∇ · un+1
H , qH)H,Ω = 0 ∀qH ∈ QH.

(2.5)



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ALGEBRAIC FRACTIONAL STEP SCHEMES FOR STOKES EQUATIONS 1685

Therefore, we set Nv (resp., Np) the total number of GLL (resp., GL) grid points in
Ω. For any uH ∈ VH, we denote by U ∈ R2Nv the vector of the expansion coefficients
of uH with respect to the Lagrange basis {ϕj}2Nv

j=1 (defined on the GLL grid) in VH
and by VG ⊂ R2Nv (resp., V0

G ⊂ R2Nv ) the set of the vectors U corresponding to
functions uH ∈ VH (resp., V0

H). In a similar way, for any pH ∈ QH we denote by
P ∈ RNp the vector of the expansion coefficients of pH with respect to the Lagrange

basis {ηl}Np

l=1 (defined on the GL grid) in QH and by QG ⊂ RNp the set of the arrays
P corresponding to functions pH ∈ QH.

We denote by M ∈ R2Nv×2Nv the mass matrix Mij = (ϕj ,ϕi)H,Ω, by K ∈
R2Nv×2Nv the stiffness matrix Kij = (∇ϕj ,∇ϕi)H,Ω, and by B ∈ R2Nv×Np the
matrix related to the discretization of −∇·: Blj = −(∇ · ϕj , ηl)H,Ω, and we set

(2.6) C =
β−1

Δt
M + νK.

Remark 1. Matrices M , K, and C are symmetric and positive definite. Moreover,
thanks to the fact that the space discretization chosen satisfies the inf-sup condition,
the matrix B is a full rank matrix and ker(BT ) = {0}. Finally, we remark that when
SEM-NI is used, the mass matrix M is diagonal.

The system is reduced to the unknowns internal to Ω, and the right-hand side
is modified accordingly, taking into account the contributions that Lagrange basis
functions associated to Dirichlet boundary nodes give to those associated to internal
nodes. This step produces a right-hand side [Fn+1

1 ,Fn+1
2 ]T that is nonzero also in the

continuity equation.
The algebraic form of (2.5) reads as follows: for n = n0, . . . , NT − 1 solve⎧⎪⎪⎨⎪⎪⎩

CUn+1 + BTPn+1 = Fn+1
1 +

1

Δt

q−1∑
j=0

βjMUn−j ,

BUn+1 = Fn+1
2 ,

(2.7)

or equivalently, for n = n0, . . . , NT − 1 solve

AWn+1 = Gn+1, with A =

[
C BT

B 0

]
(2.8)

and

Wn+1 =

[
Un+1

Pn+1

]
, Gn+1 =

[
Gn+1

1

Gn+1
2

]
:=

⎡⎢⎢⎣ Fn+1
1 +

1

Δt

q−1∑
j=0

βjMUn−j

Fn+1
2

⎤⎥⎥⎦ .
System (2.8) could be solved by a global approach such as a preconditioned Krylov
method with either algebraic or differential preconditioners. Alternatively, a block
LU factorization of A can be performed with

L =

[
C 0

B −BC−1BT

]
, U =

[
I C−1BT

0 I

]
,(2.9)
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so that, for any n = n0, . . . , NT − 1, system (2.7) reads also

L-step : find Un+1/2, Pn+1/2 :

{
CUn+1/2 = Gn+1

1 ,

ΣPn+1/2 = Gn+1
2 −BUn+1/2,

U -step : find Un+1, Pn+1 :

{
Pn+1 = Pn+1/2,

C(Un+1/2 − Un+1) = BTPn+1.

(2.10)

The matrix

(2.11) Σ := −BC−1BT ∈ RNp×Np

is the so-called pressure Schur complement matrix and −Σ > 0. Solving system (2.8)
by a block LU factorization offers the advantage of splitting the original problem into
subproblems of smaller size, even if the assembling of Σ is, however, quite expensive.
The idea of Yosida schemes consists in replacing the block LU factorization (2.9) with
an inexact one or, equivalently, in replacing algorithm (2.10) with a more efficient one
from the computational point of view. The next section will be devoted to present
the derivation of Yosida schemes, starting from (2.8).

We are now going to introduce some notation and report some properties we will
use in the next sections, referring to [17] and [9] for an exhaustive treatment of these
subjects.

D1. Given a real square matrix B, we write B > 0 if it is symmetric positive def-
inite (s.p.d.), while we write B ≥ 0 if it is symmetric semipositive definite. Moreover,
if B, C ∈ Rn×n are symmetric, we write B > C if B − C > 0 and B ≥ C if B − C ≥ 0.

D2. The eigenvalues of a matrix B ∈ Rn×n are denoted by λi(B) and the spectral
radius of B is defined as ρ(B) = max{|λi(B)|, i = 1, . . . , n}.

D3. For any square matrix M of the form

M =

[ C BT

B D

]
the Schur complement of the nonsingular block C in M is defined as M/C := D −
BC−1BT . Moreover, det(M) = det(C)det(M/C) (Schur’s formula [17, Thm. 2.2]).

D4. The inertia In(B) of a square matrix B is defined to be the ordered triplet
(i+, i−, i0), where i+, i−, and i0 are the numbers of positive, negative, and zero real
parts of the eigenvalues of B.

D5. For any matrix B ∈ Rn×n, whose coefficients depend on Δt, we say that

B = O(Δtk) if |||B||| = O(Δtk) for Δt → 0,

where ||| · ||| denotes the 2-norm for matrices.
P1. For any invertible matrices B, C ∈ Rn×n it holds that

(B + C)−1 = B−1[B − (C−1 + B−1)−1]B−1,(2.12)

B − C = −B(B−1 − C−1)B,(2.13)

B(B + C)−1B = B − C + C(B + C)−1C.(2.14)

P2. As a consequence of the Courant–Fisher minimax theorem [17], for any
real symmetric matrices B, C ∈ Rn×n it holds that λi(B) + λmin(C) ≤ λi(B + C) ≤
λi(B) + λmax(C), i = 1, . . . , n.
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P3. If B, C ∈ Rn×n are s.p.d. and B − C > 0, then C−1 − B−1 > 0.
P4. If B, C ∈ Rn×n are symmetric and C > 0, then the eigenvalues of BC are all

real and In(BC) = In(B) (see, e.g., [5]).
P5. If a matrix is the product of two s.p.d. matrices, then it is similar to an s.p.d.

matrix (this is a consequence of P4).
P6. For any s.p.d. matrix C ∈ Rn×n and X ∈ Rm×n with ker(X T ) = {0}, it holds

[18] that

C−1 −X T (XCX T )−1X ≥ 0.(2.15)

3. Yosida schemes. Yosida schemes come basically from an inexact block LU
factorization of matrix A. The first method of this family was introduced in [12, 13]
and consists in replacing the Schur complement Σ by a suitable matrix S.

In [15] and [8] two improved versions of the Yosida method (here named Yosida-3
and Yosida-4) were proposed. Such improved Yosida schemes introduce a correction
step on the pressure with the aim of increasing the accuracy in time for both velocity
and pressure. In particular, these improved Yosida schemes are defined by a new
matrix Q, inside the U -step of (2.10) and acting on the pressure, which corrects the
approximation of the Schur complement Σ. All is done at the algebraic level, without
a compulsory differential interpretation. This feature allows us to neglect the setting
up of boundary conditions for the substeps. All methods and the analysis developed
hereafter can be applied to different kinds of boundary conditions as well.

The idea of Yosida schemes is as follows: at each time-step, instead of solving
system (2.8) by the block LU factorization set in (2.9), we are interested in solving a
new system

(3.1) ÂŴn+1 = Ĝn+1,

where Â := L̂Û is generated by a suitable L̂Û inexact factorization of A, Ŵn+1 is an
approximation of Wn+1 defined as

Ŵn+1 =

[
Ûn+1

P̂n+1

]
, while Ĝn+1 =

⎡⎢⎢⎣ Fn+1
1 +

1

Δt

q−1∑
j=0

βjMÛn−j

Fn+1
2

⎤⎥⎥⎦ .(3.2)

Let H = (Δt/β−1)M
−1; the inexact factors L̂ and Û of A are chosen as follows:

L̂ =

[
C 0

B −BHBT

]
, Û =

[
I C−1BT

0 Q

]
,(3.3)

where the nonsingular matrix Q may be set up by following different strategies (see
section 3.1), and its choice leads the accuracy of the whole scheme. By setting

(3.4) S := −BHBT ,

matrix Â reads

Â =

[
C BT

B SQ− Σ

]
.(3.5)

Matrix S is an approximation of the pressure Schur complement Σ of A and −S > 0.
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For any n = n0, . . . , NT − 1, system (3.1) reads also⎧⎪⎪⎨⎪⎪⎩
CÛn+1 + BT P̂n+1 = Fn+1

1 +
1

Δt

q−1∑
j=0

βjMÛn−j ,

BÛn+1 − (Σ − SQ)P̂n+1 = Fn+1
2

(3.6)

(this is the Yosida counterpart of (2.7)) or again

L̂-step : find Ûn+1/2, P̂n+1/2 :

{
CÛn+1/2 = Ĝn+1

1 ,

SP̂n+1/2 = Ĝn+1
2 −BÛn+1/2,

Û -step : find Ûn+1, P̂n+1 :

{
QP̂n+1 = P̂n+1/2,

C(Ûn+1/2 − Ûn+1) = BT P̂n+1

(3.7)

(this is the Yosida counterpart of (2.10)).
For any tn, system (3.1) is well posed iff Â is invertible, i.e., iff Q is invertible.

As a matter of fact, recalling the definition of Â and thanks to Schur’s formula, we
can write det(Â) = det(C) det(SQ).

In the following section we will present some possible choices for nonsingular
matrices Q and provide algebraic fractional step schemes supplying different accuracy
properties.

3.1. How to set up matrix Q. System (2.7) is equivalent to (3.6) if Â = A,
i.e., if either Q = S−1Σ or Q−1 = Σ−1S, but the exact computation of Q is infeasible,
since it would imply computing Σ directly, which is what we want to avoid. Our aim
is to set suitable sequences of matrices {Q̃p}p≥0 approximating Q such that

(3.8) ∃C > 0 |||Σ − SQ̃p||| ≤ CΔtp+2 as Δt → 0,

where ||| · ||| denotes the 2-norm for matrices. The quantity |||Σ − SQ̃p||| is named

the consistency error and is due to the approximation of A by Â.
The direct definition of Q = S−1Σ and its definition by the inverse Q−1 = Σ−1S

suggest two different strategies for deriving matrices Q̃p invoked in (3.8). The first
strategy exploits the expansion in series of Σ (through the expansion of C−1) and the
matrices so derived will be denoted by {Qp}p≥0. The second strategy takes advantage

of the expansion of Σ−1 as well and the resulting matrices will be denoted by {Q̂p}p≥0.
Let us begin to set up matrices Qp. If ρ(νHK) < 1, we can expand Σ as follows:

Σ = −BC−1BT = −B(I + νHK)−1HBT = −
∑
k≥0

B(−νHK)kHBT .(3.9)

By setting

(3.10) Dk := B(−νHK)kHBT = O(Δtk+1) for k = 0, 1, 2, . . .

we have Σ = −
∑

k≥0 Dk and Q = S−1Σ = −S−1
∑

k≥0 Dk. Therefore, we define

(3.11) Qp := −S−1

p∑
k=0

Dk for p = 0, 1, 2, . . . .
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The explicit forms of the first three items of {Qp} are

Q0 = I, Q1 = I − S−1D1, Q2 = I − S−1D1 − S−1D2.(3.12)

Remark 2. In the case of SEM-NI discretization, the assumption ρ(νHK) < 1
turns into

ν
Δt

β−1
ρ(M−1K) = cν

Δt

β−1
N4h−2 < 1,

where c denotes a generic positive constant independent of Δt, N , and h [3, 4]. It fol-
lows that the convergence of the series

∑
k≥0(−νHK)k to (I+νHK)−1 is guaranteed

if

(3.13) Δt < c
β−1h

2

ν N4
.

It is worth remarking that condition (3.13) implies the nonsingularity of matrices Qp

as well.
To derive the second sequence of matrices {Q̂p} we note that S = −D0 and we

write

Q−1 = Σ−1S =

⎛⎝−∑
k≥0

Dk

⎞⎠−1

· S =

⎛⎝S −
∑
k≥1

Dk

⎞⎠−1

· S =

⎛⎝I − S−1
∑
k≥1

Dk

⎞⎠−1

.

By putting R := S−1(
∑

k≥1 Dk) it holds that Q−1 = (I − R)−1 and, by assuming

that ρ(R) < 1, it holds that Q−1 =
∑

k≥0 R
k as well. Then we rewrite Q−1 as a sum

of matrices R̃k s.t. R̃k = O(Δtk) in order to highlight the dependence on powers of
Δt. We have Q−1 =

∑
k≥0 R̃k and then we set

(3.14) Q̂p :=

(
p∑

k=0

R̃k

)−1

for p = 0, 1, 2 . . . .

To give the explicit form of Q̂p (for p = 0, 1, 2) we compute the powers of R up to
degree 3:

R = S−1D1 + S−1D2 + S−1D3 + O(Δt4),

R2 = (S−1D1)
2 + S−1D1S

−1D2 + S−1D2S
−1D1 + O(Δt4),

R3 = (S−1D1)
3 + O(Δt4),

and recalling that Dk = O(Δtk+1) we have

R̃0 = I,

R̃1 = S−1D1,

R̃2 = S−1D2 + (S−1D1)
2,

R̃3 = (S−1D1)
3 + S−1D1S

−1D2 + S−1D2S
−1D1 + S−1D3.

(3.15)

From definition (3.14) it follows that

Q̂0 = I,

Q̂1 = (I + S−1D1)
−1 = −D−1S,

Q̂2 = (I + S−1D1 + S−1D2 + (S−1D1)
2)−1

= (−D + DS−1D + B(HC)2HBT )−1S,

(3.16)
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where we have set D = BHCHBT and employed the fact that C = H−1 + νK.
Remark 3. We analyze the bound ρ(R) < 1 when SEM-NI are used. By con-

struction, the leading part of R, for Δt → 0, is S−1D1, and we can infer that, for
sufficiently small Δt,

ρ(R)  ρ(S−1D1) =
νΔt

β−1
ρ((BM−1BT )−1BM−1KM−1BT ).

It is possible to prove that the condition ρ(R) < 1 is satisfied under assumption (3.13).
As a matter of fact we set E0 = BM−1BT , E1 = BM−1KM−1BT , E = E−1

0 E1,
and we denote by (λi,pi) an eigenvalue-eigenvector pair of E or, equivalently, an
eigenvalue-eigenvector pair of the generalized eigenvalue problem E1p = λE0p. Since
E0 > 0, the eigenvectors pi can be chosen E0-orthogonal to one other, i.e., pT

i E0pj =
0 if i �= j. Then, for any eigenvector pi (i = 1, . . . , Np), we set vi := M−1/2BTpi

and denote by VE the subspace of R2Nv spanned by {vi}Np

i=1. It is easy to see that
M−1/2KM−1/2vi = λivi holds for any i = 1, . . . , Np, that is, the eigenvalues λi of E
are bounded by the eigenvalues of M−1K.

Proposition 3.1. Matrices Q̂p (for p = 0, 1, 2) are nonsingular.

Proof. Q̂0 is the identity matrix, and Q̂1 = −D−1S is nonsingular since both D
and S are nonsingular matrices. Proving Q̂2 is nonsingular is equivalent to proving
Q̂−1

2 = R̃0 + R̃1 + R̃2 is nonsingular. By definition

Q̂−1
2 = −S−1D + (S−1D)2 + S−1B(HC)2HBT

= S−1BHC(−C−1 −HBT (BHBT )−1BH + H)CHBT

and, since B is a full rank matrix, Q̂−1
2 is nonsingular iff the matrix

(3.17) W = H − C−1 −HBT (BHBT )−1BH

is nonsingular. By recalling that H = β−1

Δt M
−1 > 0, C = H−1 + νK > 0, and K > 0,

we have C − H−1 > 0, and then H − C−1 > 0 (see P3 in section 2), which implies
that (H − C−1) is nonsingular. Since ker(BT ) �= {0}, also BHBT is nonsingular.
Therefore, we set

M =

[
BHBT BH

HBT H − C−1

]
,(3.18)

and we note that matrix W is nothing more than the Schur complement of BHBT

in M, i.e., M/(BHBT ).
By applying Schur’s formula (D3, section 2), det(M) = det(BHBT ) det(W )

holds. On the other hand we can write det(M) = det(H − C−1) det(M/(H − C−1))
as well. Therefore

det(W ) = det(M/(BHBT )) =
det(H − C−1)

det(BHBT )
det(M/(H − C−1))

and det(W ) �= 0 iff det(M/(H − C−1)) �= 0.
Recalling (2.12) we have (H−C−1)−1 = H−1[H− (−C+H−1)−1]H−1, and since

−C + H−1 = −νK, it holds that

M/(H − C−1) = BHBT −BH(H − C−1)−1HBT

= BHBT −BHH−1[H + (νK)−1]H−1HBT = −B(νK)−1BT .
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The thesis follows since K is nonsingular.
As stated by the following lemma, both sequences of matrices Qp and Q̂p yield a

consistency error satisfying estimate (3.8). This lemma generalizes the results given
in [15, 8].

Lemma 3.2. There exist Δt = Δt(ν,N, h) > 0 and positive constants cp =
cp(ν,N, h) and ĉp = ĉp(ν,N, h) such that for any Δt ∈ (0,Δt) and p = 0, 1, 2 the
following estimates hold:

|||Σ − SQp||| = cpΔtp+2 + o(Δtp+2),(3.19)

|||Σ − SQ̂p||| = ĉpΔtp+2 + o(Δtp+2).(3.20)

Proof. By definition (3.12) we have Σ − SQp = −
∑

k≥p+1 Dk.

Estimate (3.19), with cp = νp+1

(β−1)p+2 ρ(B(M−1K)p+1M−1BT ), immediately follows

by recalling that Dk = O(Δtk+1) (for any integer k ≥ 0).
In order to prove (3.20) we begin to consider the matrix Σ−1 − Q̂−1

p S−1. We set

Z =
∑

k≥p+1 R̃k, so that

Σ−1 − Q̂−1
p S−1 =

⎛⎝∑
k≥0

R̃k −
p∑

k=0

R̃k

⎞⎠S−1 = ZS−1.

By using (2.13) we have

(3.21) Σ − SQ̂p = −Σ(Σ−1 − Q̂−1
p S−1)SQ̂p = −ΣZQ̂p.

Estimate (3.20) proceeds by recalling that Σ=−
∑

k≥0 Dk=O(Δt), Z=
∑

k≥p+1 R̃k=

O(Δtp+1) and by noting that Q̂p =
(∑p

k=0 R̃k

)−1
= O(1).

Even though both matrices Qp and Q̂p produce consistency errors of the same

order with respect to Δt, we are inclined to choose matrices Q̂p instead of Qp to set

up Yosida schemes, when p > 0 (recall that Q0 = Q̂0 = I). As a matter of fact we
can easily prove that

(3.22) ĉ1 < c1,

which implies |||Σ − SQ̂1||| < |||Σ − SQ1||| for sufficiently small Δt.
By exploiting the definition of Q̂1 and by using (2.14), with B = S = −D0 and

C = D1, we write the difference Σ − SQ̂1 as follows:

Σ − SQ̂1 = −
∑
k≥0

Dk − S(S + D1)
−1S = −

∑
k≥0

Dk + D0 + D1 −D1(D1 −D0)
−1D1

= −D2 −D1(D1 −D0)
−1D1 + o(Δt3).

On the other hand, Σ−SQ1 = −D2 + o(Δt3). It is immediate to verify that both D2

and D1(D1 −D0)
−1D1 are symmetric matrices, and then the 2-norm ||| · ||| coincides

with the spectral radius ρ(·); moreover it holds that D2 > 0 and D1(D1−D0)
−1D1<0.

If we apply P2 of section 2, we can conclude that

λmax(D2 +D1(D1 −D0)
−1D1) ≤ λmax(D2)+λmax(D1(D1 −D0)

−1D1) < λmax(D2),
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Fig. 3.1. The consistency errors |||Σ−SQp||| and |||Σ−SQ̂p||| for p = 0, 1, 2. The viscosity is
ν = 10−2 at left and ν = 10−4 at right. 4 × 4 equal square spectral elements with polynomial degree
N = 5 are used.

that is,

ĉ1Δt3 = ρ(−D2 −D1(D1 −D0)
−1D1) < ρ(−D2) = c1Δt3.

Results shown in Figure 3.1 confirm (3.22). The proof that ĉ2 < c2 (which implies
|||Σ − SQ̂2||| ≤ |||Σ − SQ2||| for small Δt) is quite long and technical, so we only
report numerical results (again in Figure 3.1) confirming such assertion.

In order to compare the two approaches from a computational point of view, we
note that both matrices Qp and Q̂p are involved in the solution of a linear system like

QP̂n+1 = P̂n+1/2 at each time-step. When p = 0 it holds that Q0 = Q̂0 = I. When
p ≥ 1, solving systems QpP̂

n+1 = P̂n+1/2 means performing 2 (Np × 2Nv)-matrix-
vector products and solving one linear system whose matrix is

∑p
k=0 Dk. If we choose

a direct algebraic solver, the matrix
∑p

k=0 Dk may be assembled and factorized once,

and the computational cost related to the solution of all systems of type QP̂n+1 =
P̂n+1/2 (for any n = n0, . . . , NT − 1) is proportional to N3

p +Np ·Nv ·NT . Otherwise,

solving systems Q̂pP̂
n+1 = P̂n+1/2 means performing 2 · p (Np × 2Nv)-matrix-vector

products, 2 · p (Nv ×Nv)-matrix-vector products, and solving p linear systems whose
matrix is S. By recalling that matrix S is already assembled and factorized inside the
algorithm, since it is used in the L̂-substep of (3.7), the computational cost related

to the solution of all Q̂P̂n+1 = P̂n+1/2 (for any n = n0, . . . , NT − 1) is proportional
to (Nv + Np) · Nv · NT . In conclusion, when we choose a direct algebraic solver to

solve QP̂n+1 = P̂n+1/2, if NT is large (i.e., NT � Nv), the choice Q = Qp will be

more convenient than Q = Q̂p. Nevertheless, matrices Q̂p (3.14) are preferable to
matrices Qp (3.11) for what concerns accuracy with respect to Δt. In this paper we

have preferred accuracy properties and have chosen to approximate Q by Q̂p inside

the definition of Â (or equivalently in either (3.6) or (3.7)).
The choice Q̂0 yields the Yosida (or Yosida-2) method [13, 12], while the choice Q̂1

(resp., Q̂2) provides the Yosida-3 (resp., Yosida-4) scheme introduced in [15] (resp.,
[8]). From now on the term Yosida-(p + 2) (for p = 0, 1, 2) will denote the Yosida
method obtained by replacing Q with Q̂p.

Finally, for any n ≥ n0 we will denote by (ûn
H,p, p̂

n
H,p) ∈ VH ×QH the numerical

solution of (3.6) obtained by replacing Q with Q̂p, while we will denote by Ûn
p (resp.,

P̂n
p ) the vector of the expansion coefficients of ûH,p (resp., p̂H,p) with respect to the

Lagrange basis in VH (resp., QH).
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3.2. Convergence analysis. We define the global errors as the errors between
the exact solution of problem (2.1) and the numerical solution (ûH,p, p̂H,p) obtained
with any Yosida-(p + 2) method, i.e.,

‖u − ûH,p‖�2(H1) :=

(
Δt

NT−1∑
n=n0

‖u(tn) − ûn
H,p‖2

H1(Ω)

)1/2

,

‖p− p̂H,p‖�2(L2) :=

(
Δt

NT−1∑
n=n0

‖p(tn) − p̂nH,p‖2
L2(Ω)

)1/2

.

(3.23)

We can upper-bound global errors (3.23) as follows:

‖u − ûH,p‖�2(H1) ≤ ‖u − uH‖�2(H1) + ‖uH − ûH,p‖�2(H1),

‖p− p̂H,p‖�2(L2) ≤ ‖p− pH‖�2(L2) + ‖pH − p̂H,p‖�2(L2),

where the first terms on the right-hand sides are the errors due to BDF, while the
second ones, induced by the Yosida-(p + 2) scheme, are named splitting errors and
are the errors between the solution (uH, pH) of (2.10) and the solution (ûH,p, p̂H,p)

obtained by solving (3.6) with Q  Q̂p. Therefore, for p = 0, 1, 2, we are interested
in analyzing the splitting errors:

‖uH − ûH,p‖�2(H1) :=

(
Δt

NT−1∑
n=n0

‖un
H − ûn

H,p‖2
H1(Ω)

)1/2

,

‖pH − p̂H,p‖�2(L2) :=

(
Δt

NT−1∑
n=n0

‖pnH − p̂nH,p‖2
L2(Ω)

)1/2

.

(3.24)

Remark 4. From the analysis carried out in [10] it is known that the solution
of the Navier–Stokes problem can be regular for t → 0 under unrealistic nonlocal
compatibility conditions. On the other hand, accuracy in the usual norms �2(H1)
and �2(L2) can be attained only if the solution is regular enough, even when using
high order discretization schemes. Otherwise, high order in time can be recovered
only in suitable weighted norms. In what follows, we will assume that high regularity
hypotheses hold. This ensures that when using BDFq time discretization of order
q(> 1), without the fractional step approach, optimal accuracy is q for both veloc-
ity and pressure. Without such high regularity assumptions, optimal convergence
estimates given in the present paper will hold only far from t = 0. We denote by
|| · ||�2w(V ) a suitable time-weighted norm; the scheme shown in Table 3.1 summarizes
results known in literature.

From now on, by (·, ·) and ‖ · ‖ = (·, ·)1/2 we will denote the classic Euclidean
inner product and the Euclidean norm, respectively, in Rn.

Let U, V ∈ VG be the vectors associated to uH, vH ∈ VH. By recalling that
M and K are the mass and stiffness matrices, respectively, it holds that (MU,V) =
VTMU = (uH,vH)H,Ω and (KU,U) = (∇uH,∇vH)H,Ω. Then we set

‖U‖0 :=
√

(MU,U), ‖U‖1 :=
√

(KU,U).

It is worth pointing out that the norm || · ||1 is the discrete counterpart to the L2-
norm of ∇u. Thanks to the Poincaré inequality, which states that, for any function
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Table 3.1

Low regularity assumptions High regularity assumptions
on the exact solution on the exact solution

(no compatibility conditions imposed)
BDF1 ‖u − uH‖�2(H1) = O(Δt) ‖u − uH‖�2(H1) = O(Δt)

in time ‖p− pH‖�2(L2) = O(Δt1/2) ‖p− pH‖�2(L2) = O(Δt)

Proof: see [2] guidelines of [2]
BDFq ‖u − uH‖�2(H1) = O(Δt) ‖u − uH‖�2(H1) = O(Δtq)

in time ‖p− pH‖�2(L2) = O(Δt1/2) ‖p− pH‖�2(L2) = O(Δtq)

‖u − uH‖�2w(H1) = O(Δtq)

‖p− pH‖�2w(L2) = O(Δtq−1)

Proof: see [6] for q = 2 guidelines of [6, 2]

u ∈ H1
0 (Ω), there exists a positive constant CΩ such that ‖u‖L2(Ω) ≤ CΩ‖∇u‖L2(Ω),

and thanks to the equivalence between the continuous L2-norm and its discrete coun-
terpart induced by the discrete inner product (2.4) [14, 7], ‖uH‖H,Ω ≤ ‖uH‖L2(Ω) ≤
3‖uH‖H,Ω, the following (discrete) Poincaré inequality holds:

(3.25) ‖V‖0 ≤ 3CΩ‖V‖1 for any V ∈ V0
G.

Moreover, since K is s.p.d., for any U,V ∈ VG it holds that

(3.26) (KU,V) = (K1/2U,K1/2V) ≤ ‖K1/2U‖‖K1/2V‖ = ‖U‖1‖V‖1.

Finally, from Lemma 3.2, we immediately deduce that, for p = 0, 1, 2,

(3.27) ((Σ − SQ̂p)P,Q) ≤ ĉpΔtp+2‖P‖‖Q‖ for any P,Q ∈ QG.

Remark 5. In order to prove convergence estimates for the Yosida schemes, we
need to prove that matrix Σ − SQ̂p is definite. With Lemmas 3.3, 3.4, and 3.5

we prove that Σ − SQ̂0 > 0, −(Σ − SQ̂1) ≥ 0 and, under suitable conditions, that
Σ−SQ̂2 > 0. Lemma 3.3 has been proved in [13] by using the analogy with the Yosida
regularization operator; we present here a shorter proof, based on s.p.d. matrices
properties. Lemma 3.4 has been proved in [15] with different arguments. Here we
follow an approach exploiting (2.15), yielding a shorter proof.

Lemma 3.3. Σ − SQ̂0 > 0.
Proof. Inside the proof of Lemma 3.1 we have proved that (H −C−1) > 0. Since

ker(BT ) = {0}, it follows that Σ − SQ̂0 = Σ − S = B(H − C−1)BT > 0.
Lemma 3.4. −(Σ − SQ̂1) ≥ 0.
Proof. By definitions of Σ, S, and Q̂1 we have

−(Σ − SQ̂1) = B[C−1 − (BH)T (BHCHBT )−1BH]BT

and since ker(BT ) = {0}, −(Σ − SQ̂1) ≥ 0 iff C−1 − (BH)T (BHCHBT )−1BH ≥ 0.
The thesis follows by putting X = BH and C = C in (2.15).

Inside the proof of the following lemma, we will use the matrix

(3.28) ˜̃B := −D3 −D1S
−1D2 −D2S

−1D1 −D1(S
−1D1)

2.

Matrix ˜̃B is symmetric, and numerical computations have shown that ˜̃B has real
nonnegative eigenvalues for any space discretization we have considered. Nevertheless
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we cannot prove that it is positive definite, even if it is worth noting that nonnega-
tiveness of its eigenvalues does not depend on the time-step (recalling definitions of
matrices Dk, all the addend in (3.28) are O(Δt3)).

Lemma 3.5. If ˜̃B > 0 and if Δt is sufficiently small, then Σ − SQ̂2 > 0.
Proof. As a particular case of (3.21) we have

(3.29) Σ − SQ̂2 = −Σ(Σ−1 − Q̂−1
2 S−1)SQ̂2,

and we analyze the sign of the three factors of the right-hand side of (3.29). Let us
start by proving that if Δt is small enough, then −SQ̂2 > 0. We set

(3.30) B̃ := D −DS−1D −B(HC)2HBT ,

so that −SQ̂2 = SB̃−1S. Since B̃ is symmetric, then −SQ̂2 is symmetric as well
(and Σ − SQ̂2 is also symmetric); moreover we can apply Sylvester’s law of inertia
[9] and conclude that −SQ̂2 > 0 iff B̃ > 0. In order to prove that B̃ > 0 we
apply P2 of section 2. By construction, both D and −DS−1D − B(HC)2HBT are
symmetric matrices, and we can write that λmin(B̃) ≥ λmin(D) + λmin(−DS−1D −
B(HC)2HBT ). Since D = −S−D1 = O(Δt) and −DS−1D−B(HC)2HBT = −D2−
D1S

−1D1 = O(Δt3), there exist two real constants c1 and c2 such that λmin(D) =
c1Δt and λmin(−DS−1D − B(HC)2HBT ) = c2Δt3; therefore c1 + c2Δt2 > 0 is a
sufficient condition to have λmin(B̃) > 0. Since D = BHCHBT > 0, then c1 > 0,
while we cannot give any estimate on c2. If c2 > 0, no restrictions on Δt are required;
otherwise if c2 < 0, we have to assume that Δt < Δt := (−c1/c2)1/2.

Let us consider now the matrix −(Σ−1 − Q̂−1
2 S−1) = −R̃3S

−1 −
∑

k≥4 R̃kS
−1,

where R̃3S
−1 = O(Δt2) and

∑
k≥4 R̃kS

−1 = O(Δt3), and we analyze only the sign of

−R̃3S
−1. By (3.15) we have −R̃3S

−1 = S−1 ˜̃BS−1, so that −R̃3S
−1 > 0 since ˜̃B > 0.

Whatever the sign of −
∑

k≥4 R̃kS
−1 may be, for sufficiently small Δt, the matrix

−(Σ−1 − Q̂−1
2 S−1) will be s.p.d.

Finally, starting from (3.29) we can write (Σ − SQ̂2)(−SQ̂2)
−1 = Σ(Σ−1 −

Q̂−1
2 S−1) and the thesis follows by noting that the matrix on the right is similar to

a s.p.d. matrix (P5 of section 2) and by applying P4 of section 2, with B = Σ − SQ̂2

and C = (−SQ̂2)
−1.

It is worth noting that the stability of BDFq+Yosida-(p+2) depends on stability
of both BDFq scheme and Yosida splitting. The following lemma extends stability
results proved in [12, 15] and highlights the stability of Yosida splitting when the
associated BDFq method is absolutely stable, i.e., q = 1, 2. On the contrary, when
either BDF3 or BDF4 is considered, it is natural to expect that a stability condition
due to BDF has to be ensured as well.

Lemma 3.6 (stability). BDFq+Yosida-(p + 2) scheme (3.7) is unconditionally
stable if q = 1, 2 and p = 0, while it is conditionally stable if q = 1, 2 and p > 0.

Proof. We consider system (3.6) with Q = Q̂p, F1 = 0, F2 = 0. By using either
the identity 2(a − b, a) = a2 − b2 + (a − b)2 (when q = 1) or 2(3a − 4b + c, a) =
a2 − b2 + (2a− b)2 − (2b− c)2 + (a− 2b+ c)2 (when q = 2), by summing from n = n0

up to NT − 1, by Lemma 3.3, and by neglecting some positive terms, it holds that
‖ÛNT

p ‖2
0 ≤ C, where C is a positive constant depending only on initial data.

When q = 1, 2 and p = 1, we proceed as before. In particular, when p = 1, in view
of Lemma 3.4, a sufficient condition to ensure stability is furnished by ν‖Ûn+1‖2

1 +

((Σ−SQ̂p)P̂
n+1, P̂n+1) ≥ 0 for any n ≥ n0. By recalling (3.20), the previous estimate
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infers a bound on Δt. Finally, when p = 2, Lemma 3.5 ensures positiveness of Σ−SQ̂p

under suitable restrictions on Δt.
We set En

U,p = Un− Ûn
p , En

P,p = Pn− P̂n
p , and En

p = [En
U,p,E

n
P,p]

T , recalling that
p is the subindex of Q̂p.

Theorem 3.7 (convergence). Let us consider systems (2.7) and (3.6) with either
q = 1 or q = 2, and (3.6) with Q = Q̂p for p = 0, 1, 2. If Δt is sufficiently small, then

there exist two positive constants Cp and C̃p, depending on space discretization, but
independent of Δt, such that the following convergence estimates hold:

‖ENT

U,p‖2
0 + νΔt

NT−1∑
n=n0

‖En+1
U,p ‖2

1 ≤ CpΔt2p+3,(3.31)

Δt

NT−1∑
n=n0

‖En+1
P,p ‖2 ≤ C̃pΔt2p+2,(3.32)

i.e., ‖uH − ûH,p‖l∞(L2) ≤ CpΔtp+3/2, ‖uH − ûH,p‖l2(H1) ≤ CpΔtp+3/2, and ‖pH −
p̂H,p‖l2(L2) ≤ C̃pΔtp+1.

Proof. BDF1. We start by considering BDF1 for time approximation of both
systems (2.7) and (3.6). They read⎧⎨⎩

M

Δt
(Un+1 − Un) + νKUn+1 + BTPn+1 = Fn+1

1 ,

BUn+1 = Fn+1
2

(3.33)

and ⎧⎨⎩
M

Δt
(Ûn+1

p − Ûn
p ) + νKÛn+1

p + BT P̂n+1
p = Fn+1

1 ,

BÛn+1
p − (Σ − SQ̂p)P̂

n+1
p = Fn+1

2 .
(3.34)

By subtracting (3.34) from (3.33), we obtain⎧⎨⎩
M

Δt
(En+1

U,p − En
U,p) + νKEn+1

U,p + BTEn+1
P,p = 0,

BEn+1
U,p − (Σ − SQ̂p)E

n+1
P,p = −(Σ − SQ̂p)P

n+1,
(3.35)

then multiply the first and the second equations of (3.35) by VT = 2Δt(En+1
U,p )T and

QT = 2Δt(En+1
P,p )T , respectively, and we subtract the second equation from the first

one. We obtain

(M(En+1
U,p − En

U,p),E
n+1
U,p ) + 2νΔt(KEn+1

U,p ,En+1
U,p )(3.36)

+ 2Δt((Σ − SQ̂p)E
n+1
P,p ,En+1

P,p ) = 2Δt((Σ − SQ̂p)P
n+1,En+1

P,p ).

Moreover, by using the identity 2(a − b, a) = |a|2 − |b|2 + |a − b|2 and the definite
positivity/negativity of (Σ − SQ̂p) (Lemmas 3.3, 3.4, and 3.5), we have

‖En+1
U,p ‖2

0 − ‖En
U,p‖2

0 + ‖En+1
U,p − En

U,p‖2
0 + 2νΔt‖En+1

U,p ‖2
1

≤ 2Δt((Σ − SQ̂p)P
n+1,En+1

P,p ) − 2γΔt((Σ − SQ̂p)E
n+1
P,p ,En+1

P,p ),

where γ = 0 when p = 0 or when p = 2 and ˜̃B > 0; otherwise γ = 1 when p = 1 or

p = 2 and ˜̃B is not positive definite.
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By applying the Cauchy–Schwarz inequality, estimate (3.27), and the Young in-
equality it follows that

‖En+1
U,p ‖2

0 − ‖En
U,p‖2

0 + ‖En+1
U,p − En

U,p‖2
0 + 2νΔt‖En+1

U,p ‖2
1

≤ 1

2ε
‖(Σ − SQ̂p)P

n+1‖2 + 2εΔt2‖En+1
P,p ‖2 + 2γĉ2pΔtp+3‖En+1

P,p ‖2

≤
ĉ2p
2ε

Δt2p+4‖Pn+1‖2 +
(
2εΔt2 + 2γĉ2pΔtp+3

)
‖En+1

P,p ‖2,

and by summing on n = n0, . . . , NT − 1 we obtain

‖ENT

U,p‖2
0 +

NT−1∑
n=n0

‖En+1
U,p − En

U,p‖2
0 + 2νΔt

NT−1∑
n=n0

‖En+1
U,p ‖2

1(3.37)

≤
ĉ2p
2ε

Δt2p+3

(
Δt

NT−1∑
n=n0

‖Pn+1‖2

)

+
(
2εΔt2 + 2γĉ2pΔtp+3

)NT−1∑
n=n0

‖En+1
P,p ‖2.

We denote by β the inf-sup constant which depends on the space discretization but
that is independent of Δt. Thanks to the inf-sup condition, to the first equation in
(3.35), to (3.25) and (3.26), we have

‖En+1
P,p ‖ ≤ 1

β
sup

V∈V0
G

V �=0

|(BTEn+1
P,p ,V)|

‖V‖1
=

1

β
sup

V∈V0
G

V �=0

|( M
Δt (E

n+1
U,p − En

U,p) + νKEn+1
U,p ,V)|

‖V‖1

≤ 1

β

[
3CΩ

Δt
‖En+1

U,p − En
U,p‖0 + ν‖En+1

U,p ‖1

]
and then

Δt

NT−1∑
n=n0

‖En+1
P,p ‖2 ≤ Δt

β2

[
18C2

Ω

Δt2

NT−1∑
n=n0

‖En+1
U,p − En

U,p‖2
0 + 2ν2

NT−1∑
n=n0

‖En+1
U,p ‖2

1

]
.(3.38)

Now we note that there exists a positive constant CP such that Δt(
∑NT−1

n=n0
‖Pn+1‖2) ≤

CP . As a matter of fact, p ∈ L2(0, T ;L2
0(Ω)), while the discretization error on the

pressure associated to the pure BDF1 scheme (3.33) satisfies the inequality Δt
∑NT−1

n=n0

‖p(tn+1) − pH(tn+1)‖2 ≤ cΔt [2].
Therefore, we replace (3.38) in (3.37) and obtain

‖ENT

U,p‖2
0 +

NT−1∑
n=n0

‖En+1
U,p − En

U,p‖2
0 + 2νΔt

NT−1∑
n=n0

‖En+1
U,p ‖2

1

≤
ĉ2pCP

2ε
Δt2p+3 +

(
εΔt

2
+ γĉ2pΔtp+2

)
Δt

β2

×
[

18C2
Ω

Δt2

NT−1∑
n=n0

‖En+1
U,p − En

U,p‖2
0 + 2ν2

NT−1∑
n=n0

‖En+1
U,p ‖2

1

]
.
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If γ = 0, we choose ε = β2/(18C2
Ω), we move on the left the terms depending on

EU , and, under the assumption Δt ≤ 18C2
Ω/ν, we obtain

(3.39) ‖ENT

U,p‖2
0 +

1

2

NT−1∑
n=n0

‖En+1
U,p − En

U,p‖2
0 + νΔt

NT−1∑
n=n0

‖En+1
U,p ‖2

1 ≤
9C2

Ωĉ
2
pCP

β2
Δt2p+3.

Otherwise, if γ = 1, we choose ε = β2/(27C2
Ω), again we move on the left the

terms depending on EU,p, and we have

‖ENT

U,p‖2
0 +

(
2

3
− Δtp+1

18ĉ2pC
2
Ω

β2

)
NT−1∑
n=n0

‖En+1
U,p − En

U,p‖2
0

+ νΔt

(
2 − νΔt

27C2
Ω

−
2νĉ2pΔt2p+3

β2

)
NT−1∑
n=n0

‖En+1
U,p ‖2

1 ≤
27C2

Ωĉ
2
pCP

2β2
Δt2p+3.

If we require that Δt ≤ min
{(

β

6
√

3ĉpCΩ

)(p+1)/2
,

27C2
Ω

2ν ,
(

β
2ĉp

√
ν

)1/(2p+3)}
, an estimate

like (3.39), but with a different numeric constant, is true as well.
In conclusion, by neglecting some positive terms the estimate (3.31) holds, that

is, the Yosida-(p+2) method is (p+3/2)th order accurate on the velocity with respect
to both �∞(L2)- and �2(H1)-norms, with Cp = Cp(CΩ, ĉp, CP , β).

Finally, from (3.38) and (3.31), the estimate (3.32) on the pressure holds as well,
that is, the Yosida-(p+ 2) is (p+ 1)th order accurate on the pressure with respect to
the �2(L2)-norm, with C̃p = C̃p(CΩ, ĉp, CP , β).

BDF2. We take into account both systems (2.7) and (3.6) with q = 2 and subtract
the second system from the first one, obtaining⎧⎨⎩

M

2Δt
(3En+1

U,p − 4En
U,p + En−1

U,p ) + νKEn+1
U,p + BTEn+1

P,p = 0,

BEn+1
U,p − (Σ − SQ̂p)E

n+1
P,p = −(Σ − SQ̂p)P

n+1.
(3.40)

Then we multiply the first and the second equations of (3.40) by VT = 4Δt(En+1
U,p )T

and QT = 4Δt(En+1
P,p )T , respectively, and subtract the second equation from the first

one. We obtain

2(M(3En+1
U,p − 4En

U,p + En−1
U,p ),En+1

U,p ) + 4νΔt(KEn+1
U,p ,En+1

U,p )(3.41)

+ 4Δt((Σ − SQ̂p)E
n+1
P,p ,En+1

P,p ) = 4Δt((Σ − SQ̂p)P
n+1,En+1

P,p ).

Moreover, by using the identity 2(3a− 4b+ c, a) = |a|2 − |b|2 + |2a− b|2 − |2b− c|2 +
|a−2b+c|2, working as in the proof for BDF1, and by neglecting some positive terms,
we obtain

‖ENT

U,p‖2
0 +

NT−1∑
n=n0

‖En+1
U,p − 2En

U,p + En−1
U,p ‖2

0 + 4νΔt

NT−1∑
n=n0

‖En+1
U,p ‖2

1

≤
ĉ2p
2ε

CPΔt2p+3 + 4
(
2εΔt2 + γĉ2pΔtp+3

)NT−1∑
n=n0

‖En+1
P,p ‖2.(3.42)
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By applying the inf-sup condition, we have

‖En+1
P,p ‖ ≤ 1

β
sup

V∈V0
G

V �=0

|(BTEn+1
P,p ,V)|

‖V‖1

≤ 1

β

[
3CΩ

2Δt
‖3En+1

U,p − 4En
U,p + En−1

U,p ‖0 + ν‖En+1
U,p ‖1

]

≤ 1

β

[
3CΩ

2Δt
‖En+1

U,p − 2En
U,p + En−1

U,p ‖0 + 2‖En+1
U,p − En

U,p‖0 + ν‖En+1
U,p ‖1

]
and then

Δt

NT−1∑
n=n0

‖En+1
P,p ‖2 ≤ 3Δt

β2

[
ν2

NT−1∑
n=n0

‖En+1
U,p ‖2

1(3.43)

+
9C2

Ω

4Δt2

NT−1∑
n=n0

(
‖En+1

U,p − 2En
U,p + En−1

U,p ‖2
0 + 4‖En+1

U,p − En
U,p‖2

0

)]
.

Now we have to estimate the term ‖En+1
U,p − En

U,p‖2
0 which is not present on the left-

hand side of (3.42). To this aim we multiply the first equation of (3.40) by 4Δt(En+1
U,p −

En
U,p)

T , the second equation of (3.42) at both time tn+1 and tn by 4Δt(En+1
p,p )T , and

we linearly combine them in order to cut the term (BEn+1
P,p ,En+1

U,p −En
U,p). By rewriting

3En+1
U,p −4En

U,p+En−1
U,p = 2(En+1

U,p −En
U,p)+(En+1

U,p −En
U,p)−(En

U,p−En−1
U,p ) by applying

(2a, a− b) = |a|2 − |b|2 + |a− b|2, we have

5‖En+1
U,p − En

U,p‖2
0 − ‖En

U,p − En−1
U,p ‖2

0 + ‖En+1
U,p − 2En

U,p + En−1
U,p ‖2

0

+ 2νΔt
(
‖En+1

U,p ‖2
1 − ‖En

U,p‖2
1 + ‖En+1

U,p − En
U,p‖2

1

)
= −4Δt((Σ − SQ̂p)(P

n+1 − Pn),En+1
P,p ) + 4Δt((Σ − SQ̂p)(E

n+1
P,p − En

P,p),E
n+1
P,p ).

Therefore, by applying the same techniques as before, we have

4

NT−1∑
n=n0

‖En+1
U,p − En

U,p‖2
0 +

NT−1∑
n=n0

‖En+1
U,p − 2En

U,p + En−1
U,p ‖2

0(3.44)

+ 2νΔt

NT−1∑
n=n0

‖En+1
U,p − En

U,p‖2
1

≤ 4

ε
ĉ2pCPΔt2p+3 +

(
2εΔt + 3ĉpΔtp+2

)(
Δt

NT−1∑
n=n0

‖En+1
P,p ‖2

)
,

where we have used
∑

n ‖Pn+1 − Pn‖2 ≤ 2
∑

n ‖Pn+1‖2 and
∑

n ‖E
n+1
P,p − En

P,p‖2 ≤
2
∑

n ‖E
n+1
P,p ‖2. By summing inequalities (3.42) and (3.44) and by neglecting some
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positive terms, it holds that

‖ENT

U,p‖2
0 + 2

NT−1∑
n=n0

‖En+1
U,p − 2En

U,p + En−1
U,p ‖2

0 + 4

NT−1∑
n=n0

‖En+1
U,p − En

U,p‖2
0

+ 2νΔt

NT−1∑
n=n0

‖En+1
U,p ‖2

1(3.45)

≤ 9

2ε
ĉ2pCPΔt2p+3 + (10εΔt + 7ĉpΔtp+2)

(
Δt

NT−1∑
n=n0

‖En+1
P,p ‖2

)
.

By using (3.43) in (3.45) and by moving the terms with EU,p on the left, we have

‖ENT

U,p‖2
0 +

(
4 − 3

β2
(10εΔt + 7ĉpΔtp+2)

9c2Ω
4Δt

)NT−1∑
n=n0

‖En+1
U,p − En

U,p‖2
0

+

(
2 − 3

β2
(10εΔt + 7ĉpΔtp+2)

9c2Ω
4Δt

)NT−1∑
n=n0

‖En+1
U,p − 2En

U,p + En−1
U,p ‖2

0

+

(
4νΔt− 3

β2
(10εΔt + 7ĉpΔtp+2)ν2Δt

)NT−1∑
n=n0

‖En+1
U,p ‖2

1 ≤ 9

2ε
ĉ2pCPΔt2p+3.

We choose ε = 1
10 (β2/(27C2

Ω) − 7ĉpΔtp+1) and, under the assumption Δt ≤ min{27

C2
Ω/ν, (4β

2/(189ĉpC
2
Ω))1/(p+1)}, the estimate (3.31) follows. The estimate (3.32) fol-

lows by both (3.31) and (3.43).
Remark 6. It is worth noting that the assumptions required on the time-step

by the previous theorem are not very restrictive; note that for Ω ⊂ Rd it holds that

CΩ = 2meas(Ω)
d and β = O(N (1−d)/2). The most restrictive condition on the time-step

is that given in (3.13) ensuring the series −
∑

k≥0 Dk converges to Σ.
Remark 7. When either BDF3 or BDF4 are considered, under suitable stability

conditions on the time-step, we expect that convergence estimates like (3.31)–(3.32)
hold for the couple BDFq-Yosida-(p + 2), as well as for q = 3, 4, as numerical results
of the next section show.

Remark 8 (extensions to the Navier–Stokes case). We consider now the semi-
discretization of unsteady Navier–Stokes equations by the following semi-implicit
scheme: for any n = n0, . . . , NT − 1, look for the solution (un+1, pn+1) of the system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

β−1

Δt
un+1 − νΔun+1 + N (un−q+1, . . . ,un;un+1)

+∇pn+1 = fn+1 +

q−1∑
j=0

βj

Δt
un−j in Ω,

∇ · un+1 = 0 in Ω,

un+1 = gn+1 on ∂Ω,

(3.46)

where N represents either a full explicit discretization of the convective term if

(3.47) N (un−q+1, . . . ,un;un+1) :=

q−1∑
j=0

αj(u
n−j · ∇)un−j
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or a semi-implicit discretization of the convective term if

(3.48) N (un−q+1, . . . ,un;un+1) = (u∗ · ∇)un+1, u∗ =

q−1∑
j=0

αju
n−j ,

and where αj ∈ R (for j = 0, . . . , q − 1) are the coefficients of an extrapolation for-
mula of order q. When the convective term is handled by the explicit form (3.47)
the Yosida method can be used to solve (3.46), (3.47) and the analysis can be eas-
ily extended provided that N (un−q+1

H , . . . ,un
H;un+1

H ) − N (ûn−q+1
H , . . . , ûn

H; ûn+1
H ) is

bounded. Otherwise, when the convective term is treated by the semi-implicit form
(3.48) the counterpart of (3.6) reads as follows: for n = n0, . . . , NT − 1 solve

(3.49)⎧⎪⎪⎨⎪⎪⎩
(
β−1

Δt
M + Cn({Ûn−j}q−1

j=0)

)
Ûn+1 + BT P̂n+1 = Fn+1

1 +
1

Δt

q−1∑
j=0

βjMÛn−j ,

BÛn+1 − (−B(Cn({Ûn−j}q−1
j=0))

−1BT − SQ)P̂n+1 = Fn+1
2 ,

where Cn({Un−j}q−1
j=0) := β−1

Δt M+νK+N(Un−q+1, . . . ,Un), and N(Un−q+1, . . . ,Un)
is the matrix related to the discretization of the convective term. It is immediate to
see that matrix Σ is now time-dependent and both the derivation and analysis of
Yosida schemes cannot be easily extended starting from the Stokes case.

Nevertheless, many numerical results presented in [8, 7] show that the convergence
orders proved in Theorem 3.7 for the Stokes case still hold for Navier–Stokes equations
with semi-implicit treatment of the convective term.

4. Numerical results on time-dependent Stokes equations. We consider
the computational domain Ω = (−1, 1)2 and t ∈ (0, 1), while the right-hand side, the
boundary conditions, and the initial conditions are set so that the exact solution is

u(x, y, t) = [(t + 1) sin(x) sin((t + 1)y), cos(x) cos((t + 1)y)]T ,

p(x, y, t) = cos(x) sin((t + 1)y).
(4.1)

In Figure 4.1 we report the splitting errors (3.24) obtained by using either BDF1
or BDF2. In Figure 4.2 we show the global errors (3.23) for p = 0, 1, 2 by using
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Fig. 4.1. Splitting errors (3.24) for the exact solution (4.1). Black symbols refer to runs with
BDF1, while empty symbols refer to runs with BDF2. ν = 10−3, N = 16, and h = 2 (one spectral el-
ement). The convergence history of Yosida-4 is stopped by the spectral element method discretization
error.
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Fig. 4.2. Global errors (3.23) for the exact solution (4.1). ν = 10−3, N = 16, and h = 1 (2× 2
spectral elements). The convergence history of BDF4 +Yosida-4 is stopped by both spectral element
method discretization and rounding errors. The splitting errors prevail over the errors due to BDF4.
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Fig. 4.3. Global errors (3.23) for the exact solution (4.1). ν = 10−3, N = 16, and H = 1 (2× 2
spectral elements). The convergence history of BDF4 +Yosida-4 is stopped by both spectral element
method discretization and rounding errors. The splitting errors due to Yosida-(p + 2) schemes are
of the same order as those produced by BDFp.

BDF4 time approximation; finally in Figure 4.3 we show the global errors (3.23) for
p = 0, 1, 2 by using BDFq time approximation, with q = p + 2.

Even if Theorem 3.7 ensures that the splitting errors (3.24) behave like Δtp+3/2

for the velocity and Δtp+1 for the pressure, numerical results on the solution (4.1)
provide that the splitting errors of Yosida-(p + 2) schemes behave like Δtp+2 for the
velocity and like Δtp+3/2 for the pressure for both BDF1 and BDF2. Global errors
depend on convergence order of both BDF and Yosida-(p + 2) schemes; in particular
for the results of Figure 4.2 we have used BDF4, so that, for p = 0, 1, 2, splitting errors
prevail over the error of BDF. For the results of Figure 4.3 we have coupled Yosida-2
with BDF2, Yosida-3 with BDF3, and Yosida-4 with BDF4 and have obtained a
global approximation error of order p+ 2 = q for the velocity and of order p+ 3/2 for
the pressure. We refer to [8, 7, 15] for numerical results about the approximation of
Navier–Stokes equations.
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