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FINITE-ELEMENT PRECONDITIONING OF G-NI SPECTRAL
METHODS∗

CLAUDIO CANUTO† , PAOLA GERVASIO‡ , AND ALFIO QUARTERONI§

Abstract. Several old and new finite-element preconditioners for nodal-based spectral discretiza-
tions of −Δu = f in the domain Ω = (−1, 1)d (d = 2 or 3), with Dirichlet or Neumann boundary
conditions, are considered and compared in terms of both condition number and computational effi-
ciency. The computational domain covers the case of classical single-domain spectral approximations
(see [C. Canuto et al., Spectral Methods. Fundamentals in Single Domains, Springer, Heidelberg,
2006]), as well as that of more general spectral-element methods in which the preconditioners are ex-
pressed in terms of local (upon every element) algebraic solvers. The primal spectral approximation
is based on the Galerkin approach with numerical integration (G-NI) at the Legendre–Gauss–Lobatto
(LGL) nodes in the domain. The preconditioning matrices rely on either P1, Q1, or Q1,NI (i.e., with
numerical integration) finite elements on meshes whose vertices coincide with the LGL nodes used for
the spectral approximation. The analysis highlights certain preconditioners, which yield the solution
at an overall cost proportional to Nd+1, where N denotes the polynomial degree in each direction.
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1. Introduction. Spectral methods are currently recognized as among the fun-
damental successful strategies for numerically solving partial differential equations.
Their distinguishing feature is the intrinsic ability to yield a high rate of convergence
(even exponentially fast) for smooth solutions. Their potential drawback arises from
the severe condition number (higher than those of the corresponding finite-element or
finite-difference matrices, for instance) of the associated algebraic system. This fact
has called, over the years, for the development of ad hoc preconditioning strategies. In
this regard, a major conceptual breakthrough for preconditioning nodal-based spec-
tral methods has been the intuition (early pursued by Orszag [22], Deville and Mund
[13], and Canuto and Quarteroni [8]) of using lower-order approximation matrices
(those of finite differences or finite elements) built up on the same grid involved in
the spectral discretization.

Orszag considered the matrix arising from the Fourier or Chebyshev collocation
approximation of the Laplace operator with or without periodic boundary condi-
tions; he proposed to precondition it by the second-order finite-difference matrix built
up on the same collocation grid. Successively, Canuto and Quarteroni extended
the finite-difference preconditioner to the variable-coefficients differential operator
Lu = −∇·(ν(x)∇u)+α(x)u with Dirichlet boundary conditions; moreover, they intro-
duced a bilinear Lagrange finite-element preconditioner. Independently, Deville and
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Mund proposed to precondition the Chebyshev collocation matrix by either bilinear
or biquadratic Lagrange finite elements, as well as by bicubic Hermite elements. They
investigated the efficiency of such preconditioners and deduced that bilinear Lagrange
elements produced spectral accuracy with the minimum computational work. In the
successive paper [14], Deville and Mund analyzed the spectrum of the Chebyshev col-
location matrix when preconditioned by finite differences, Lagrange or Hermite finite
elements, versus the variation of both boundary conditions and operator coefficients.
In [26], Quarteroni and Zampieri proposed and investigated a bilinear finite-element
preconditioner for the matrix arising from a Galerkin discrete variational formulation
of the Laplace equation with either Neumann or Dirichlet boundary conditions; the
use of numerical integration based on the Legendre–Gauss–Lobatto grid yields the
equivalence of the Galerkin (or weak) approach with the collocation (or strong) ap-
proach, up to a multiplication by a diagonal matrix coinciding with the spectral mass
matrix. The use of Legendre expansions instead of Chebyshev ones permits the formu-
lation of spectral methods in a weak form, an alternative to the strong one, yielding
greater generality and flexibility. Indeed, the weak Legendre formulation prevailed
over strong forms, and various preconditioners based on either linear (P1) or bilinear
(Q1) finite elements were used also inside multidomain strategies (see, e.g., [18, 9]).

What follows is a brief account on known theoretical results for the above-
mentioned preconditioners on the Laplace operator. Orszag [22] proved that the
condition number of the Fourier collocation matrix (for periodic boundary condi-
tions) preconditioned by finite differences is bounded by π2/4. The same result was
established by Haldenwang et al. [20] for the Chebyshev collocation case. Canuto [6]
and Parter and Rothman [25] proved the so-called finite-element–spectral equivalence
(sometimes referred to as the FEM-SEM equivalence) in both L2- and H1-norms
for univariate functions; in particular, the equivalence in the H1-norm states that
the linear finite-element stiffness matrix built on the Legendre–Gauss–Lobatto grid is
spectrally equivalent to the nodal-based Legendre Galerkin stiffness matrix. Thanks
to the tensorial structure of interpolation operators, such results are easily extended
to multivariate functions for multilinear (Q1) finite elements. Moreover, Parter and
Rothman [25] also proved the equivalence for P1 elements in two dimensions. Fi-
nally, Parter [23, 24] investigated the preconditioning of the Legendre collocation (or
strong) spectral matrix by both bilinear finite elements and finite differences, and he
proved that the eigenvalues of the preconditioned matrices are bounded in modulus
independently of N .

In this paper we further elaborate on this algorithmic and theoretical pathway.
First, we propose several new kinds of preconditioners and analyze their theoretical
behavior. Next, we extensively investigate their numerical performance and com-
pare it with those of already existing preconditioners. More specifically, in addition
to classical P1 and Q1 finite-element preconditioners, we consider a number of pre-
conditioners based on Q1 finite elements with numerical integration. We distinguish
between strong and weak forms of the reference differential problem, and we adapt
finite-element preconditioners to both forms. Moreover, since strong forms are not
symmetric, to allow for the use of the conjugate-gradient algorithm, we also propose
symmetrized-strong versions of such preconditioners.

A careful numerical investigation, supported in many cases by theoretical proofs,
shows that all preconditioners considered in this paper are spectrally equivalent to
the corresponding Legendre spectral matrices. The inspection of the condition num-
bers of the preconditioned matrices indicates that the preconditioner based on the
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Q1 approach for the strong form gives the smallest condition number. However, if
we measure preconditioner efficiency in terms of CPU-time, the best performance is
obtained by the preconditioners based on the Q1 approach with numerical integration,
for both 2D and 3D (two- and three-dimensional) geometries. Symmetrized-strong
preconditioners show very good theoretical properties, i.e., their iterative condition
numbers are very small, yet they are not efficient from the computational point of view
due to the higher cost of each iteration. Finally, we have considered three different
algebraic solvers to compute the preconditioned residual at each conjugate-gradient
iteration: the classical Cholesky factorization, a multifrontal method with nested dis-
section ordering, and a preconditioned conjugate-gradient with inexact factorization.
The computational performances of each of these solvers have been carefully measured
and compared.

Our analysis will concern the case of a reference computational domain, a square
in 2D, a cube in 3D. This choice has a twofold motivation. On the one hand, spec-
tral methods are still widely used nowadays to approximate (initial-) boundary-value
problems in a single domain (see [7]): the latter is either the reference hypercube
Ω̂ = (−1, 1)d (d = 2, 3) or another domain Ωs that can be mapped into Ω̂ by an
invertible regular map Fs : Ωs → Ω̂. On the other hand, our results may also be of
interest in the framework of spectral element methods (SEMs). The latter are set up
on a computational domain Ω, possibly featuring a complex shape, that is split into
smaller subdomains, say Ωm, m = 1, . . . ,M , which may or may not overlap. In this
context, domain decomposition preconditioners are typically built upon an additive
sum of local terms, which involve restriction and prolongation matrices and local al-
gebraic solvers on each subdomain, say, for the sake of conciseness,

∑
mRmA

−1
m Rm.

The solution of the local systems Amwm = rm on each subdomain Ωm must therefore
be efficiently addressed by either direct factorization algorithms (in the case where
the size of local matrices is moderate) or preconditioned iterative algorithms. The
latter can benefit from the preconditioning strategies developed in this paper on the
reference domain Ω̂.

We remark that, even if the focus of the paper is on using FEM low-order dis-
cretizations as preconditioners for nodal-based spectral discretizations, many alterna-
tive choices are possible in the context of modal-based methods, e.g., those based on
multigrid and multilevel techniques [4, 5].

An outline of the paper is as follows. In section 2 we review both spectral and
finite-element discretizations of the Laplace problem. In section 3 we introduce all
the preconditioners discussed in the paper. In section 4 we theoretically analyze the
iterative condition numbers of all the weak forms and of those strong forms based on
both Q1 and Q1 with numerical integration approaches. We also briefly consider the
case of variable diffusion coefficient and Neumann boundary conditions. In section 5
we introduce the algebraic solvers for computing the preconditioned residuals, and we
report a detailed analysis of the computational costs of all possible strategies.

2. Galerkin-numerical integration and finite-element matrices. We first
consider the homogeneous Dirichlet boundary-value problem

(2.1) −Δu = f in Ω = (−1, 1)d, u = 0 on ∂Ω,

where d = 1, 2, 3 and f ∈ C0(Ω). Other boundary conditions will be discussed later
on.

The Legendre Galerkin–numerical integration (G-NI) discretization of this prob-
lem consists of finding a polynomial u

N
in Q0

N(Ω) (the space of the algebraic polyno-
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mials of degree ≤ N in each direction, vanishing on ∂Ω) satisfying

(2.2) (∇u
N
,∇v

N
)N = (f, v

N
)N for all v

N
∈ Q0

N (Ω),

where (·, ·)N denotes the d-dimensional Legendre–Gauss–Lobatto (LGL) discrete inner
product in Ω; it can be written as

(2.3) (u, v)N =

(N−1)d∑
j=1

u(xj)v(xj)wj , u, v ∈ Q0
N(Ω),

where xj (for j = 1, . . . , (N −1)d) denote the (N −1)d interior LGL nodes (numbered
in lexicographical order) and wj are the corresponding weights (see [7, sect. 2.2]).

The algebraic system corresponding to (2.2) reads

(2.4) K
GNI

u =M
GNI

f ,

where u and f are the vectors whose components are the values of u
N

and f at xj .
Correspondingly, ψj (for j = 1, . . . , (N − 1)d) will denote the characteristic Lagrange
polynomial at xj , defined by the conditions ψj ∈ Q0

N(Ω) and ψj(xk) = δjk for all
k = 1, . . . , (N − 1)d. Thus, the symmetric positive-definite (s.p.d.) stiffness and mass
matrices KGNI and MGNI are defined as

(K
GNI

)ij = (∇ψj ,∇ψi)N , (M
GNI

)ij = (ψj , ψi)N ,(2.5)

for i, j = 1, . . . , (N − 1)d. While the algebraic system (2.4) corresponds to the dis-
cretization of the weak form of (2.1), the linear system

(2.6) M−1
GNI

KGNIu = f

corresponds to the discretization of (2.1) by the collocation approach (see [7, 3]), also
referred to as the strong form. In view of an efficient iterative solution, system (2.6)
can be equivalently written in symmetric form as

(2.7) (M−1/2
GNI

K
GNI

M−1/2
GNI

)(M1/2
GNI

u) =M1/2
GNI

f ,

where, given any s.p.d. matrix B, B1/2 denotes its square root, i.e., the matrix such
that B1/2B1/2 = B, while B−1/2 is a shorthand notation for (B1/2)−1. System (2.7)
will be referred to as the symmetrized-strong form.

We will write systems (2.4), (2.6), and (2.7) in the general form

(2.8) Lũ = f̃ ,

where, for v = u or f , the symbol ṽ means v in both (2.4) and (2.6), while it stands
for M1/2

GNI
v in (2.7).

The stiffness matrix KGNI is structured with lower and upper bandwidth equal
to nb = (N − 1)d−1(N − 2); the total number of its nonzero elements is about nz =
d ·N (d+1). Thanks to the orthogonality of Lagrange basis functions ψj in the discrete
inner product (·, ·)N , the mass matrix MGNI is diagonal.

The extremal eigenvalues of K
GNI

and M
GNI

satisfy the following estimates
[3, 21, 7],

λmin(KGNI
) � N−2 , λmax(KGNI

) � N ,
λmin(MGNI ) � N−2 , λmax(MGNI ) � N−1 ,

(2.9)
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Figure 2.1. Finite elements in Ω induced by the 2D LGL grid. (a) Q1, (b) P1 with all triangles
oriented in the same way, (c) P1 with alternating orientation, (d) P1 with random orientation.

and this yields

(2.10) K(K
GNI

) � N3, K(M−1
GNI

K
GNI

) = K(M−1/2
GNI

K
GNI

M−1/2
GNI

) � N4,

where K(A) := maxi λi(A)/mini λi(A) is the so-called iterative condition number of
any matrix A similar to an s.p.d. matrix.

The matrix M−1
GNI

K
GNI

is similar to an s.p.d. matrix since both M
GNI

and

K
GNI

are s.p.d. matrices. Moreover, M−1/2
GNI

K
GNI

M−1/2
GNI

is symmetric and similar
to M−1

GNI
K

GNI
.

It is well known (see, e.g., Figure 4.46 in [7]) that the solution of (2.8) by a
direct method is efficient only for very small values of N (on the order of 10). For
larger systems, preconditioned iterative techniques should be preferred. Among them,
algebraic preconditioners, such as those based on the diagonal or the incomplete
Cholesky factorization of the stiffness matrix, yield iterative condition numbers of the
preconditioned matrix which grow linearly with respect to N (see Figures 4.44–4.45
in [7]). On the other hand, preconditioners based on the sparse matrices generated by
low-order finite-element discretizations on the Gauss-Lobatto grid may yield iterative
condition numbers not only independent of N but also extremely small (close to
unity).

In what follows, we will carry on a thorough comparative investigation of the
performances of several finite-element preconditioners; each of them is inspired by one
of the weak, strong, or symmetrized-strong forms, (2.4), (2.6), or (2.7), introduced
above.

The finite-element matrices we are going to consider are built on the partition (or
mesh) of Ω = [−1, 1]d, made of all the rectangles in two or parallelepipeds in three
dimensions (in general, d-intervals denoted by R) whose vertices are two consecutive
LGL nodes in each direction (see Figure 2.1(a)). On such a mesh, piecewise d-linear
shape functions are defined, yielding Q1 finite elements. Alternatively, one can build
the finite-element preconditioners on the mesh of Ω made of triangles or tetrahedra
(in general, simplices denoted by T ), still with vertices at the LGL nodes (see Fig-
ures 2.1(b)–(d) and 2.2), corresponding to P1 finite elements. In 2D geometries, two
triangles T are obtained by splitting each rectangle R by one of its diagonals; we
distinguish among uniformly oriented meshes as in Figure 2.1(b), alternating meshes
as in Figure 2.1(c), and random meshes as in Figure 2.1(d). When Ω ⊂ R3, we have
considered two splittings of a hexahedron into tetrahedra, with five or six elements, as
shown in the left or right portions of Figure 2.2, respectively. The latter choice allows
us to put side by side hexahedra with the same internal splitting, leading to a globally
uniformly oriented mesh. The former choice requires two adjacent hexahedra to have
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Figure 2.2. At left (resp., right), two adjacent hexahedra, each of them partitioned into five
(resp., six) tetrahedra, which have two consecutive LGL nodes (in each direction) as vertices.

complementary splittings which reflect into each other across the common interface;
they generate a global alternating mesh.

Let ϕj (with j = 1, . . . , (N − 1)d) denote the Q1 finite-element characteristic
Lagrange function at an interior xj , i.e., the globally continuous, piecewise d-linear
function in eachR, vanishing on ∂Ω, such that ϕj(xk) = δjk for all k = 1, . . . , (N−1)d.
The associated finite-element stiffness matrix KQ1 is defined by

(2.11) (KQ1)ij = (∇ϕj ,∇ϕi), i, j = 1, . . . , (N − 1)d ,

where (·, ·) denotes the standard L2-inner product in Ω. We will also consider its
numerical approximation KQ1,NI , defined by

(2.12) (KQ1,NI )ij =
∑
R

∫
R

Π1,R(∇ϕT
j ∇ϕi) dx, i, j = 1, . . . , (N − 1)d,

where Π1,R(g) denotes the d-linear interpolant of a function g at the vertices of R;
this corresponds to using the trapezoidal numerical integration formula in each R.
The finite-element mass matrix MQ1 is defined by

(2.13) (MQ1)ij = (ϕj , ϕi), i, j = 1, . . . , (N − 1)d,

and its diagonal approximation is the lumped mass matrix MQ1,NI , defined by

(2.14) (MQ1,NI )ij =
∑
R

∫
R

Π1,R(ϕjϕi) dx, i, j = 1, . . . , (N − 1)d.

We note that KQ1 = KQ1,NI when d = 1, thanks to the exactness of the trapezoidal
rule for linear functions. In contrast, MQ1 �=MQ1,NI for d = 1, 2, 3.

Finally, for d = 2, 3 and a simplicial mesh in Ω, let ϕ̃j denote the P1 finite-
element characteristic Lagrange function at interior xj , i.e., the globally continuous,
piecewise linear function in each T , vanishing on ∂Ω, such that ϕ̃j(xk) = δjk for all
k = 1, . . . , (N − 1)d. The resulting stiffness and mass matrices are

(2.15) (KP1)ij = (∇ϕ̃j ,∇ϕ̃i), (MP1)ij = (ϕ̃j , ϕ̃i), for i, j = 1, . . . , (N − 1)d.

Remark 1. Since the computational domain Ω ⊂ R2 is a rectangle, the stiffness
matrices KQ1,NI and KP1 coincide independently of the orientation of the triangles
of the mesh, as can be checked in a straightforward manner. Moreover, denoting by
LFD the classic five-point centered finite-difference Laplace approximation matrix,
the identity LFD =M−1

Q1,NI
KQ1,NI holds.
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The matrix K
FE

, chosen among KQ1 , KQ1,NI , and KP1 , may be used to pre-
condition system (2.4) in weak form; the matrix M−1

FE
KFE , with MFE chosen among

MQ1 , MQ1,NI , and MP1 , may be invoked to precondition system (2.6) in strong form;
while the matrix M−1/2

FE
K

FE
M−1/2

FE
may be useful to precondition system (2.7) in

symmetrized-strong form.
We introduce the space QN(Ω) of algebraic polynomials defined on Ω, of degree

≤ N in each direction (a possible basis for QN is given by the characteristic Lagrange
functions ψj associated with all nodes of the LGL grid); the space Vh of continuous
functions on Ω which are d-linear on each d-interval R induced by the LGL mesh of
Ω (the functions ϕj associated with all nodes of the LGL grid form a basis for Vh);
and the space Wh of continuous functions on Ω which are linear on each simplex T
induced by the LGL mesh of Ω (the functions ϕ̃j associated with all nodes of the
LGL grid form a basis for Wh). V

0
h and W 0

h will denote the subspaces of Vh and Wh,
respectively, of vanishing functions at the boundary ∂Ω.

For any v
N

∈ QN (Ω) we denote by vh ∈ Vh the continuous piecewise d-linear
interpolation of v

N
at LGL nodes. It is well known [6, 25] that v

N
and vh are linked

together by an algebraic interpolation isomorphism. Moreover, for d = 2, 3 and for any
vN ∈ QN (Ω) we will denote by wh ∈Wh the continuous piecewise linear interpolation
of v

N
at LGL nodes. Even if, for any given N , the nodes of the mesh in Ω are uniquely

defined, the mesh of simplexes T is not, as we have discussed above. This implies
that wh will depend on the mesh chosen. For a fixed mesh, wh and vN (and then also
wh and vh) are linked together by an algebraic interpolation isomorphism.

For any N ≥ 2, given v
N
∈ Q0

N(Ω) (or equivalently either vh ∈ V 0
h or wh ∈ W 0

h ),

v ∈ R(N−1)d will be the array whose components are the values vN (xj) = vh(xj) =
wh(xj) at the interior LGL nodes xj .

3. Preconditioners. The finite-element matrices introduced above can be suit-
ably combined to produce preconditioned matrices and systems in order to solve (2.8).
We will denote by H any preconditioning matrix for the spectral matrix L which ap-
pears in (2.8), so that the corresponding (left) preconditioned system will be

(3.1) H−1Lũ = H−1f̃ .

In what follows we will set P = H−1L.
We have considered eleven possible expressions for P , which, for the reader’s

convenience, are listed in Table 3.1. (A subset of these combinations was already
reported in [7].) Three preconditioned matrices, named Pw

Q1
, Pw

Q1,NI
, and Pw

P1
, are

based on the weak form (2.4); three others, named P s
Q1
, P s

Q1,NI
, and P s

P1
, are based

on the strong form (2.6); finally, five preconditioners, named P ss,rt
Q1

, P ss,ch
Q1

, P ss,rt
Q1,NI

,

P ss,ch
P1

, and P ss,rt
P1

, are symmetrized forms of the previous strong preconditioners. In

particular, P ss,rt
Q1

and P ss,ch
Q1

are two symmetrized version of P s
Q1
, which differ from

each other in the computation of (MQ1)
−1/2, as we are going to explain.

For any s.p.d. matrix B, its square root B1/2 can be expressed as B1/2 =
WΛ1/2WT , where Λ and W denote, respectively, the matrices of eigenvalues and
eigenvectors of B. The matrix P ss,rt

Q1
is defined starting from the square root of M−1

Q1
,

computed in this way. However, when the computation of both Λ and W becomes
too expensive, as an alternative to diagonalization, one can employ the Cholesky
decomposition of B, namely B = BChB

T
Ch, with BCh lower triangular; then, BCh

replaces B1/2. The matrix P ss,ch
Q1

is defined accordingly. The matrix P ss,rt
Q1,NI

is the
symmetrized version of P s

Q1,NI
(in this case MQ1,NI is diagonal with positive entries
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1
/
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G
N

I
(M

G
N

I
)−
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/
2

(M
G

N
I
)1

/
2
u

(M
G

N
I
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/
2
f

(3
.1
2
)

P
s
s
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h

P
1

(M
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K

P
1
(M

P
1
, C
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)−

T
(M

G
N

I
)−

1
/
2
K

G
N

I
(M

G
N

I
)−

1
/
2

(M
G

N
I
)1

/
2
u

(M
G

N
I
)1

/
2
f

(3
.1
3
)
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and (M
−1/2
Q1,NI

)ii = (M−1
Q1,NI

)
1/2
ii ), while P ss,rt

P1
and P ss,ch

P1
are symmetrized versions

of P s
P1

(again based either on the square root or the Cholesky factor of (MP1)
−1,

respectively).

4. Condition number analysis. We first examine the iterative condition num-
ber of all the preconditioned matrices defined in (3.3)–(3.13). In order to simplify the
exposition, matrices Pw

Q1
, Pw

Q1,NI
, and Pw

P1
will be referred to as weak matrices ; P s

Q1
,

P s
Q1,NI

, and P s
P1

as strong matrices ; and P ss,rt
Q1

, P ss,ch
Q1

, P ss,rt
Q1,NI

, P ss,rt
P1

, and P ss,ch
P1

as
symmetrized-strong matrices.

In the following subsections, we review the theoretical results concerning weak
and strong matrices. The symmetrized-strong matrices are similar to s.p.d. matrices;
hence their eigenvalues are all real positive. No other theoretical result is available so
far, so we refer to section 4.3 for numerical results.

4.1. Weak matrices. We begin by considering weak matrices. Pw
Q1
, Pw

Q1,NI
, and

Pw
P1

have real positive eigenvalues, being products of two s.p.d. matrices. We start
with Pw

Q1
and Pw

Q1,NI
.

In order to analyze their iterative condition numbers we note that, since Ω is
a Cartesian product of intervals, we can express both multidimensional mass and
stiffness matrices, based on either Q1, Q1,NI , or QN , as Kronecker products of 1D
matrices; the latter will be denoted by the superindex (1).

By recalling that K
(1)
Q1,NI

≡ K
(1)
Q1

and that Ω is a Cartesian product of intervals,
the following identities hold for d = 2,

KQ1 =M
(1)
Q1

⊗K
(1)
Q1

+K
(1)
Q1

⊗M
(1)
Q1
,(4.1)

KQ1,NI =M
(1)
Q1,NI

⊗K
(1)
Q1

+K
(1)
Q1

⊗M
(1)
Q1,NI

,(4.2)

KGNI =M (1)
GNI

⊗K(1)
GNI

+K(1)
GNI

⊗M (1)
GNI

,(4.3)

and for d = 3,

KQ1 =M
(1)
Q1

⊗M
(1)
Q1

⊗K
(1)
Q1

+M
(1)
Q1

⊗K
(1)
Q1

⊗M
(1)
Q1

+K
(1)
Q1

⊗M
(1)
Q1

⊗M
(1)
Q1
,

KQ1,NI =M
(1)
Q1,NI

⊗M
(1)
Q1,NI

⊗K
(1)
Q1

+M
(1)
Q1,NI

⊗K
(1)
Q1

⊗M
(1)
Q1,NI

+K
(1)
Q1

⊗M
(1)
Q1,NI

⊗M
(1)
Q1,NI

,

KGNI =M (1)
GNI

⊗M (1)
GNI

⊗K(1)
GNI

+M (1)
GNI

⊗K(1)
GNI

⊗M (1)
GNI

+K(1)
GNI

⊗M (1)
GNI

⊗M (1)
GNI

,

where⊗ denotes the Kronecker product of matrices; that is, the block Cij of C = A⊗B
is given by Cij = aijB.

We will use the following well-known property (see, e.g., [7, Chap. 7]): if Ai, Bi,
i = 1, 2, are s.p.d. matrices of order n such that

vTAiv ≤ αiv
TBiv for all v ∈ Rn

for suitable choice of real positive coefficients α1, α2, then one has

(4.4) vT (A1 ⊗A2)v ≤ α1α2v
T (B1 ⊗B2)v for all v ∈ Rn2

.

Henceforth, the bounds on multidimensional stiffness matrices immediately follow
from bounds on 1D matrices.
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By definition (2.14), the nonzero entries of M
(1)
Q1,NI

are the weights of the com-

posite trapezoidal rule, i.e., (M
(1)
Q1,NI

)ii =
xi+1−xi−1

2 for i = 1, . . . , N − 1, so that the
following lemma is a direct consequence of a result established in [23, (2.44), (2.49)].

Lemma 4.1. There exist two positive constants c0, c1 independent of N such
that, for any N ≥ 2, it holds that

(4.5) c0v
TM

(1)
Q1,NI

v ≤ vTM (1)
GNI

v ≤ c1v
TM

(1)
Q1,NI

v for all v ∈ RN−1.

Numerical results show that c1/c0 ≤ 1.00245.
Lemma 4.2. For any N ≥ 2

(4.6)
1

3
vTM

(1)
Q1,NI

v ≤ vTM
(1)
Q1

v ≤ vTM
(1)
Q1,NI

v for all v ∈ RN−1.

Proof. Let vh ∈ V 0
h . For any j = 0, . . . , N − 1, it holds that∫ xj+1

xj

v2h(x)dx =
xj+1 − xj

3

[
vh(xj)

2 + vh(xj)vh(xj+1) + vh(xj+1)
2
]
.

Thanks to the Young inequality we have

−1

2

(
vh(xj)

2 + vh(xj+1)
2
) ≤ vh(xj)vh(xj+1) ≤ 1

2

(
vh(xj)

2 + vh(xj+1)
2
)
,

and by summing on j we have

1

3
IT ≤

∫ 1

−1

v2h(x)dx ≤ IT ,

where IT =
∑N−1

j=0
xj+1−xj

2

(
v2h(xj) + v2h(xj+1)

)
is the approximation of

∫ 1

−1
v2hdx by

the trapezoidal rule. Therefore, if vh ∈ V 0
h is the piecewise linear function that

interpolates the (N − 1)-uple v at the interior LGL nodes, the thesis follows.
Thanks to both Lemmas 4.1 and 4.2, the following lemma is easily proved.
Lemma 4.3. For any N ≥ 2

(4.7) c0v
TM

(1)
Q1

v ≤ vTM (1)
GNI

v ≤ 3c1v
TM

(1)
Q1

v for all v ∈ RN−1,

where c0 and c1 are the constants introduced in Lemma 4.1.
Now we need a result for stiffness matrices K(1)

GNI
and K

(1)
Q1

. To this aim we recall
the following property, stated in both [6] and [25]: there exists a c2 > 1 independent
of N such that

(4.8) ‖v′
N
‖2L2(−1,1) ≤ ‖v′h‖2L2(−1,1) ≤ c2‖v′N‖2L2(−1,1)

for any v
N
∈ Q0

N (−1, 1), with vh ∈ V 0
h being its piecewise linear interpolation.

The following lemma is an immediate consequence of (4.8).
Lemma 4.4. For any N ≥ 2

(4.9)
1

c2
vTK

(1)
Q1

v ≤ vTK(1)
GNI

v ≤ vTK
(1)
Q1

v for all v ∈ RN−1,

where c2 is the constant introduced in (4.8).
Numerical results shown in the first column of Table 4.1 give c2 ≤ π2/4 < 2.5.
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Table 4.1

1D case. Iterative condition numbers of some of the preconditioned matrices defined in Table

3.1 for d = 1. Note that K
(1)
Q1

= K
(1)
P1

= K
(1)
Q1,NI

and M
(1)
Q1

= M
(1)
P1

, so that Pw
Q1

= Pw
P1

= Pw
Q1,NI

,

P s
Q1

= P s
P1

, and P ss,rt
Q1

= P ss,rt
P1

.

N Pw
Q1

P s
Q1

P s
Q1,NI

P ss,rt
Q1

P ss,rt
Q1,NI

16 2.18516 1.35975 2.18512 1.60205 2.18512

32 2.32011 1.38172 2.32010 1.59526 2.32010

48 2.36773 1.40196 2.36772 1.59491 2.36772

64 2.39207 1.41180 2.39207 1.59483 2.39207

80 2.40686 1.41813 2.40686 1.59479 2.40686

96 2.41680 1.42170 2.41680 1.59477 2.41680

112 2.42393 1.42507 2.42393 1.59476 2.42393

128 2.42930 1.42703 2.42930 1.59475 2.42930
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P s
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P ss,ch
P1

N

K
(
P

)

Figure 4.1. 2D case. Iterative condition numbers of the preconditioned matrices (3.3)–(3.13).

Curves relative to Pw
Q1,NI

, P s
Q1,NI

, and P ss,rt
Q1,NI

are very close to each other. Those relative to

Pw
Q1,NI

and Pw
P1

coincide. For non s.p.d. matrices, K has been replaced by K∗. The triangles of the

P1 mesh are all oriented in the same way as in Figure 2.1(b).

We are now able to state the following result, whose proof is a consequence of the
previous lemmas and the property stated in (4.4).

Theorem 4.5. For any N ≥ 2

K(Pw
Q1
) = K(K−1

Q1
K

GNI
) ≤ c2

(
3c1
c0

)d−1

, d = 1, 2, 3,(4.10)

K(Pw
Q1,NI

) = K(K−1
Q1,NI

K
GNI

) ≤ c2

(
c1
c0

)d−1

, d = 1, 2, 3,(4.11)

where c0 and c1 are the constants introduced in Lemma 4.1, while c2 is the constant
introduced in (4.8).

Remark 2. Both estimates (4.10) and (4.11) are corroborated by the numerical
results shown in Table 4.1 and in Figures 4.1 and 4.2. Estimates (4.10) and (4.11)
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Figure 4.2. 3D case. Iterative condition numbers of the preconditioned matrices (3.3)–(3.13).

The right picture is a zoom of the left one. Curves relative to Pw
Q1,NI

, P s
Q1,NI

, and P ss,rt
Q1,NI

are very

close to each other. The 6-tetrahedra mesh has been considered for those preconditioners based on
P1 approximation. The symbols used in these pictures follow the legend of Figure 4.1.

hx

hy

hz

u1 u2

u3u4

u5 u6

u7u8

Figure 4.3. Numbering of vertices in the reference hexahedron R.

predict that the weak preconditioned matrix Pw
Q1,NI

based on the Q1,NI approach
is more efficient than that based on Q1 finite elements in terms of preconditioned
conjugate gradient (PCG) iterations. Moreover, recalling that c1/c0  1 as mentioned
above, we expect K(Pw

Q1,NI
) to be basically independent of the dimension d (for values

of d of practical interest), as opposed to K(Pw
Q1
). This is confirmed by the numerical

results of both Figures 5.1 and 5.8 below.
Finally, let us analyze the condition number of Pw

P1
. The following result will be

useful.
Lemma 4.6. Let d = 3, and let each hexahedron R be split into six tetrahedra as

in Figure 2.2(right). Then, for any N ≥ 2

3

4
vTKP1v ≤ vTKQ1,NIv ≤ 3

2
vTKP1v for all v ∈ R(N−1)3 .(4.12)

Proof. First, we observe that

vTKP1v = ‖∇wh‖2L2(Ω), vTKQ1,NIv = ‖∇vh‖2Ω,T ,

where ‖ · ‖Ω,T denotes the approximation of the L2(Ω)-norm obtained by using the
(tensorial) trapezoidal rule in each hexahedron R. Exploiting the additive property of
the (squared) norms, it is enough to establish the analogue of (4.12) in each element
R, i.e.,

3

4
uTKR

P1
u ≤ uTKR

Q1,NI
u ≤ 3

2
uTKR

P1
u,
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where u ∈ R8 is the vector collecting the values of v associated with the eight vertices
of R ordered as in Figure 4.3, whereas KR

P1
and KR

Q1,NI
are the local stiffness matrices.

A lengthy but straightforward computation yields

uTKR
P1
u= ‖∇wh‖2L2(R)

=
hyhz
6hx

[
2((u2 − u1)

2 + (u7 − u8)
2) + (u6 − u5)

2 + (u3 − u4)
2
]

+
hxhz
6hy

[
2((u8 − u5)

2 + (u3 − u2)
2) + (u4 − u1)

2 + (u7 − u6)
2
]

+
hxhy
6hz

[
2((u8 − u4)

2 + (u6 − u5)
2) + (u5 − u1)

2 + (u7 − u3)
2
]

and

uTKR
Q1,NI

u= ‖∇vh‖2R,T

=
hyhz
4hx

[
(u2 − u1)

2 + (u7 − u8)
2 + (u6 − u5)

2 + (u3 − u4)
2
]

+
hxhz
4hy

[
(u8 − u5)

2 + (u3 − u2)
2 + (u4 − u1)

2 + (u7 − u6)
2
]

+
hxhy
4hz

[
(u8 − u4)

2 + (u6 − u5)
2 + (u5 − u1)

2 + (u7 − u3)
2
]
.

Then the result follows from a repeated application of the inequalities A2 + B2 ≤
2A2 +B2 ≤ 2(A2 +B2).

Theorem 4.7. For any N ≥ 2,

K(Pw
P1
) ≤ σdc2

(
c1
c0

)d−1

, d = 1, 2, 3,(4.13)

where σ1 = σ2 = 1, σ3 = 2, c0 and c1 are the constants introduced in Lemma 4.1,
while c2 is the constant introduced in (4.8).

Proof. When d = 1,KP1 = K
(1)
P1

= K
(1)
Q1

; hence the result follows from Lemma 4.4.
When d = 2, KP1 = KQ1,NI holds (see Remark 1) so that, thanks to Theorem

4.5, we have

K(Pw
P1
) ≤ c2

c1
c0
.(4.14)

When d = 3, Theorem 4.5 and Lemma 4.6 ensure that K(Pw
P1
) is bounded indepen-

dently of N also for the 3D geometry; precisely, we have

K(Pw
P1
) ≤ K(K−1

P1
KQ1,NI )K(K−1

Q1,NI
K

GNI
) ≤ 2c2

(
c1
c0

)2

.(4.15)

Note that the bound (4.15) is not sharp, as shown by the numerical results of
Figure 4.2.

4.2. Strong matrices. We now consider the strong matrices P s
Q1
, P s

Q1,NI
, and

P s
P1
. They are no longer similar to s.p.d. matrices; nevertheless, numerical evidence

indicates that P s
Q1,NI

has real eigenvalues, while P s
Q1

and P s
P1

have complex eigenvalues
with imaginary parts hardly larger than one-tenth of the corresponding moduli.
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For a matrix with this type of eigenstructure, the parameter

(4.16) K∗ = K∗(A) =
maxi |λi(A)|
mini |λi(A)|  K(AS),

where AS denotes the symmetric part of A, is an effective surrogate for K(A) as an
indicator of the convergence properties of gradient-like methods. (In what follows,
we will not usually comment on our use of this surrogate for K for those matrices
for which the surrogate is more appropriate; however, the relevant figure labels and
captions will reflect the use of the surrogate in those cases.)

Theorem 4.8. There exist two positive constants C1 and C2 independent of both
N and d(= 1, 2, 3) such that

K∗(P s
Q1
) ≤ C1, K∗(P s

Q1,NI
) ≤ C2.(4.17)

Proof. Let us consider the system P s
Q1
ũ = K−1

Q1
MQ1 f̃ , where we have P s

Q1
=

K−1
Q1
MQ1M

−1
GNI

KGNI . We begin to analyze the case d = 1. The eigenvalues λi(P
s
Q1
)

belong to the set

A1 =

{
z =

u∗K(1)
GNI

u

u∗M (1)
GNI (M

(1)
Q1

)−1K
(1)
Q1

u
∀u ∈ Cn

}

=

{
z =

u∗K(1)
GNI

u

v∗K(1)
Q1

u
∀u ∈ Cn,v = (M

(1)
Q1

)−1M (1)
GNI

u

}
,

(4.18)

where n = (N − 1) is the dimension of 1D matrices. In order to estimate infz∈A1 |z|
and supz∈A1

|z|, we take into account the bound (4.9) and the following results proved
in [24, Thm. 3.1 and Lem. 3.4, 3.5]: there exist positive constants ci, i = 3, . . . , 7,
independent of N , such that

c3v
∗K(1)

Q1
v ≤ u∗K(1)

Q1
u ≤ c4v

∗K(1)
Q1

v,

c5v
∗K(1)

Q1
v ≤ Re(v∗K(1)

Q1
u) ≤ c6v

∗K(1)
Q1

v, |v∗K(1)
Q1

u| ≤ c7v
∗K(1)

Q1
v

(4.19)

for any u ∈ Cn and v = (M
(1)
Q1

)−1M (1)
GNI

u. By (4.9) and (4.19) we have

(4.20)
c3c5
c27c2

≤
c5
c2
u∗K(1)

Q1
u

c27v
∗K(1)

Q1
v

≤ Rez ≤ |z| ≤ u∗K(1)
Q1

u

c5v∗K(1)
Q1

v
≤ c4
c5

for all z ∈ A1,

and then

(4.21) K∗(P s
Q1
) ≤ c2c4c

2
7

c3c25
for d = 1 and for all N ≥ 2.

Let us consider now the case d = 2. By recalling definitions (4.1) and (4.3) and

by writing MQ1 = M
(1)
Q1

⊗M
(1)
Q1

and M
GNI

= M (1)
GNI

⊗M (1)
GNI

, the eigenvalues of P s
Q1

belong to the set

A2 =

{
z =

u∗K
GNI

u

u∗M
GNI

M−1
Q1
KQ1u

∀u ∈ Cn2

}

=

{
z =

v∗(D ⊗B +B ⊗D)v

v∗(C ⊗B +B ⊗ C)v
∀v ∈ Cn2

}
,

(4.22)
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where B =M
(1)
Q1

(M (1)
GNI

)−1M
(1)
Q1
, C = K

(1)
Q1

(M (1)
GNI

)−1M
(1)
Q1

, and

D =M
(1)
Q1

(M (1)
GNI

)−1K(1)
GNI

(M (1)
GNI

)−1M
(1)
Q1
.

By setting

E =M
(1)
Q1

(M (1)
GNI

)−1K
(1)
Q1

(M (1)
GNI

)−1M
(1)
Q1
,

estimates (4.19) read also

c3v
∗K(1)

Q1
v ≤ v∗Ev ≤ c4v

∗K(1)
Q1

v,

c5v
∗K(1)

Q1
v ≤ Re(v∗Cv) ≤ c6v

∗K(1)
Q1

v, |v∗Cv| ≤ c7v
∗K(1)

Q1
v

for all v ∈ Cn.

(4.23)

From (4.9), (4.4), and (4.23)1, the numerator of any z ∈ A2 satisfies the bounds

c3
c2
v∗(K(1)

Q1
⊗B +B ⊗K

(1)
Q1

)v ≤ 1

c2
v∗(E ⊗B +B ⊗ E)v

≤ v∗(D ⊗B +B ⊗D)v ≤ v∗(E ⊗B +B ⊗ E)v ≤ c4v
∗(K(1)

Q1
⊗B +B ⊗K

(1)
Q1

)v

for any v ∈ Cn2

. About the denominator, we observe that if A, B, and C are square
matrices of size n, with A and B s.p.d., and if there exist positive constants αi such
that α1v

∗Av ≤ Re(v∗Cv) ≤ α2v
∗Av and |v∗Cv| ≤ α3v

∗Av, then

α1v
∗(A⊗B)v ≤ Re(v∗(C ⊗B)v) ≤ α2v

∗(A⊗B)v for all v ∈ Cn2

,

|v∗(C ⊗B)v| ≤ α3v
∗(A⊗B)v for all v ∈ Cn2

.
(4.24)

The previous bounds may be proved by exploiting the fact that the eigenvectors of B
form a basis for the space Cn. Therefore, by (4.24) it follows that

c5v
∗(K(1)

Q1
⊗B +B ⊗K

(1)
Q1

)v≤ Re(v∗(C ⊗B +B ⊗ C)v)

≤ c6v
∗(K(1)

Q1
⊗B +B ⊗K

(1)
Q1

)v,

|v∗(C ⊗B +B ⊗ C)v| ≤ c7v
∗(K(1)

Q1
⊗B +B ⊗K

(1)
Q1

)v,

and it holds that

(4.25)
c3c5
c27c2

≤ Rez ≤ |z| ≤ c4
c5

for all z ∈ A2,

so that (4.21) is true also for d = 2. The extension to the case d = 3 can be carried
out by the same technique.

If we consider now the matrix P s
Q1,NI

, we can follow the same steps explained
above, thanks to formulas (3.37a) and (3.37b) in [23], which are the analogues of the
second and third estimates in (4.19). Note that a bound like the first one in (4.19)
immediately follows from Lemma 4.1 and the fact that both MGNI and MQ1,NI are
diagonal matrices. In particular, the constants c3 and c4 in (4.19)1 are replaced now
by 1/c21 and 1/c20, respectively, where c0 and c1 are introduced in Lemma 4.1.

Remark 3. About the matrix P s
P1
, we recall that it coincides with P s

Q1
when

d = 1. On the other hand, for d = 2, 3, both KP1 and MP1 do not feature a tensorial
structure, so that we can no longer exploit the same arguments used for Q1 finite
elements. Numerical results shown in Figures 4.1–4.2 highlight that K∗(P s

P1
) < C,

with C independent of N , also for d = 2, 3, but now C slightly grows with d.
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4.3. Numerical results. In Table 4.1 we report the iterative condition numbers,
for d = 1, of some preconditioned matrices P = H−1L defined in Table 3.1, while in
Figures 4.1 and 4.2 we report the iterative condition numbers of all the preconditioned
matrices P = H−1L given in Table 3.1 for d = 2 and d = 3, respectively. We specify
that numerical results in Figure 4.1 (resp., in Figure 4.2) for Pw

P1
, P s

P1
, P ss,rt

P1
, and

P ss,ch
P1

refer to an oriented mesh such as that shown in Figure 2.1(b) (resp., in Figure
2.2(right)).

If d = 2, the stiffness matrix KP1 is invariant with respect to the orientation of
the triangles; however, this property does not hold true for the mass matrix MP1 .
Consequently, the iterative condition number of the strong preconditioned matrices
depends on the mesh, even though it remains bounded independently of N . In Table
4.2 (specifically, in the left column of each column block of the table) we show the
iterative condition number K∗(P s

P1
) for three different meshes of triangles induced

by LGL nodes. The best performance is achieved when the mesh has all triangles
oriented in the same way, while the worst one is obtained when the mesh has alter-
nating triangles. This phenomenon can be ascribed to the presence of Lagrange basis
functions with support of different size in the nonuniformly oriented cases.

The iterative condition number behaves in a similar manner also when d = 3
and when each hexahedron induced by the LGL mesh is split into five instead of six
tetrahedra (see Figure 2.2). We have observed that the 6-tetrahedra mesh induces
the same effects as the oriented 2D mesh does, while the 5-tetrahedra mesh induces
the same effects as an alternating 2D mesh.

For any d = 1, 2, 3, all the condition numbers of both weak and strong matrices
are uniformly bounded with respect to N . The smallest one is obtained for P s

Q1
,

for any d = 1, 2, 3. The condition number of Pw
Q1

is significantly larger than the
others, for d ≥ 2, and it noticeably depends on the space dimension d, according to
the theoretical results presented in the previous section (see Theorem 4.5 and the
subsequent Remark 2).

Concerning the symmetrized-strong matrices, numerical results (see Figure 4.1)

show that the iterative condition number of P ss,rt
Q1

, P ss,ch
Q1

, P ss,rt
Q1,NI

is bounded indepen-
dently of N . In contrast, when simplicial P1 finite elements are used, two situations

Table 4.2

2D case. Iterative condition number K∗ of the preconditioned matrices P s
P1
, . . . , P ss,ch

P1
as-

sociated with problem (2.1). Oriented mesh, alternating mesh, and random mesh are considered.
The stiffness matrix is invariant with respect to mesh orientation; then K(Pw

P1
) is the same for all

considered meshes.

Oriented mesh Alternating mesh Random mesh

N P s
P1

P ss,rt
P1

P ss,ch
P1

P s
P1

P ss,rt
P1

P ss,ch
P1

P s
P1

P ss,rt
P1

P ss,ch
P1

8 2.630 2.857 4.434 3.802 15.693 13.441 3.052 5.731 6.282

16 2.698 3.027 5.265 3.943 108.238 73.647 3.199 11.311 11.468

24 2.737 3.056 5.569 4.034 439.980 275.359 3.321 25.420 23.230

32 2.751 3.075 5.769 4.106 1277.766 771.505 3.380 79.004 69.486

40 2.790 3.109 5.900 4.160 2995.229 1776.044 3.330 90.404 94.588

48 2.823 3.142 5.988 4.199 6072.810 3564.090 3.386 199.216 190.145

56 2.850 3.170 6.050 4.226 11097.759 6471.917 3.422 302.417 304.913

64 2.872 3.193 6.094 4.247 18764.135 10896.959 3.447 482.504 501.969



4438 CLAUDIO CANUTO, PAOLA GERVASIO, ALFIO QUARTERONI

5 10 15 20
10

0

10
1

10
2

10
3

10
4

N

K
(
P

)

5 10 15 20
0

2

4

6

8

10

N

K
(
P

)

Figure 4.4. 3D case. Iterative condition numbers of the preconditioned matrices Pw
P1
, P s

P1
,

P ss,rt
P1

, and P ss,ch
P1

for both 5-tetrahedra (left) and 6-tetrahedra (right) meshes. The symbols used in

these pictures follow the legend of Figure 4.1.

are faced. When d = 2, Table 4.2 shows that if all triangles are oriented in the same
way, the iterative condition number of both P ss,rt

P1
and P ss,ch

P1
is uniformly bounded

with respect to N ; in contrast, if the rectangles are split either randomly or with an
alternating orientation, then both K(P ss,rt

P1
) and K(P ss,ch

P1
) grow like Np, for some

p ∈ [3, 4]. The latter growth has also been observed for the 5-tetrahedra mesh when
d = 3, as we can see in Figure 4.4. For this reason, in what follows we will only
consider the 6-tetrahedra mesh for the 3D case.

4.4. Neumann boundary conditions, nonconstant viscosity, and skew-
ness of the domain. Let us confine our analysis to the case d = 2. When Neumann
boundary conditions are imposed on two consecutive edges of the boundary ∂Ω and
homogeneous Dirichlet boundary conditions are assigned on the remaining edges, the
iterative condition numbers of the strong matrices P s

Q1
, P s

Q1,NI
, and P s

P1
and of the

weak matrices Pw
Q1
, Pw

Q1,NI
, and Pw

P1
are again independent of the polynomial degree

N . In contrast, the iterative condition numbers associated with all the symmetrized-
strong matrices now depend on N , precisely as N3. These results are shown in Figure
4.5 (top left).

Now we ask whether the preconditioners introduced in the previous sections are
still efficient when a variable viscosity shows up in (2.1). In particular we consider
the problem

(4.26) −∇ · (ν∇u) = f in Ω = (−1, 1)d , u = 0 on ∂Ω,

where the viscosity ν = ν(x) satisfies ν ∈ L∞(Ω) and ν(x) ≥ ν0 for all x ∈ Ω, for
some constant ν0 > 0.

In Figure 4.5 we report the iterative condition numbers for both weak and strong
matrices relative to three different choices of the viscosity function. As in the constant-
coefficient case, the condition numbers K(P ) are always uniformly bounded with
respect to N , although the bounds are slightly larger. The specific dependence on N
becomes more apparent as the variation of ν in the domain increases.

A situation similar to that of variable coefficients occurs when we consider con-
stant coefficients on a deformed domain and we map the deformed demain onto the
reference domain by an affine invertible transformation. More precisely, we obtain an
elliptic problem with mixed second-order derivatives and variable coefficients depend-
ing on the skewness of the domain. The condition numbers K(P ) are again bounded
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Figure 4.5. 2D case. At top left, iterative condition numbers of the preconditioned matrices
(3.3)–(3.13). Homogeneous Dirichlet boundary conditions are imposed on two consecutive sides of
∂Ω, and Neumann boundary conditions on the two others. At top right and at bottom, iterative
condition numbers of some of the preconditioned matrices (3.3)–(3.13) referred to in problem (4.26).
Only weak and strong matrices have been considered. At top right, ν(x, y) = 1 + x2y2; at bottom
left, ν(x, y) = 3+ sin(πx)+ cos(πy); at bottom right, ν(x, y) = 1+3x2y2. In all cases, the condition
numbers relative to Pw

Q1,NI
, P s

Q1,NI
, and Pw

P1
are very close to each other. The symbols used here

follow the legend of Figure 4.1.

independently of N , even if now they are larger and depend on the deformation of
the domain. For instance, we have considered a quadrilateral with angles of 45, 117,
90, and 108 degrees, and we have computed the condition number for both weak and
strong preconditioners, with the exception of skew-symmetric ones. The worst upper
bound has been obtained for P s

P1
and is about 12, while the best one is about 6 for

P s
Q1
. Both preconditioners Pw

Q1,NI
and P s

Q1,NI
are less sensitive to the skewing; for

them we have K(P ) ≤ 6.2.

5. Performances of the preconditioners and the solution strategies. The
preconditioned systems associated with either (2.4) or (2.7) can be solved by a PCG
algorithm, whereas those associated with (2.6) need a nonsymmetric solver. For
the latter, the preconditioned Bi-CGStab (PBi-CGStab) method [29] is our choice;
however, the preconditioned GMRES method would represent a viable alternative.

Each PCG (resp., PBi-CGStab) iteration applied to (3.1) requires the solution of
one (resp., two) systems of the form

(5.1) Hz = r,

where r = r(k) = f̃−Lũ(k) is the residual of (2.8) (corresponding to the kth iteration)
and H is the preconditioning matrix. Taking into account the definitions ofH given in
Table 3.1, it is readily seen that solving system (5.1) turns into solving an equivalent
system whose matrix is one of the finite-element stiffness matrices KQ1 , KQ1,NI , KP1 ,
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Figure 5.1. 2D case. Number of PCG and PBi-CGStab iterations to solve problem (2.1) with
f ≡ 1 and u(0) = 0, for the preconditioners given by (3.3)–(3.13).

while the mass matrices MQ1 , MQ1,NI , MP1 (or either their square roots or Cholesky
factors when the symmetrized-strong preconditioners are invoked) are involved only
in matrix-vector products. Therefore, we are invariably left with the task of solving
a system with an s.p.d. banded matrix K

FE
.

From now on we prefer to treat the 2D and 3D cases separately.

5.1. 2D case. The first element in comparing preconditioners is the number of
iterations required by either PCG or PBi-CGstab to converge or, more precisely, to
meet the stopping criterion ||r(k)||H−1/||r(0)||H−1 < 10−14. The number of iterations
will affect the iterative process cost. Figure 5.1 reports the number of iterations
needed to solve problem (2.1) with f ≡ 1, with the initial guess u(0) = 0, by either
PCG or PBi-CGStab algorithm. It is interesting to note that this number decreases
for increasing N for almost all preconditioners. This is because of the good choice of
the initial guess u(0) = 0, which is compatible with the Dirichlet boundary conditions
imposed in problem (2.1). In fact, by inspecting the coefficients of the Legendre
expansion of the initial residual r(0), one observes that they decay very quickly for
increasing wave-numbers; furthermore, the larger modal components are associated
with the lower wave-numbers. In contrast, if the initial guess u(0) for CG-iterations
does not satisfy the Dirichlet boundary conditions for u, which is the case if, e.g.,
u(0) = 1, then the larger modal components of r(0) are associated with both low and
high wave-numbers. In this case the number of PCG iterations needed to converge
to a given tolerance remains nearly constant for increasing N . A behavior similar to
that reported in Figure 5.1 is observed if f is such that the solution u of problem (2.1)
is infinitely smooth.

The previous results indicate that the smallest number of iterations is given by
P s
Q1
. However, the number of iterations is just one aspect of the evaluation of the

performance of an iterative method, the cost of the preprocessing and of the single
iteration being equally important factors of analysis. We will report below numerical
results concerning CPU-times for several iterative solution schemes applied to the
preconditioned systems (3.3)–(3.13).

Three different algebraic solvers have been considered for solving system (5.1):
1. the Lapack Cholesky factorization for banded matrices and subsequent for-

ward/backward substitutions (CHOL, for short);
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2. the PCG with relaxed incomplete Cholesky factorization with zero fill-in [2,
10] (RICCG(0), for short);

3. the HSL MA57 [17, 15, 16, 27] multifrontal algorithm with nested dissection
ordering produced by MeTiS [19] (ND-MF, for short).

The relaxed incomplete Cholesky (RIC) factorization is an interpolated version
(by a relaxation parameter ω ∈ [0, 1]) of the incomplete Cholesky (IC) factorization
with the modified incomplete Cholesky factorization fulfilling the row-sum equivalence
condition (RS-MIC, for short). When ω = 0, RIC corresponds to IC, while when
ω = 1, it corresponds to RS-MIC. Note that the matrix KFE is an M-matrix, which
is a sufficient condition for the existence of the RIC factorization with ω < 1. In
contrast, existence of RS-MIC factorization is not guaranteed for general M-matrices
and is highly dependent on the ordering of the unknowns [10]. About the choice of
the relaxation parameter, van der Vorst [28] suggested using ω = 0.95 in practice.
Our experiments show that, for 2D test cases, the choice ω = 0.95 performs better
than ω = 0 on both stiffness matrices KQ1 and KQ1,NI = KP1 . On the other hand, for
3D problems, the choice ω = 0 guarantees more robustness to RICCG(0) than ω > 0,
when applied to the stiffness matrix KQ1 . From now on, the abbreviation RICCG(0)
will imply the choice ω = 0.95 for KQ1,NI (d = 2, 3), KP1 (d = 2, 3), and KQ1 (d = 2),
and ω = 0 for KQ1 (d = 3).

Concerning the multifrontal algorithm, the indicated choice has been made after
a comparison with both HSL MA57 with approximate minimum degree (AMD) or-
dering and UMFPACK [12, 11] with AMD ordering, for its better performance in the
examined situations, particularly in the 3D case.

In order to implement each of these algebraic solvers, a preprocessing step is
needed, which includes the assembly of both K

FE
andM

FE
, the factorization of K

FE
,

and, if required, the computation of either the square root ofM−1
FE

or its Cholesky fac-
tor. Additionally, at each PCG iteration one matrix-vector product plus one solution
of the linear system (5.1) on the preconditioner are required, whereas at each PBi-
CGStab iteration two matrix-vector products plus two solutions of the linear system
(5.1) are required.

We have measured CPU-times in seconds on an HP xw4400 Workstation with
an Intel CoreTM 2 Duo processor E6700, 2.67GHz. Both solvers CHOL and ND-MF
have been applied to all of the preconditioners (3.3)–(3.13), whereas RICCG(0) has
been applied only to (3.3)–(3.6) and (3.9)–(3.11).

The total CPU-times are shown in Figures 5.2–5.4. We note that, for any choice
of the algebraic solver among CHOL, RICCG(0), and ND-MF, the fastest solution was
obtained from the preconditioned matrix Pw

Q1,NI
, which coincides with Pw

P1
(although

the CPU-times are slightly different, due to different assembly operations). Remark-
ably, the corresponding preconditioning matrices produce the best results without
even involving the mass matrix.

The slowest solutions are those obtained using the preconditioned matrices P ss,rt
Q1

and P ss,rt
P1

. In such cases the (soon prohibitive) major cost is due to the evaluation

of the square roots of M−1
Q1

and M−1
P1

, respectively; due to their inefficiency, we have
reported CPU-time for these two preconditioners only for N ≤ 96, and we will not
consider them in the subsequent analysis. The use of the Cholesky factor of M−1

FE

inside the symmetrized-strong forms P ss,ch
Q1

and P ss,ch
P1

is not as expensive as the com-
putation of the square root of the matrix; thus, the total CPU-times are comparable
to those of the weak and strong forms of the preconditioned system. Nevertheless,
the latter choices require a wider memory storage. Note, however, that P ss,rt

Q1,NI
, which
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Figure 5.2. 2D case. Total CPU-time (sec.) for solving (3.1) for the different preconditioners
defined in (3.3)–(3.13). CHOL is used for solving system (5.1). f ≡ 1 is chosen in (2.1), and
u(0) = 0 as initial guess for either PCG or PBi-CGStab. The right picture is a zoom of the left
one. The symbols used in these pictures follow the legend of Figure 5.1.
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Figure 5.3. 2D case. Total CPU-time (sec.) for solving (3.1) for the different preconditioners
defined in (3.3)–(3.6) and (3.9)–(3.11); RICCG(0) is used for solving system (5.1). f ≡ 1 is chosen
in (2.1), and u(0) = 0 as initial guess for either PCG or PBi-CGStab. The right picture is a zoom
of the left one. The symbols used in these pictures follow the legend of Figure 5.1.
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Figure 5.4. 2D case. Total CPU-time (sec.) for solving (3.1) for the different preconditioners
defined in (3.3)–(3.13). ND-MF is used for solving system (5.1). f ≡ 1 is chosen in (2.1), and
u(0) = 0 as initial guess for either PCG or PBi-CGStab. The right picture is a zoom of the left
one. The symbols used in these pictures follow the legend of Figure 5.1.
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Figure 5.5. 2D case. Total CPU-time (sec.) for solving (3.1) for both choices (3.5) (left) and
(3.4) (right). Either CHOL, RICCG(0) with ω = 0.95, or ND-MF are used for solving system (5.1).
f ≡ 1 is chosen in (2.1), while u(0) = 0 is the initial guess for both PCG and PBi-CGStab.

makes use of the diagonal mass matrix MQ1,NI inside the symmetrized-strong form,
produces good results too.

Among the strong matrices, the best performing one (if we disregard the runs
invoking RICCG(0)) is P s

Q1,NI
, thanks to the diagonal structure of the mass matrix

MQ1,NI , in spite of the fact that P s
Q1

has the minimum iterative condition number.
Remark 4. Within the option of using an incomplete factorization, say C, of the

finite-element stiffness matrix KFE, one could think of taking a “shortcut,” i.e., ap-
plying the inverse of such factorization directly to the spectral stiffness matrix KGNI .
However, this strategy would be inefficient, since it would require the evaluation of
many spectral residuals, a significant burden in terms of computational cost. Indeed,
the iterative condition number of the preconditioned matrix C−1KGNI is reported to
satisfy K(C−1KGNI) = O(N2), implying an O(N) number of CG iterations needed
to solve system (2.4) in this way. One should then perform an equivalent number
of evaluations of the spectral residual, as opposed to the O(1) number for all the
strategies investigated in what follows.

Our next aim is to compare the efficiency of the three algebraic solvers (CHOL,
RICCG(0), and ND-MF) when applied to solving the system (5.1). To this aim we
limit our analysis to only two preconditioners, Pw

Q1,NI
and P s

Q1
, which are among the

most efficient ones in terms of computational time; the former does not need the mass
matrix, while the latter does require such a matrix within an extra matrix-vector
product. In view of the fact that Pw

P1
= Pw

Q1,NI
(in two dimensions), the same analysis

done for Pw
Q1,NI

can be extended to Pw
P1
.

In Figure 5.5 we directly compare the total CPU-times for Pw
Q1,NI

(left) and P s
Q1

(right) measured when we use CHOL, RICCG(0), and ND-MF. It is not surprising
that the most efficient algebraic method is the multifrontal one. In general, we can
observe that the total CPU-time required by RICCG(0) is about six to ten times that
required by ND-MF, for any choice of the preconditioners defined in (3.3)–(3.6), (3.9)–
(3.13); furthermore, the total CPU-time measured by using CHOL grows more quickly
than these two as N tends to infinity. CPU-times exhibit a growth proportional to
N3 when either RICCG(0) or ND-MF is used, and to N7/2 when CHOL is used.
A comparison between the plots on the left-hand side and on the right-hand side of
Figure 5.5 indicates that the weak-Q1,NI preconditioner invariably outperforms the
strong-Q1 one by a factor of about 2.

It is worthwhile analyzing in more detail the cost of both the preprocessing step,
say CPRE, and the iterative process, say CLOOP, in terms of elementary floating point



4444 CLAUDIO CANUTO, PAOLA GERVASIO, ALFIO QUARTERONI

operations versus either the polynomial degree N or the global number of degrees
of freedom n = (N − 1)2. We confine ourselves to the cases of weak and strong
preconditioners (thus we do not address the symmetrized-strong versions). CLOOP is
given by the product of the number of iterations it and the cost of a single iteration
CITER. We thus have for the total cost CTOT:

CTOT = CPRE + CLOOP = CPRE + it ∗ CITER.

On the other hand, we have

CPRE = CASS + CFACT, CITER = CRHS + CSOL,

where we have used the following notation:

CASS: cost of assembling the matrices needed by the FEM preconditioner,
CFACT: cost of factorizing the stiffness matrix KFE,
CRHS: cost of forming the right-hand side of the finite-element system (5.1),
CSOL: cost of solving the finite-element system (5.1).

(We deliberately ignore the cost of assembling the stiffness matrix KGNI , which scales
as Nd+1 = N3, since it is common to all solution strategies and because it could be
avoided by exploiting the tensorial structure of the matrix in the computation of the
spectral residual.)

The cost of each stage can be related to the number of required floating point
operations, for which we now provide theoretical estimates. Extra time is spent during
memory access operations, whose analysis, being strictly related to the knowledge of
the specific hardware in use, will be omitted.

The assembly time CASS depends on the assembly of the stiffness matrix KFE ,
which requires O(Nd) flops since the number of nonzero entries per row is bounded
independently of N . In addition, for the strong matrices, one has to assemble the
mass matrix MFE, in O(Nd) flops, and form the spectral matrix L = M−1

GNI
K

GNI
in

O(Nd+1) flops.
The factorization time CFACT depends on the iterative solver. CHOL requires

O(np2) flops, where n  Nd, while p  Nd−1 is the bandwidth of KFE; thus CFACT =
O(N3d−2). RICCG(0) requires O(1) flops per row, yielding CFACT = O(Nd). Finally,
the factorization time of ND-MF is given by CFACT = O(N3) for d = 2 or CFACT =
O(N6) for d = 3 [1].

The cost CRHS depends on the cost of forming the spectral residual r(k) = f −
Lu(k), which requires O(Nd+1) flops. In addition, for the strong preconditioners, we
have to account for a matrix-vector product by MFE, which costs O(Nd) flops. In
any case, this stage requires O(Nd+1) flops.

At last, let us investigate CSOL. CHOL costs 2n(2p+1) flops, where n and p have
the same meaning as above, yielding CSOL = O(N2d−1). Concerning RICCG(0),
each inner iteration requires O(Nd) flops; on the other hand, the condition num-
ber of the preconditioned matrix C−1KFE , where C−1 stands for the RICCG(0)-
preconditioning, satisfies (experimentally) K(C−1KFE) = O(N) for small to moder-
ate values of N and K(C−1KFE) = O(N2) in the asymptotic regime, as opposed to
K(KFE) = O(N3) = K(K

GNI
). Recalling the convergence rate of the CG method,

which is proportional to the inverse of
√K(C−1KFE), we obtain that the number of

RICCG(0)-iterations needed to reduce the residual to machine accuracy scales with√
N in the first case and with N in the second one; therefore in the asymptotic regime,
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Figure 5.6. 2D case. Number of RICCG(0) iterations to solve the system (5.1) with either
H = KQ1

or H = KQ1,NI
. ω is the relaxation parameter of RICCG(0).

Table 5.1

2D case. Theoretical (upper rows of each case) and measured (lower rows) costs of the various
stages of the iterative solution scheme, versus N .

CPRE CLOOP CTOT

= CASS + CFACT = it ∗ (CRHS + CSOL)

CHOL

Weak
cAN2 + cFN4 cRN3 + cSN

3 cTN4

3 · 10−9N3.72 5 · 10−8N3.16 2 · 10−8N3.46

Strong
cAN3 + cFN4 cRN3 + cSN

3 cTN4

8 · 10−9N3.59 7 · 10−8N3.19 5 · 10−8N3.38

RICCG(0)

Weak
cAN2 + cFN2 cRN3 + cSN

3 cTN3

3 · 10−6N1.93 2 · 10−7N3.25 2 · 10−7N3.24

Strong
cAN3 + cFN2 cRN3 + cSN

3 cTN3

2 · 10−7N2.67 3 · 10−7N3.21 3 · 10−7N3.19

ND-MF

Weak
cAN2 + cFN3 cRN3 + cSN

2 logN cTN3

1 · 10−6N2.43 5 · 10−8N3.11 2 · 10−7N2.90

Strong
cAN3 + cFN3 cRN3 + cSN

3 logN cTN3

8 · 10−7N2.59 3 · 10−8N3.29 2 · 10−7N2.99

CSOL = O(Nd+1) for RICCG(0). This is confirmed by Figure 5.6. The same figure
also displays a comparison between the choices ω = 0.95 and ω = 0 inside RICCG(0);
we can deduce that the former is 1/3 less expensive than the latter. Concerning ND-
MF, the cost of backward/forward solution is proportional to the fill-in and therefore
given by CSOL = O(N2 logN) for d = 2, or CSOL = O(N4) for d = 3 [1].

Finally, as seen above, for both preconditioners here considered, the number of
iterations needed to solve (5.1) to machine accuracy is it = O(1), precisely between 7
and 15, and actually it is a decreasing function of N for certain initial guesses u(0).

The individual theoretical bounds presented so far can be combined to produce
bounds for the intermediate costs CPRE and CLOOP and for the total cost CTOT. Table
5.1 collects all these results for the strategies under investigation. (The terms weak
and strong refer to the Pw

Q1,NI
and P s

Q1
preconditioned matrices, respectively.) The

cost of each stage is described as cNα, where α is drawn from the previous discussion;
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Figure 5.7. 2D case. At top left, CPU-times needed for evaluating one spectral residual,
r(k) = f̃ − Lũ(k). At top right and at bottom, the part of the total CPU-time required by the
preprocessing step when either CHOL (top right), RICCG(0) (bottom left), or ND-MF (bottom right)
is used to solve (5.1). CPU-times shown in Figures 5.2 and 5.3 have been considered in computing
the percentages shown here. The symbols used in these pictures follow the legend of Figure 5.1.

obviously, this is the leading term in the expansion of each cost with respect to N ; i.e.,
it represents the expected asymptotic behavior as N → ∞. The theoretical results
are compared, in the same Table 5.1, to the actual results of our experiments, which
are reported below them. For each stage, we have computed a least-squares fit of a
law like cNα, for N in the range [32, 448], of the values indicated in Figures 5.2–5.4
for the total CPU-times, as well as of the measured intermediate CPU-times of the
partial steps.

The results indicate a good agreement between theory and experiments. They also
confirm and provide better evidence for the ranking among the methods expressed by
Figure 5.5. It is worth noticing that the measured exponent of CLOOP is higher than
the one predicted by the theory; this phenomenon has to be ascribed to the growth of
the CPU-time needed for the spectral residual evaluation. Indeed, for N large enough,
memory access costs become predominant over floating point operation costs, yielding
an overall O(N4) cost for this stage, as opposed to the O(N3) estimate based only
on consideration of flops. Figure 5.7 (top left) clearly documents this behavior.

Another useful piece of information which can be drawn from Table 5.1 concerns
the ratio between preprocessing cost and total cost for the different strategies. A
complementary picture is provided by Figure 5.7, where the results for all precondi-
tioners are shown. Both theory and experiments indicate that this ratio tends to 1
for CHOL (with values between 0.4 and 0.6 in the explored range of N), whereas it
tends to 0 for RICCG(0) (with values between 0.06 down to 0.01 and below). There
is evidence of the decay of this ratio also for ND-MF, although less pronounced than
for RICCG(0).
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Figure 5.8. 3D case. Number of PCG and PBi-CGStab iterations to solve problem (2.1) with
f ≡ 1 and u(0) = 0, for the preconditioners defined in (3.3)–(3.13).

The conclusion of the 2D investigation is that the weak Q1,NI preconditioning
approach coupled with the multifrontal solver for the FEM system allows one to
compute the solution of the spectral system (2.4) with a total cost which scales as
nβ in the number n  N2 of degrees of freedom, β being slightly less than 3/2; this
result holds in the range 2 ≤ N ≤ 448 at least.

5.2. 3D case. We consider again the model problem (2.1) with f ≡ 1. In
Figure 5.8 we report the number of iterations needed to meet the stopping criterion
||r(k)||H−1/||r(0)||H−1 < 10−14 with the initial guess u(0) = 0, whose behavior agrees
with that of the iterative condition numbers reported in Figure 4.2. In particular, the
number of iterations is independent of N for all preconditioners.

The high sparsity of both mass and stiffness finite-element matrices for 3D compu-
tational domains has induced us to solve system (5.1) by either RICCG(0) or ND-MF,
with the exclusion of CHOL.

As done for the 2D case, we first compare the total CPU-times needed to solve
system (3.1); see Figures 5.9 and 5.10. For both cases, the fastest solution was ob-
tained from the preconditioned matrix Pw

Q1,NI
, although also P s

Q1,NI
and P ss,rt

Q1,NI
are

very competitive. These results reflect what happens in the 2D case. In contrast,
if we compare RICCG(0) and ND-MF for the best performing preconditioned ma-
trix Pw

Q1,NI
, we find that RICCG(0) performs better than ND-MF. In particular for

N = 48, the total CPU-time needed to solve (5.1) with Pw
Q1,NI

is about 11 seconds
when RICCG(0) is used, while it is about 42 seconds when ND-MF is used, reversing
what happens in the 2D case.

By using the notation introduced in the previous section and by recalling the
theoretical flop count of the various stages, expressed as a function of both the poly-
nomial degree N and the geometric dimension d, we can estimate the computational
cost of our preconditioning approaches also for the 3D cases. In Table 5.2 we exhibit
the theoretical flop counts (upper rows) and the actual results of our experiments
(lower rows) for both the weak preconditioned matrix Pw

Q1,NI
and the strong one P s

Q1
.

The least-squares fits have been performed with N in the range [4, 48]. Again, a fairly
good agreement between prediction and observation is obtained.

We note that if the solution of the reference differential problem falls within
the case of time-dependent partial differential equations and a significant number of
solve calls are made, the preprocessing cost can be ignored, and the CLOOP time
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Figure 5.9. 3D case. Total CPU-time (sec.) for solving (3.1) for the different preconditioners
defined in (3.3)–(3.6) and (3.9)–(3.11). RICCG(0) (with ω = 0.95 when either H = KQ1,NI

or
H = KP1 , and ω = 0 when H = KQ1

) is used for solving system (5.1). f ≡ 1 is chosen in (2.1),

and u(0) = 0 as the initial guess for either PCG or PBi-CGStab. The right picture is a zoom of the
left one. The symbols used in these pictures follow the legend of Figure 5.8.
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Figure 5.10. 3D case. Total CPU-time (sec.) for solving (3.1) for the different preconditioners
defined in (3.3)–(3.13). ND-MF is used for solving system (5.1). f ≡ 1 is chosen in (2.1), and
u(0) = 0 as the initial guess for either PCG or PBi-CGStab. The right picture is a zoom of the left
one. The symbols used in these pictures follow the legend of Figure 5.8.

Table 5.2

3D case. Theoretical (upper rows of each case) and measured (lower rows) costs of the various
stages of the iterative solution scheme, versus N .

CPRE CLOOP CTOT

= CASS + CFACT = it ∗ (CRHS + CSOL)

RICCG(0)

Weak
cAN3 + cFN3 cRN4 + cSN

4 cTN4

5 · 10−6N3.04 2 · 10−6N4.13 2 · 10−6N3.95

Strong
cAN4 + cFN3 cRN4 + cSN

4 cTN4

1 · 10−5N3.08 7 · 10−7N4.53 1 · 10−6N4.36

ND-MF

Weak
cAN3 + cFN6 cRN4 + cSN

4 cTN6

4 · 10−9N5.90 2 · 10−7N4.30 2 · 10−8N5.53

Strong
cAN4 + cFN6 cRN4 + cSN

4 cTN6

6 · 10−8N5.31 2 · 10−7N4.42 7 · 10−8N5.30
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Figure 5.11. 3D case. At top, the part of the total CPU-time required by the preprocessing step
when either the RICCG(0) (left) or ND-MF (right) solver is used to solve (5.1). CPU-times shown
in Figure 5.9 and 5.10 have been considered. The symbols used in these pictures follow the legend of
Figure 5.8. At bottom, the CPU-times needed for evaluating one spectral residual r(k) = f̃ − Lũ(k)

(�) and for implementing the iterative RICCG(0) solution of (5.1); the symbol • refers to the choice
H = M−1

Q1
KQ1

, while � refers to H = KQ1,NI
.

becomes the unique term of comparison. In this scenario ND-MF and RICCG(0)
have a comparable computational cost, behaving like N4.

In Figure 5.11 the cost of the preprocessing step over the total CPU-time is shown.
When ND-MF is used (see Figure 5.11(top right)), the preprocessing step increasingly
dominates the total computational time. Numerical results indicate that the overall
cost of the preprocessing step almost invariably takes more than 50 percent of the
total solution cost, and it grows with N up to 90 percent in the range of N under
consideration. About the preconditioned matrices P ss,rt

Q1
and P ss,rt

P1
, we note that

the computation of the square root of both mass matrices M−1
Q1

and M−1
P1

is very
expensive, so that the resulting strategies are greatly inefficient. In contrast, when
RICCG(0) is used (see Figure 5.11(top left)), the iterative stage is the most expensive.
The preprocessing step takes at most 30 percent of the total CPU-time, and its cost
decreases for increasing N . This is in agreement with the results in the first two
columns of Table 5.2.

Finally, the bottom panel of Figure 5.11 shows the CPU-times needed to evaluate
the spectral residual and to solve system (5.1) with RICCG(0) for both weak Pw

Q1,NI

and strong P s
Q1

approaches. As for the 2D case, the measured CPU-time needed to
evaluate one spectral residual grows more rapidly than the theoretical estimate (it
is O(Nd+1) rather than O(Nd)), due to memory access overhead, and this sensibly
affects the cost of both the iteration step and the global solution stage.
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6. Conclusions. We have considered the approximation by spectral methods
of the Laplace equation −Δu = f with Dirichlet boundary conditions in Ω ⊂ Rd

with d = 2, 3. We have also addressed the case of an elliptic operator with variable
coefficients, as well as the case of Neumann boundary conditions. Both strong (i.e.,
collocation based on Legendre–Gauss–Lobatto nodes) and weak (i.e., Galerkin with
Legendre–Gauss–Lobatto numerical integration) approaches have been taken into ac-
count in building up spectral matrices. We have also considered symmetrized-strong
preconditioners in order to take advantage of algebraic solvers for s.p.d. matrices.
Eleven different kind of finite-element preconditioners have been considered, based on
either P1, Q1, or Q1,NI (i.e., Q1 with numerical integration) shape functions. Vertices
of finite-element meshes coincide with the Legendre–Gauss–Lobatto quadrature nodes
used for the primal spectral approximation.

The preconditioner based on the Q1-FEM approach for the strong form of the
primal spectral approximation gives the smallest condition number. Nevertheless, if
we measure preconditioner efficiency in terms of memory storage and CPU-time, the
best performance is obtained for weak and strong preconditioners based on a Q1,NI-
FEM approach, for both 2D and 3D geometries. The efficiency of P1 preconditioners
depends on the kind of mesh on which they are built, or, more precisely, on grid
orientation. Our analysis highlights iterative strategies for solving (2.4) or (2.6) whose
overall cost scales as nβ , with β slightly less than 3/2 (in 2D) and 4/3 (in 3D), in the
total number n of d.o.f.’s (explored up to some O(105)).

Acknowledgment. We warmly thank Dr. Mario Arioli for his advice and help
on the use of multifrontal direct solvers.
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