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1. Introduction

In the past decade, there has been a considerable attention to the so-called het-
erogeneous domain decomposition approach for advection-diffusion equations that
are dominated by the advection term: the computational domain is split into two
parts, in the one embodying the regions where steep layers occur the original equa-
tion is solved in its integrity, whereas in the other the viscous (diffusion) term is
dropped, so the problem reduces to its advective part. Obviously, the new het-
erogeneous differential problem can only be regarded as an approximation of the
original one. However, when the two subdomains are separated by a sharp inter-
face, if suitable interface conditions are imposed at the interface itself, then the
solution of the reduced heterogeneous problem converges to the one of the original
complete problem when the Péclet number (i.e. the ratio between the viscous and
the convective term) tends to zero [4]. In this paper we analyse a mathematical
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formulation of the heterogeneous advection diffusion problem on overlapping sub-
domains based on an optimal control approach. The optimal control for domain
decomposition methods have already been advocated to solve the coupling be-
tween heterogeneous equations (see [3],[18],[19]) and they have been analysed to
solve homogeneous elliptic problems (see [10],[11],[12]).

The idea consists of introducing a control function on the subdomain inter-
faces which have the role of guaranteeing that the two solutions match on the re-
gion of overlap. The use of control approach for heterogeneous advection-diffusion
operators was introduced in [5] for both overlapping and non-overlapping subdo-
main decompositions. In this paper we generalize the results of [5] in the case of
overlapping partitions. From one hand, we introduce a further distributed control
function whose support is in the overlapping region. Moreover, we propose iterative
methods for the solution of the control problems and analyse their convergence
properties.

This paper provides a mathematical set up for the treatment of heterogeneous
operators in overlapping subdomains. Some preliminary results concerned with the
theory here developed appeared in [2].

Since our analysis is carried out at the differential level, the proposed ap-
proach is prone to be adopted in the framework of any kind of numerical approx-
imations (in particular, those based on the finite element method).

An outline of the paper is as follows. In Sect. 2 we introduce the heteroge-
neous advection-diffusion problem through control at the boundary and we provide
conditions on the data and the subdomain decomposition that guarantee the exact
controllability (yielding the solutions in the two subdomains that coincide on the
overlapping region). In Sect. 3 we formulate the problem as an optimal control
problem in which we aim at minimizing the L2-norm of the error on the overlap-
ping region. We analyse the existence of a solution, then we propose an iterative
method and analyse its convergence. In Sect. 4 we introduce a further control
function, distributed in the overlapping region. This is a novel approach: we also
propose and analyse an iterative method for the approximation of the correspond-
ing solution. In Sect. 5 we compare numerical results obtained with both 2-controls
and 3-controls approaches. In Sect. 6 we change the role of the boundary control
at the interface: the controls are used to enforce on one interface the continuity of
the solution, on the other the continuity of the flux. Finally, in Sect. 7 we apply
the previous approach to the case of second order elliptic equations.

2. Problem statements

Let Ω be a two-dimensional domain with the boundary Γ := ∂Ω which is assumed
to be Lipschitz-continuous and piecewise of class C(2). Its closure is Ω = Ω ∪ Γ.
We use the following notations (see Fig. 1-3 for some examples): Ω1 and Ω2 are
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Figure 1. A first possible decomposition, p = 1 on the left and
p = 2 on the right
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Figure 2. A second possible decomposition with p = 1

two, not necessarily connected, subsets of Ω such that

Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 �= ∅, Ω12 = Ω1 ∩ Ω2,

Γk = ∂Ωk ∩ Γ, Sk = ∂Ωk \ Γk, k = 1, 2.

Note that Ω12 can be regarded as the union of p disconnected subdomains Ω(j)
12

with j = 1, ..., p: Ω12 = ∪p
j=1Ω

(j)
12 (see Figure 1). We consider two situations: when

Γ1 ∩ Γ2 �= ∅ (as in the case of Figure 1) and Γ1 ∩ Γ2 = ∅ (as in Figures 2-3). We
assume that ∂Ω1, ∂Ω2 are piecewise of class C(2) and Lipschitz-continuous.

Let n = (n1, n2) be the outward unit normal on Γ, τ = (n2,−n1) the tangent
vector; b = (b1, b2) is a vector with smooth components. We define

bk
n := b · n =

2∑

i=1

bini on ∂Ωk, bk
n = (bk

n)+ − (bk
n)−,

(bk
n)+ = (|bk

n| + bk
n)/2, (bk

n)− = (|bk
n| − bk

n)/2, k = 1, 2,

and

S−
k = Sk ∩ {(bk

n)− �= 0}, S+
k = Sk ∩ {(bk

n)+ �= 0},
Γ−

k = Γk ∩ {(bk
n)− �= 0}, Γ+

k = Γk ∩ {(bk
n)+ �= 0}.
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Figure 3. A third possible decomposition with p = 1 on the left
and p = 3 on the right.

We will use the real spaces L2(Ω), L2(Ωk), L2(Γ), . . . , L2(Γk), k = 1, 2 as well as
the following spaces: L2(w; S−

k ) is the space of functions u such that for k = 1, 2,

L2(w; S−
k ) is the space of functions u : ‖u‖L2(w;S−

k ) :=




∫

Sk

w|u|2dΓ





1/2

< ∞,

for w = (bk
n)− and w = (bk

n)+. For simplicity, in the sequel we will use the following
notations:

L2(S−
k ) := L2((bk

n)−; S−
k ) and L2(S+

k ) := L2((bk
n)+; S+

k ).

Let us consider the differential operators

L1u1:=div(bu1) + b0u1 in Ω1,

L2u2:= − ν∆u2 + div(bu2) + b0u2 in Ω2,
(2.1)

where ν = const > 0, b and b0 are given such that (b0 +(divb)/2) ≥ µ0 = const >
0, ∀x ∈ Ω. f is a given function defined in Ω, g is a given function defined on
∂Ω and χ12 is the characteristic function of Ω12. In the sequel, the product of a
function u ∈ L2(Ω12) by χ12 will be considered as the prolongation by zero of u
onto Ωk\Ω12 for k = 1, 2. Moreover we assume that all data b, f0, f, g in (2.1)
are smooth in Ω. Each operator Lk is defined on smooth functions in Ωk (k = 1, 2).

We look for the solutions to the problem

L1u1 = f in Ω1, (b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1,

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2,
(2.2)

where λ1 and λ2 are the controls and they are chosen so that u1 and u2 adjust in
the best possible way on Ω12, thus we search for convenient, both mathematically
and physically, conditions on u1 and u2 on Ω12.
The reasonable request that

u1 = u2 in Ω12 (2.3)
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is not necessarily the right answer to our question. As a matter of fact, due to the
heterogeneous nature of the problem, the ambition to have u1 = u2 in Ω12 is too
strong. For this reason we look for a relaxed form of the condition (2.3), e.g. in a
least square sense, that means to minimize the difference u1 − u2 on Ω12:

inf
λ1,λ2

J0(λ1, λ2) (2.4)

where

J0(λ1, λ2) :=
1
2

∫

Ω

χ12(u1(λ1) − u2(λ2))2dΩ,

and χ12 is the characteristic function of Ω12.
Note that in some places we will use also the notation J0(u1, u2) instead of
J0(λ1, λ2), referring to the same cost functional.
Problem (2.2), (2.3) is an exact controllability problem, while problem (2.2), (2.4)
is an optimal control problem, which can be considered also as a weak statement
of (2.2), (2.3). We denote by λ = (λ1, λ2) the vector of “controls” λ1, λ2.

The minimum problem (2.4) could be replaced by

inf
λ1,λ2

Jα(λ1, λ2) = inf
λ1,λ2



1
2
α




∫

S1

(b1
n)−λ2

1dΓ +
∫

S2

λ2
2dΓ



+ J0(λ1, λ2)



 , (2.5)

α ≥ 0.

In this case, we name (2.2), (2.5) the regularized version of (2.2), (2.4).
Statements of both problems (2.2), (2.3) and (2.2), (2.4) use the decom-

position of Ω onto Ω1, Ω2 with overlapping and will therefore be considered as
heterogeneous domain decomposition methods (DDM) with overlapping.

3. Analysis of DDM with two control functions

The variational equations (“optimality conditions”) corresponding to problem
(2.2), (2.4) read as follows: find u1, u2, λ1, λ2, q1 and q2 such that





L1u1 = f in Ω1, (b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1,

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2,

L
(0)∗
1 q1 = χ12(u1 − u2) in Ω1, (b1

n)+q1 = 0 on Γ1, (b1
n)+q1 = 0 on S1,

L
(0)∗
2 q2 = −χ12(u1 − u2) in Ω2, q2 = 0 on ∂Ω2,

(b1
n)−q1 = 0 on S1, −ν

∂q2

∂n
= 0 on S2,

(3.1)

where the operator L
(0)
k (for k = 1, 2) is defined as in (2.1) on smooth functions

which satisfy homogeneous boundary conditions on ∂Ωk, while L
(0)∗
k is its adjoint

operator.
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We consider problem (2.2) and suppose that λk (for k = 1, 2) are known. For
k = 1, 2 we decompose the solutions uk in a linear plus an affine part uk = uλ

k +uf
k

as follows:

L1u
f
1 = f in Ω1, (b1

n)−uf
1 = (b1

n)−g on Γ1, (b1
n)−uf

1 = (b1
n)−g̃1 on S1,

L2u
f
2 = f in Ω2, uf

2 = g on Γ2, uf
2 = g̃2 on S2,

L1u
λ
1 = 0 in Ω1, (b1

n)−uλ
1 = 0 on Γ1, (b1

n)−uλ
1 = (b1

n)−λ̃1 on S1,

L2u
λ
2 = 0 in Ω2, uλ

2 = 0 on Γ2, uλ
2 = λ̃2 on S2,

(3.2)

where g̃k is a given extension of g onto Sk (for k = 1, 2), such that

g2 := {g on Γ2, g̃2 on S2} ∈ H1/2(∂Ω2),

g1 := {g on Γ1, g̃1 on S1} ∈ L2(S−
1 ∪ Γ−

1 ),

λ̃k := λk − g̃k on Sk, uλ
k := uk(λ̃k), k = 1, 2.

(3.3)

Now (2.5) has the following form:

inf
λ̃1,λ̃2



1
2



α

∫

S1

(b1
n)−(λ̃1 + g̃1)2dΓ + α

∫

S2

(λ̃2 + g̃2)2dΓ



+ J0(λ̃1, λ̃2)





α ≥ 0,

(3.4)

where

J0(λ̃1, λ̃2) :=
1
2

∫

Ω

χ12(u1(λ̃1) − u2(λ̃2) − F )2dΩ, F = −χ12(u
f
1 − uf

2 ). (3.5)

Setting D(A) := Λ = L2(S−
1 ) × H

1/2
00 (S2), we define the linear operator

A : L2(S−
1 ) × L2(S2) → L2(Ω12), Aλ̃ := χ12(uλ

1 − uλ
2 ), (3.6)

and its adjoint operator

A∗ : L2(Ω12) → L2(S−
1 ) × L2(S2), A∗ : w �→ µ, (3.7)

such that:

L
(0)∗
1 q1 = χ12w in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12w in Ω2, q2 = 0 on ∂Ω2,

µ = (µ1, µ2), µ1 = (b1
n)−q1|S1 , µ2 = −ν

∂q2

∂n
|S2 ,

and
F = −χ12(u

f
1 − uf

2). (3.8)

Problem (2.2), (2.3) can be written as

find λ̃ ∈ Λ : Aλ̃ = F, (3.9)
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while problem (3.1) can be written as

find λ̃ ∈ Λ : A∗Aλ̃ = A∗F. (3.10)

In this section we analyse the well-posedeness of this latter problem. The
study of existence and uniqueness of solution for problem (2.2), (2.4) will be carried
out by using the properties of problem (2.2), (2.3).

Let us prove the first proposition.

Proposition 3.1. Problem (2.2), (2.3) does not have a solution in general, without
introducing specific restriction on the data of the problem itself.

Proof. The proof is based on the uniqueness continuation theorem in the case of
Figure 1, and on the index theory for cases like those illustrated in Figure 2 and
Figure 3.
Assume that Ω12 is a connected set, ∆Γ = Γ1 ∩ Γ2, ∆Γ ⊂ ∂Ω12, meas(∆Γ) > 0,
bn �= 0 on ∆Γ, g ≡ 0 on Γ, f ≡ 0 on ∆Γ, f > 0 in Ω12 and (2.2), (2.3) has a
solution {u1, u2, λ1, λ2}. Note that, if {u1, u2, λ1, λ2} is a smooth solution of
(2.2), (2.3) then we can consider the equation L1u1 = f on ∆Γ and find

bn
∂u1

∂n
+ bτ

∂u1

∂τ
+ µu1 = f on ∆Γ,

where µ = b0 + divb, bn = b · n, bτ = b · τ , and n is outward unit normal to
∆Γ. Since u1 = u2 = u in Ω12 from the equations in Ω1, Ω2 we obtain:

L1u = f in Ω12, u = 0 on ∆Γ, ν∆u = 0 in Ω12,

L1u|∆Γ = f |∆Γ = 0 =⇒ bn
∂u

∂n

∣
∣
∣
∣
∣
∆Γ

+ µu|∆Γ + bτ
∂u

∂τ

∣
∣
∣
∣
∣
∆Γ

= bn
∂u

∂n

∣
∣
∣
∣
∣
∆Γ

= 0.

So, u would be the solution of following Cauchy problem:

∆u = 0 in Ω12, u =
∂u

∂n
= 0 on ∆Γ.

According to the uniqueness continuation theorem [7], u = 0 in Ω12. Hence, uk = 0
in Ω12, λk = 0, k = 1, 2 and f = 0 in Ω12, which contradicts the assumption f > 0
in Ω12.

Let us now consider another counter-example. Assume that Ω12 is a multi
connected domain with boundary ∂Ω12 =

⋃p
j=0 ∂Ω(j)

12 , where ∂Ω(0)
12 is the outer

part of ∂Ω12 (see Figs. 2 - 3, in particular ∂Ω(0)
12 = S1 in Fig. 2).

Suppose that |b| �= 0 on ∂Ω12 and

æ = 2(P − p + 1) < 0, where P =
1
2π

p∑

j=0

{arg(b1 − ib2)},

where æ is the “index” of the problem considered in Ω12 [16]. Assume that problem
(2.2), (2.3) has a solution, then u = u1 = u2 is the solution in Ω12 of the following
Poincaré problem:

∆u = 0 in Ω12, b · ∇u + µu = f on ∂Ω12.
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Existence of a solution for this problem can be proved if we impose a number
of restrictions on f and the “index” æ must be nonnegative. There are further
counter-examples which prove the non-existence of solutions of (2.2), (2.3) in gen-
eral case. �

Introduce the following types of assumption:
I.






Ω12 =
p⋃

j=1

Ω(j)
12 ∆Γ =

p⋃

j=1

∆Γ(j), ∆Γ(j) ⊂ ∂Ω(j)
12 , p < ∞,

meas(∆Γ(j)) > 0, bn �= 0 on ∆Γ(j), (see Fig. 1, with p = 1 or p = 2),
(3.11)

II.





Ω12 is finite, µ = b0 + divb ≥ 0 on ∂Ω12, µ �= 0 on ∂Ω12,

the direction b at any point of ∂Ω12 forms with the outward normal

to ∂Ω12 an acute angle.

(3.12)

III.





Ω12 =
p⋃

j=1

Ω(j)
12 , bn �= 0 on ∂Ω12,

µ

bn
− 1

2
∂

∂τ

(
bτ

bn

)

> 0 on ∂Ω12,

where
∂

∂τ
is the derivative along ∂Ω12

(3.13)

Let us prove the second proposition.

Proposition 3.2. If problem (2.2), (2.3) has a solution and one of the assumptions
I-III is fulfilled, then this solution is unique.

Proof. Let us assume that the data are such that problem (2.2), (2.3) admits at
least one solution.

Let the assumption (3.11) be fulfilled and {u(1)
1 , u

(1)
2 , λ

(1)
1 , λ

(1)
2 }, {u(2)

1 , u
(2)
2 ,

λ
(2)
1 , λ

(2)
2 } be two possible solutions of (2.2), (2.3). By setting u1 = u

(1)
1 − u

(2)
1 ,

u2 = u
(1)
2 − u

(2)
2 , λ1 = λ

(1)
1 − λ

(2)
1 and λ2 = λ

(1)
2 − λ

(2)
2 , we obtain the following

boundary value problems in Ω12 for u = u1 = u2:

∆u = 0 in Ω12, bn
∂u

∂n
+ bτ

∂u

∂τ
+ µu = 0 on ∂Ω12, (3.14)

∆u = 0 in Ω(j)
12 , u =

∂u

∂n
= 0 on ∆Γ(j), j = 1, . . . , p. (3.15)

From (3.15) and the uniqueness continuation theorem we obtain: u = 0 in Ω(j)
12 , j =

1, . . . , p. Hence, λ1 = 0, λ2 = 0 and u1 = 0 in Ω1, u2 = 0 in Ω2, i.e. the solution of
(2.2), (2.3) is unique.

Suppose now that assumption (3.12) is fulfilled. From the theory of boundary-
value problems with oblique derivative [15], we conclude that problem (3.14) has
a trivial solution. Then: λk = 0, uk = 0 in Ωk, k = 1, 2 and the uniqueness of
solution (2.2), (2.3) takes place.
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Finally, let the assumption (3.13) be valid. Then for the solution of (3.14) we
have the following well-known relations:

0 = −
∫

Ω12

∆uudΩ =
∫

Ω12

|∇u|2dΩ −
∫

∂Ω12

∂u

∂n
udΓ.

Using boundary condition from (3.14) we obtain:

0 =
∫

Ω12

|∇u|2dΩ +
∫

∂Ω12

(
bτ

bn

∂u

∂τ
+

µ

bn
u

)

udΓ

=
∫

Ω12

|∇u|2dΩ +
∫

∂Ω12

(
µ

bn
− 1

2
∂

∂τ

(
bτ

bn

))

u2dΓ.

Hence, u = 0 in Ω12, λk = 0, uk = 0 in Ωk, k = 1, 2 and the solution of (2.2),
(2.3) is unique. �
Remark 3.3. Since, for a linear operator A, Ker(A) = Ker(A∗A), then the state-
ment of Prop. 3.2 gives also the uniqueness of solution of problem (2.2), (2.4) or
equivalently of (3.1).

The assertions of Propositions 3.1 - 3.2 will be used in the next Proposition
while analysing problem (2.2), (2.4). Let us note also that analogous assertions can
be proved for the case Ω ⊂ R

n, n > 2, and for a system of equations of type (2.2),
(2.3). The results of the Cauchy problems, the problems of the oblique derivative
and Poincare problem are still useful in proving these assertions.

Proposition 3.4. The following assertions hold true.
1. Problem (2.2), (2.4) (or equivalently (3.1)) has not a solution in general.
2. If problem (2.2), (2.4) (or equivalently (3.1)) has a solution, then in general

case inf
λ

J0(λ1, λ2) > 0, i.e. u1 �= u2 in Ω12.

3. If one of the assumptions I-III is satisfied and problem (2.2), (2.4) (or equiv-
alently (3.1)) has a solution then this solution is unique.

Proof. 1. Consider the following adjoint problem with homogeneous boundary con-
ditions: find q1, q2, w s.t.






L
(0)∗
1 q1 = χ12w in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12w in Ω2, q2 = 0 on ∂Ω2,

(b1
n)−q1 = 0 on S1, −ν

∂q2

∂n
= 0 on S2.

(3.16)

To simplify notations let us replace −q2 by q2 in (3.16).
Assume that meas(S−

1 ) = 0, in this case the control function λ1 is not needed in the
solution of problem (2.2), (2.4). Let us consider any smooth function q̃2 defined on
Ω2 with compact support in Ω12 such that dist(∂Ω12, supp(q̃2)) ≥ ε = const > 0,
where 0 < ε � dim(Ω12).
Let w̃ be defined on Ω12 such that w̃ = χ12L

(0)∗
2 q̃2. Note that supp(w̃) ⊂ Ω12, then
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we extend it by zero in Ω1 and solve L
(0)∗
1 q̃1 = χ12w̃.

It is easy to see, that q̃1 �= q̃2 in Ω12, in general.
We anticipate that the relation “(b1

n)−q̃1 = 0 on S1” does not provide any infor-
mation since (b−1

n )− = 0 on S1, so the adjoint problem (3.16) has an infinite set
of nontrivial solutions q̃1, q̃2, w̃.
Now, suppose that g ≡ 0 in (2.2), (2.3) and let us consider f as the solution of the
following equation: Tf := χ12((L

(0)
1 )−1f − (L(0)

2 )−1f) = w̃ in Ω. It is easy to see
that ker(T ) = {0}.
Assume now that, for this f , problem (2.2), (2.4) has a solution uk = uλ

k + uf
k ,

for k = 1, 2, where uλ
k is the linear component of uk generated by λ̃k, while uf

k is
generated by both f and gk. Then

J0(λ1, λ2) =
1
2
‖χ12(u1(λ1) − u2(λ2))‖2

L2(Ω) =
1
2
‖Aλ̃ − F‖2

L2(Ω),

Since L
(0)
k uk(λ̃k) = 0, for k = 1, 2, we have

(Aλ̃, F )L2(Ω12) = (χ12u1(λ̃1), w̃)L2(Ω) − (χ12u2(λ̃2), w̃)L2(Ω)

= (u1(λ̃1), L
(0)∗
1 q̃1)L2(Ω1) − (u2(λ̃2), L

(0)∗
2 q̃2)L2(Ω2) = 0.

(3.17)

Therefore F ∈ ker(A∗) (remember that L2(Ω12) = R(A)⊕ker(A∗)), the functional
J0 takes the following form

J0(λ1, λ2) =
1
2
‖χ12(u1(λ1) − u2(λ2))‖2

L2(Ω) =
1
2

(
‖Aλ̃‖2

L2(Ω) + ‖F‖2
L2(Ω)

)

and problem (2.2), (2.4) has not a solution either [21]. In other words, we note that
λ̃ is the solution of inf λ̃1,λ̃2

J0(λ̃1, λ̃2) iff there exists λ̃ such that A∗Aλ̃ = A∗F . But

(3.17) implies that F := w̃ ∈ R(A)⊥ = R(A)
⊥

[6, pag. 58] and then R(A)
⊥ �= {0}.

Recalling that L2(Ω12) = R(A)⊕R(A)
⊥

, it follows that F �∈ R(A), thus (3.1) (and
therefore (2.2), (2.4)) might not have a solution.

2. Assume that problem (2.2), (2.4) has a solution such that J0(λ1, λ2) = 0.
Then u1 = u2 in Ω12. However we know from Prop. 2.1 that this is not possible in
the general case.

3. We note that (2.2), (2.4) is equivalent to (3.1) and that (3.1) has a unique
solution if and only if (2.2), (2.3) has a unique solution; then, from Prop. 2.2, if
(2.2), (2.4) has a solution and I-III are satisfied, then this solution is unique. �

3.1. Iterative algorithm

The simpler way to solve (3.1) (or equivalently (3.10)) is to consider the gradi-
ent method applied to the minimization problem inf

λ̃1,λ̃2

J0(λ̃1, λ̃2). It reads: for a
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given λ̃
0
, for m = 0, 1, . . ., find ũm

k , λ̃m+1
k (k = 1, 2), such that






L1ũ
m
1 = 0 in Ω1, (b1

n)−ũm
1 = 0 on Γ1, (b1

n)−ũm
1 = (b1

n)−λ̃m
1 on S1,

L2ũ
m
2 = 0 in Ω2, ũm

2 = g on Γ2, ũm
2 = λ̃m

2 on S2,

λ̃
m+1

= λ̃
m − γmJ ′

0(λ̃
m
1 , λ̃m

2 ),

(3.18)

where {γm} are suitable relaxation parameters to be chosen according to conver-
gence criteria ([1],[14],[17],[20],[22]).

For the functions uk = uλ
k + uf

k, with λk = λ̃k + g̃k, (k = 1, 2) the gradient
method reads: for a given λ0, for m = 0, 1, ..., find um

1 , um
2 , λm+1

1 and λm+1
2

solutions of





L1u
m
1 = f in Ω1, (b1

n)−um
1 = (b1

n)−g on Γ1, (b1
n)−um

1 = (b1
n)−λm

1 on S1,

L2u
m
2 = f in Ω2, um

2 = g on Γ2, um
2 = λm

2 on S2,

λm+1 = λm − γmJ ′
0(um

1 , um
2 ).

(3.19)

If the relaxation parameters {γm} are chosen to satisfy a minimization pro-
cedure, algorithm (3.18) is in fact a minimization procedure for solving (2.2), (2.4)
and it can be rewritten as: for a given λ0, for m = 0, 1, ..., find um

1 , um
2 , λm+1

1 ,
λm+1

2 , qm
1 and qm

2 such that





L1u
m
1 = f in Ω1, (b1

n)−um
1 = (b1

n)−g on Γ1, (b1
n)−um

1 = (b1
n)−λm

1 on S1,

L2u
m
2 = f in Ω2, um

2 = g on Γ2, um
2 = λm

2 on S2,

L
(0)∗
1 qm

1 = χ12(um
1 − um

2 ) in Ω1, (b1
n)+qm

1 = 0 on ∂Ω1,

L
(0)∗
2 qm

2 = −χ12(um
1 − um

2 ) in Ω2, qm
2 = 0 on ∂Ω2,

(b1
n)−λm+1

1 = (b1
n)−λm

1 − γm(b1
n)−qm

1 on S1,

λm+1
2 = λm

2 + γmν
∂qm

2

∂n
on S2.

(3.20)

According to the general theory of iterative methods [14], if ker(A∗A) = {0},
the coefficients γm can be chosen in the interval γm ∈ (0, 2/‖A‖2). If problem
(2.2), (2.3) is dense solvable (see Definition 4.1 in Section 4), the choice [1]

γm =
1
2

J0(λm
1 , λm

2 )
∫

S1
(b1

n)−(qm
1 )2dΓ +

∫
S2

(ν ∂qm
2

∂n )2dΓ
(3.21)

is the one that guarantees the minimization of functional (2.4).
Alternative strategies are usable as well, for instance, solving system (3.10) by the
Conjugate Gradient method, in which case the choice of the relaxation parameters
is automatic.
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Proposition 3.5. If problem (2.2), (2.4) (or equivalently (3.1)) has a unique solu-
tion and the iterative process (3.18) (or equivalently (3.20)) is convergent, then in
general

lim
m→∞ ‖um

1 − um
2 ‖L2(Ω12) ≥ const > 0, (3.22)

i.e. um
1 , um

2 don’t coincide in Ω12, in general, as m → ∞.

Proof. This statement follows from both second assertion of proposition 3.4 and
convergence of the iterative process (3.19) (or equivalently (3.20)) when the relax-
ation parameters γm are chosen appropriately [1],[14],[22]. �

For any α > 0, the regularized problem (2.2), (2.5) has a unique solution
{u1(α), u2(α), λ1(α), λ2(α)}. As a matter of fact, the corresponding optimality
conditions are given by (3.1) where the last row is replaced by

α(b1
n)−λ1 + (b1

n)−q1 = 0 on S1, αλ2 − ν
∂q2

∂n
= 0 on S2, (3.23)

and coherently, equation (3.10) will be replaced by

find λ̃ ∈ Λ : (αI + A∗A)λ̃ = A∗F. (3.24)

It is evident that problem (3.24) is well posed for any α > 0.
The associated iterative process will converge: um

k (α) → uk(α), λm
k (α) → λk(α)

when m → ∞, for k = 1, 2 and for any α > 0 (m denotes the iteration in the
iterative process). Nevertheless, we cannot prove that uk(α) → u

(0)
k , λk(α) → λ

(0)
k

when α → 0, for k = 1, 2, where {u(0)
1 , u

(0)
2 , λ

(0)
1 , λ

(0)
2 } is the solution of (2.2),

(2.4).
As a matter of fact, if problem (2.2), (2.4) admits several solutions, then {u1(α),
u2(α), λ1(α), λ2(α)} will converge to that solution that minimizes the norm of
(λ1, λ2) (see [1]). However, if problem (2.2), (2.4) has not a solution, we can not
expect the convergence of the iterative process.
From Proposition 3.5 we can draw the following conclusion: in order for the prop-
erty lim

m→∞ ‖um
1 − um

2 ‖ = 0 to hold, the statement (2.2), (2.4) has to be modified.

One possibility, which consists of introducing a third control (besides λ1 and λ2),
will be investigated in the next section.

4. DDM with three control functions

In this section we propose and analyze a domain decomposition algorithm to ap-
proximately solve problem (2.2), (2.3) with a perturbed equation in Ω1, by making
use of three control functions.

Let ω be a smooth function in Ω such that

0 ≤ ω(x) ≤ 1 in Ω, ω = 0 in Ω\Ω12, ω > 0 in Ω12.
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Let us consider the following control problem: find uk, λk for k = 1, 2 and v ∈
L2(Ω12) s.t.

L1u1 = f + ωv in Ω1, (b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1,

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2,
(4.1)

with the constraint

u1 = u2 in Ω12. (4.2)

The optimal control problem that we associate with (4.1), (4.2) reads: find
uk(α), λk(α), for k = 1, 2 and v(α) (that we will still denote for simplicity as
uk, λk (for k = 1, 2), and v) which satisfy both boundary value problem (4.1) and

inf
λ1,λ2,v

Jα(λ1, λ2, v), (4.3)

where

Jα(λ1, λ2, v) =
1
2
α




∫

S1

(b1
n)−λ2

1dΓ +
∫

S2

λ2
2dΓ +

∫

Ω

ωv2dΩ





+
1
2

∫

Ω

χ12(u1 − u2)2dΩ,

(4.4)

and α ≥ 0 is a regularization parameter. (Even for α = 0 the solution to (4.1),
(4.3) does not necessarily coincide with that of (4.1), (4.2).)

In the sequel we identify L2(Ω12) with the subspaces L2
0(Ωk) = {u : u ∈

L2(Ωk), u ≡ 0 in Ωk\Ω12}, for both k = 1, 2.
If α = 0, (4.1), (4.3) represent the weak statement of problem (4.1), (4.2).

The minimization requirement (4.3) yields the set of optimality conditions find
λ1, λ2, v, u1, u2, q1, q2 such that






L1u1 = f + ωv in Ω1,

(b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1,

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2,

L
(0)∗
1 q1 = χ12(u1 − u2) in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12(u1 − u2) in Ω2, q2 = 0 on ∂Ω2,

α(b1
n)−λ1 + (b1

n)−q1 = 0 on S1, αλ2 − ν
∂q2

∂n
= 0 on S2,

αωv + ωq1 = 0 in Ω1.

(4.5)
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We consider the Gradient method to solve (4.5): for any given λ0
1, λ0

2, v0, for
m ≥ 0 we look for um

1 , um
2 , qm

1 , qm
2 , λm+1

1 , λm+1
2 , vm+1 such that






L1u
m
1 = f + ωvm in Ω1,

(b1
n)−um

1 = (b1
n)−g on Γ1, (b1

n)−um
1 = (b1

n)−λm
1 on S1,

L2u
m
2 = f in Ω2, um

2 = g on Γ2, um
2 = λm

2 on S2,

L
(0)∗
1 qm

1 = χ12(um
1 − um

2 ) in Ω1, (b1
n)+qm

1 = 0 on ∂Ω1,

L
(0)∗
2 qm

2 = −χ12(um
1 − um

2 ) in Ω2, qm
2 = 0 on ∂Ω2,

(b1
n)−λm+1

1 = (b1
n)−λm

1 − γm(α(b1
n)−λm

1 + (b1
n)−qm

1 ) on S1,

λm+1
2 = λm

2 − γm

(

αλm
2 − ν

∂qm
2

∂n

)

on S2,

vm+1 = vm − γm(αvm + qm
1 ) inΩ12

(4.6)

The parameters {γm} have to be chosen to get convergence of (4.6) (see [1],[14],
[22]).

In the following we use the notion of “dense solvability” for problem (4.1),
(4.2) (see [8]).

Definition 4.1. We say that problem (4.1), (4.2) is densely solvable (or equivalently,
that the property of dense solvability holds for (4.1), (4.2)) if for any ε1 > 0 there
exist λ̂1, λ̂2, v̂ such that the problem
{

L1û1 = f + ωv̂ in Ω1, (b1
n)−û1 = (b1

n)−g on Γ1, (b1
n)−û1 = (b1

n)−λ̂1 on S1

L2û2 = f in Ω2, û2 = g on Γ2, û2 = λ̂2 on S2

(4.7)

has solution û1, û2 s.t.
‖û1 − û2‖L2(Ω12) ≤ ε1. (4.8)

This is also referred to as a property of “approximate controllability” for
problem (4.1), (4.2) (see [9],[23]).

As done in the previous section, we want to rewrite problem (4.1), (4.3)
through linear operators. Therefore, we set D(A) := Λ = L2(S−

1 ) × H
1/2
00 (S2) ×

L2(Ω12) and we define the linear operator

A : L2(S−
1 ) × L2(S2) × L2(Ω12) → L2(Ω12), Aλ̃ := χ12(uλ

1 − uλ
2 ), (4.9)

where λ̃ = (λ̃1, λ̃2, v) and where uλ
1 , uλ

2 are the solutions of

L1u
λ
1 = ωv in Ω1, (b1

n)−uλ
1 = 0 on Γ1, (b1

n)−uλ
1 = (b1

n)−λ̃1 on S1,

L2u
λ
2 = 0 in Ω2, uλ

2 = 0 on Γ2, uλ
2 = λ̃2 on S2.

(4.10)

The adjoint operator of A is

A∗ : L2(Ω12) → L2(S−
1 ) × L2(S2) × L2(Ω12), A∗ : w �→ µ, (4.11)
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such that:

L
(0)∗
1 q1 = χ12w in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12w in Ω2, q2 = 0 on ∂Ω2,

µ = (µ1, µ2, µ3), µ1 = (b1
n)−q1|S1 , µ2 = −ν

∂q2

∂n
|S2 , µ3 = ωv|Ω12 .

Given F as in (3.8), problem (4.1), (4.2) can be written again like (3.9), while
problem (4.1), (4.3) can be written like (3.24).

Let us consider uniqueness of solution for problem (4.1), (4.2). Should two
solutions {u(1)

1 , u
(1)
2 , λ

(1)
1 , λ

(1)
2 , v(1)} and {u(2)

1 , u
(2)
2 , λ

(2)
1 , λ

(2)
2 , v(2)} exist, their

difference u1 = u
(1)
1 − u

(2)
1 , ... , v = v(1) − v(2) would satisfy the equations






L1u1 = ωv in Ω1, (b1
n)−u1 = 0 on Γ1, (b1

n)−u1 = (b1
n)−λ1 on S1,

L2u2 = 0 in Ω2, u2 = 0 on Γ2, u2 = λ2 on S2,

u1 = u2, in Ω12.

(4.12)

From (4.12), for u = u1 = u2 in Ω12 we obtain the following boundary value
problem 





L2u = 0 in Ω12,

L1u = bn
∂u

∂n
+ bτ

∂u

∂τ
+ µu = ωv = 0 on ∂Ω12.

(4.13)

If the assumption (3.11) is fulfilled, then we have:

L2u = 0 in Ω12, u =
∂u

∂n
= 0 on ∆Γ(j), j = 1, . . . , p,

thus u = 0 in Ω12 from the uniqueness continuation theorem.
Hence, v = 0, λk = 0, uk = 0 in Ωk, k = 1, 2, i.e. the uniqueness of solutions of
(4.1), (4.2) takes place.
The same conclusion holds when assumption (3.12) or (3.13) hold instead of (3.11).
Moreover, the uniqueness of solution of (4.1), (4.2) implies the uniqueness of solu-
tion also for problem (4.5) (or equivalently (4.1), (4.3)) for α = 0. The uniqueness
results for (4.5) (or (4.1), (4.3)) when α > 0 follow from well-posedeness of equa-
tion (3.24) [1].

Let us formulate the following proposition.

Proposition 4.2. The following statements hold true:
1. Problem (4.1), (4.2) is densely solvable.
2. For any α > 0, problem (4.1), (4.3) has the unique solution uk = uk(α),

λk = λk(α), k = 1, 2, v = v(α) and

‖χ12(u1 − u2)‖L2(Ω) → 0, α → +0.

3. If problem (4.1), (4.2) has the unique solution u
(0)
k , λ

(0)
k , k = 1, 2, v(0), then

uk(α) → u
(0)
k , λk(α) → λ

(0)
k , k = 1, 2, v(α) → v(0) as α → +0,
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where, for any α > 0, uk(α), λk(α), for k = 1, 2, v(α) is the unique solution
of (4.1), (4.3).

4. If {um
k (α)}, {λm

k (α)}, k = 1, 2, {vm(α)} are calculated by convergent iter-
ative process (4.6) then for any ε2 > 0 there are a small α > 0 and suffi-
ciently large m = M � 1 such that ‖χ12(uM

1 (α) − uM
2 (α))‖L2(Ω) ≤ ε2, i.e.

uM
k (α), λM

k (α), k = 1, 2, vM (α) can be considered as an approximate solution
of (4.1), (4.2).

5. If (4.1), (4.2) has the unique solution u
(0)
k , λ

(0)
k , k = 1, 2, v(0) then

um
k (α) → u

(0)
k , λm

k (α) → λ
(0)
k , (k = 1, 2)

vm(α) → v(0) as α → 0 and m → ∞
and for sufficiently small α > 0 and large m = M � 1 the functions
uM

k (α), λM
k (α) (for k = 1, 2), vM (α) can be chosen as approximations of

u
(0)
k , λ

(0)
k (for k = 1, 2), v(0).

Proof. 1. Let us consider the homogeneous adjoint problem, corresponding to (4.1),
(4.2): find q1, q2, w s.t.






L
(0)∗
1 q1 = χ12w in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12w in Ω2, q2 = 0 on ∂Ω2,

(b1
n)−q1 = 0 on S1, −ν

∂q2

∂n
= 0 on S2, ωq1 = 0 in Ω1.

(4.14)

From the last relation we obtain: q1 = 0 in Ω12. Now, using the equations in Ω1

and Ω2 we conclude also that w = 0 in Ω12, qk = 0 in Ωk, k = 1, 2. So, the
adjoint problem (4.14) admits only the trivial solution, that is ker(A∗) = {0}. If
we apply the theory of operator equations [8],[1], ker(A∗) = {0} implies the dense
solvability of (4.1), (4.2).

2. If α > 0, existence and uniqueness of solution for problem (4.1), (4.3), (or
equivalently (4.5)) is proved by invoking the results of [1]. As a matter of fact,
if F is given as in (3.8), A as in (4.9) and A∗ as in (4.11), problem (3.24) (or
equivalently (4.1), (4.3)) has a unique solution λ̃ = (λ̃1, λ̃2, v) for any α > 0.
Besides, the solutions uk = uk(α), λk = λk(α), for k = 1, 2, v = v(α) of (4.1),
(4.3), for sufficiently small α > 0 can be chosen as “regularized approximations”
of the solutions of (4.1), (4.2) such that (see [1]):






L1u1 = f + ωv in Ω1,

(b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1,

L2u2 = f in Ω2, u2 = g on Γ2, u2 = λ2 on S2,

J0(λ1, λ2) = 1
2‖χ12(u1(λ1) − u2(λ2))‖2

L2(Ω) ≤ ε1

(4.15)

and
‖χ12(u1(α) − u2(α))‖2

L2(Ω) → 0 as α → +0. (4.16)
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3. If we apply the Tikhonov’s regularization method to equation (3.24) (see
[1],[20],[21]), we can prove the convergence

λ(α) → λ(0) as α → +0.

Since the operator A is bounded and, by assumption, problem (4.1), (4.2) has a
unique solution, then

uk(α) → u
(0)
k as α → +0, k = 1, 2

as well.
4. This statement follows from both second assertion of the present Proposi-

tion and convergence of the iterative process (4.6) when the relaxation parameters
γm are chosen appropriately (see [1],[14],[22]).

5. This statement is a consequence of the previous steps of the present propo-
sition. �

Remark 4.3. Since ‖χ12(u1 −u2)‖2
L2(Ω) → 0 as α → +0, the right hand side of the

adjoint problem vanishes when α → +0, therefore we have the convergence result

‖b · ∇q1‖L2(Ω1) + ‖q1‖L2(Ω1) + ‖q2‖L2(Ω2) → 0, ‖q2‖H1(Ω2) → 0, α → +0

and
‖q2‖H2(Ω2) → 0, α → +0 if Ω2 is convex or ∂Ω2 is smooth.

Remark 4.4. We draw attention to the following point: if ‖u1 − u2‖L2(Ω12) →
0, α → +0 or ‖um

1 − um
2 ‖L2(Ω12) → 0 as “α → +0, m → ∞” then we do not

expect the convergence of both v(α) and vm(α) to zero as α → +0, m → ∞
in general case (because in this case it can be in contradiction with results from
Propositions 3.1 - 3.2).

5. Numerical results

We consider the heterogeneous problem (2.2) in the one-dimensional domain Ω =
(0, 1), with b0 = 0, f = 1, and homogeneous Dirichlet boundary conditions on
∂Ω. The coefficients ν and b, as well as the subdomain partition will be specified
below. For the 3-controls approach we chose ω ≡ χ12 in Ω12.
In order to discretize the differential problem, we consider a spectral element ap-
proach ([13]), where we denote by N the polynomial degree in each subdomain.
After space discretization, both 2-controls approach (2.2), (2.4) and 3-controls
approach (4.1), (4.3) are solved by Bi-CGStab iterations.

In Figure 4 we show the numerical solution obtained with both 2-controls
(dashed line) and 3-controls (solid line), for ν = 1, b = 1 at left and ν = 10−2, b = 1
at right. For both cases the domain partition is Ω1 = (0, 0.6) and Ω2 = (0.3, 1).
Note that, for the choice b = 1, we have S−

1 = ∅, thus no control function λ1

is needed on S1. The regularization parameter is α = 0 in both cases, the same
solution is obtained also for small α > 0. We decompose both Ω1 and Ω2 in
two spectral elements and the common element discretizes the overlap Ω12. The
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Figure 4. Numerical solutions obtained with 2 controls (dashed
line) and 3 controls (solid line) for ν = 1, b = 1 at left and for
ν = 10−2, b = 1 at right. Ω1 = (0, 0.6), Ω2 = (0.3, 1).

polynomial degree used is N = 16 in each element of both Ω1 and Ω2 when ν = 1,
while it is N = 16 in each element of Ω1 and N = 24 in Ω2 \ Ω12 when ν = 10−2.
As we can see the solution obtained with 3-controls matches on the overlap Ω12

also with large viscosity ν = 1. The dimension of system (3.24) is n = 1 for the 2
controls approach, while it is n = N for the 3 controls approach.

In Figure 5 we show the numerical solution obtained with both 2 controls
(dashed line) and 3 controls (solid line), for ν = 1, b = −1 at left and ν = 10−2,
b = −1 at right. The regularization parameter is α = 0 in both cases, the same
solution is obtained also for small α > 0. The decomposition of Ω is the same used
for the test case described in the previous figure. The polynomial degree used is
N = 16 in each element of both Ω1 and Ω2 and for both ν = 1 and ν = 10−2.
In this case the dimension of system (3.24) is n = 2 for the 2 controls approach,
while it is n = N + 1 for the 3 controls approach.

For simplicity of notation we set

Ĵ2,α = inf
λ1,λ2

Jα(λ1, λ1) and Ĵ3,α = inf
λ1,λ2,v

Jα(λ1, λ1, v). (5.1)

From Figure 6 we note that both Ĵ2,α and Ĵ3,α vanish as the viscosity tends
to zero. But, as shown in Figure 7 for fixed viscosity and for increasing polynomial
degree N , the values Ĵ2,α is positive and bounded from below, while the value Ĵ3,α

tends to zero.
Finally, in Figure 8 both Ĵ2,α and Ĵ3,α are plotted versus the size of the

overlap.
We consider now some two-dimensional cases.
Test case #1. We consider the following data:

Ω = (−1, 1)2, Ω1 = (−1, .8) × (−1, 1), Ω2 = (.7, 1) × (−1, 1), (5.2)
�b = [y, 0]t, b0 = 1, f ≡ 1. (5.3)
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Figure 5. Numerical solutions obtained with 2 controls (dashed
line) and 3 controls (solid line) for ν = 1, b = −1 at left and for
ν = 10−2, b = −1 at right. Ω1 = (0, 0.6), Ω2 = (0.3, 1).
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Ĵ2,α
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Figure 6. The minimum values Ĵ2,α and Ĵ3,α versus the viscosity
ν, obtained with b = 1 at left and b = −1 at right. For both cases,
α = 0 and Ω1 = (0, 0.6), Ω2 = (0.3, 1). The polynomial degree
N is chosen inside the spectral elements in order to guarantee
absence of oscillations. Ω is decomposed in 3 spectral elements as
for the test cases presented in the previous pictures.

We impose homogeneous Dirichlet conditions on the right vertical side of Ω, g ≡ 1
on {−1} × (0, 1] and null normal derivative on the horizontal sides of Ω and on
{−1}×[−1, 0]. In this case we have S−

1 = {.8}×[−1, 0). Along the y coordinate the
mesh is uniform, while along the x coordinate the mesh is finer near the boundary
layer, in particular we have used polynomial degree N = 5 along the y− direction
and N = 12 along the x− direction. Ω1 is decomposed in 2 × 3 spectral elements,
while Ω2 is decomposed in 4 × 3 spectral elements. The numerical solution ob-
tained with viscosity ν = 10−2 and ν = 10−3 for the 2-controls approach is shown
in Figure 9, while in Figure 10 we report the solution of the 3-controls approach.
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mial degree N , obtained with b = 1 at left and b = −1 at right. For
both cases, ν = 0.1, α = 0 and Ω1 = (0, 0.6), Ω2 = (0.3, 1). Ω is
decomposed in 3 spectral elements as for the test cases presented
in the previous pictures.
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Ĵ3,α

0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
10

−30

10
−25

10
−20

10
−15

10
−10

10
−5

x2
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Figure 8. The minimum values Ĵ2,α and Ĵ3,α versus the size of
the overlap, obtained with ν = 0.1, b = 1 at left and ν = 0.01,
b = −1 at right. For both cases α = 0, we have decomposed Ω
in 20 equal spectral elements of equal size H = 0.5 and N = 4
in each element, Ω1 = (0, 0.6) and Ω2 = (x2, 1). The size of the
overlap is meas(Ω12) = 0.6 − x2.

The numerical solution of the minimum problem is computed by BiCG-Stab it-
erations. The stopping criterion is that the norm of the normalized residual be
below a tolerance ε = 10−6. In Table 1 we show the number of iterations needed
to solve the minimum problem for both 2-controls and 3-controls approaches, as
well as the minimum values Ĵ2,α(λ1, λ2) and Ĵ3,α(λ1, λ2, v), defined in (5.1), versus
the viscosity ν. We may observe that, for the 2-controls approach, the number of
Bi-CGStab iterations is independent of the viscosity, while Ĵ2,α(λ1, λ2) decreases
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Figure 9. Test case #1. Numerical solution for ν = 10−2 (left)
and ν = 10−3 (right) obtained through the 2-controls approach
with α = 0. The overlap is Ω12 = (.7, .8)× (−1, 1). The minimum
values of the cost functional J are Ĵ2,α = 5.67 · 10−5 for ν = 10−2

and Ĵ2,α = 4.92 · 10−7 for ν = 10−3.

for vanishing viscosities. On the other hand, the number of BiCG-Stab iterations
required by the 3-controls approach decreases when the viscosity vanishes and it
is considerably larger than for the 2-controls approach. Note that the dimension
n of system (3.24) for the 3-controls approach is larger than for the 2-controls ap-
proach. As a matter of fact, the third control v is defined on the whole overlapping
region Ω12. For the discretization used in this test case, we have n = 24 for the
2-controls approach and n = 193 for the 3-controls approach.
The minimum values Ĵ3,α(λ1, λ2, v) do not depend on the viscosity. We remark
that when we impose a more restrictive tolerance for the stopping criterion of
BiCG-Stab iterations (say ε = 10−12), the minimum values Ĵ3,α(λ1, λ2, v) are
about 10−24 for any value of ν, confirming the second assertion of Proposition 4.2.
In the case of the 3-controls approach, if we replace the BiCG-Stab stopping cri-
terion on the residual with Jα(λ1, λ2, v) ≤ Ĵ2,α(λ1, λ2), where Ĵ2,α(λ1, λ2) is the
minimum obtained for the same value of the viscosity by the 2-controls approach,
then the numerical solution obtained is very poorly resolved and presents oscilla-
tions inside the domain Ω1.

Test case #2. We consider now a rectangular domain Ω with two circular
holes, as described in Figure 11, and the following data

�b = [1, 0]t, b0 = 10−1, f ≡ 0. (5.4)

The solution is given u = 1 on the left vertical side of Ω, that is the inflow external
boundary for Ω1, while it is u = 0 on the boundaries of the holes.
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Figure 10. Test case #1. Numerical solution for ν = 10−2 (left)
and ν = 10−3 (right) obtained through the 3-controls approach
with α = 0. The overlap is Ω12 = (.7, .8)× (−1, 1). The minimum
values of the cost functional J are Ĵ3,α = 1.97 ·10−11 for ν = 10−2

and Ĵ3,α = 5.81 · 10−11 for ν = 10−3.

2-controls 3-controls
ν #it Ĵ2,α #it Ĵ3,α

0.1 18 8.71 · 10−4 319 2.83 · 10−11

0.01 15 5.85 · 10−5 276 1.97 · 10−11

0.001 18 4.92 · 10−7 220 5.81 · 10−11

0.0001 18 9.79 · 10−9 190 2.45 · 10−11

Table 1. Test case #1. Number of BiCG-Stab iterations needed
to satisfy the stopping criterion on the residual with tolerance ε =
10−6 and the obtained minimum values for the cost functionals
J2(λ1, λ2) and J3(λ1, λ2, v).

The space discretization is performed with conformal quadrilateral spectral
elements with polynomial degree N = 8 in each direction. The numerical solution
obtained through the 3-controls approach, for ν = 0.05, is shown in Figure 11.

6. Domain decomposition algorithms with “mixed-type” controls

We investigate domain decomposition algorithms based on optimal control ap-
proaches with different types of controls on S−

1 , S−
2 and in Ω12. We consider the
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Figure 11. Test case #2. The computational domain (left) and
the 3-controls solution when ν = 0.05 (right). No regularization
is done on the problem, i.e. α = 0. The interfaces S1 and S2 are
drawn over the solution.

following optimal control problem: find u1, u2, λ1, λ2, v s.t.






L1u1 = f + ωv in Ω1,

(b1
n)−u1 = (b1

n)−g on Γ1, (b1
n)−u1 = (b1

n)−λ1 on S1,

L2u2 = f in Ω2,

u2 = g on Γ2,

(

ν
∂u2

∂n
+ (b2

n)−u2

)

= (b2
n)−λ2 on S2,

(6.1)

inf
λ1,λ2,v

Jα(u1, u2, λ1, λ2, v), (6.2)

where ω and Jα have been defined in the previous section, with the exception that

now the term
∫

S2

λ2
2dΓ is replaced by

∫

S2

(b2
n)−λ2

2dΓ.

The variational equations corresponding to (6.2) are






L
(0)∗
1 q1 = χ12(u1 − u2) in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12(u1 − u2) in Ω2,

q2 = 0 on Γ2,

(

ν
∂q2

∂n
+ (b2

n)+q2

)

= 0 on S2,

α(b1
n)−λ1 + (b1

n)−q1 = 0 on S1, α(b2
n)−λ2 + (b2

n)−q2 = 0 on S2,

αωv + ωq1 = 0 on Ω1.

(6.3)
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The iterative process that we propose to solve (6.3), is: for any given λ0
1, λ0

2,






L1u
m
1 = f + ωvm in Ω1,

(b1
n)−um

1 = (b1
n)−g on Γ1, (b1

n)−um
1 = (b1

n)−λm
1 on S1,

L2u
m
2 = f in Ω2,

um
2 = g,

(

ν
∂um

2

∂n
+ (b2

n)−um
2

)

= (b2
n)−λm

2 on S2,

L
(0)∗
1 qm

1 = χ12(um
1 − um

2 ) in Ω1, (b1
n)+qm

1 = 0 on ∂Ω1,

L
(0)∗
2 qm

2 = −χ12(um
1 − um

2 ) in Ω2,

qm
2 = 0 on Γ2,

(

ν
∂qm

2

∂n
+ (b2

n)+qm
2

)

= 0 on S2,

(b1
n)−λm+1

1 = (b1
n)−λm

1 − γm(α(b1
n)−λm

1 + (b1
n)−qm

1 ) on S1,

(b2
n)−λm+1

2 = (b2
n)−λm

2 − γm(α(b2
n)−qm

2 + (b2
n)−qm

2 ) on S2,

ωvm+1 = ωvm − γm(αωvm + ωqm
1 ) in Ω1, m = 0, 1, . . . .

(6.4)

Proposition 6.1. The assertions of Proposition 4.2 hold true for both problem (6.1),
(4.2) and (6.1), (6.2) (instead of (4.1), (4.2) and (4.1), (4.3), respectively) and for
the process (6.4) (instead of (4.6)).

Proof. We have to prove that problem (6.1), (4.2) is densely solvable. Let us con-
sider the adjoint problem, find q1, q2, w such that






L
(0)∗
1 q1 = χ12w in Ω1, (b1

n)+q1 = 0 on ∂Ω1,

L
(0)∗
2 q2 = −χ12w in Ω2,

q2 = 0 on Γ2,

(

ν
∂q2

∂n
+ (b2

n)+q2

)

= 0 on S2,

(b1
n)−q1 = 0 on S1, (b2

n)−q2 = 0 on S2, ωq1 = 0 in Ω1.

(6.5)

The latter relation implies that q1 = 0 in Ω1. Therefore, w = 0 in Ω12 and the
function q2 satisfies the following equations:

L
(0)∗
2 q2 = 0 in Ω2, q2 = 0 on Γ2,(

ν
∂q2

∂n
+ (b2

n)+q2

)

= 0 on S2, (b2
n)−q2 = 0 on S2.

Hence, if q2 = 0 in Ω2, problem (6.5) has the trivial solution, and we conclude that
the boundary value problem (6.1), (4.2) is densely solvable.

The other steps of the proof can be carried out following the proof of Propo-
sition 4.2. �
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7. Domain decomposition algorithm for the second order elliptic
equations

We revisit the control approach developed in the previous sections for heteroge-
neous domain decomposition methods in the case of a “standard” (homogeneous)
domain decomposition method for elliptic equations.

Let us consider in Ω ⊂ R
2 the Dirichlet problem for the second order equation

given by

Lu := −
2∑

i,j=1

∂

∂xi

(

aij
∂u

∂xj

)

+∇ · (bu) + b0u = f in Ω, u = 0 on ∂Ω, (7.1)

where aij are bounded smooth functions such that

2∑

i,j=1

aijξiξj ≥ C0|ξ|2 ∀ξ ∈ R
2, x ≡ (x1, x2) ∈ Ω

with C0 = const > 0 and conditions on b, b0 as before.
We introduce the decomposition of Ω onto two overlapping subsets as in Figs.

1–3. To simplify our considerations we assume each subdomain Ω(j)
12 to be convex

or ∂Ω(j)
12 is smooth, for j = 1, . . . , p. Let us consider the “exact controllability

problem”: find u1, u2, λ1, λ2, v such that





Lu1 = f + χ12v in Ω1,

u1 = 0 on Γ1,

(
∂u1

∂nL
+ (b1

n)−u1

)

= (b1
n)−λ1 on S1,

Lu2 = f in Ω2,

u2 = 0 on Γ2,

(
∂u2

∂nL
+ (b2

n)−u2

)

= (b2
n)−λ2 on S2,

u1 = u2 in Ω12,

(7.2)

where ∂u/∂nL =
2∑

i,j=1

aijni∂u/∂xj, n = (n1, n2) is the outward unit normal vector

on the boundary. The weak statement of (7.2) reads: find uk ∈ H1
Γk

(Ωk), λk ∈
L2(S−

k ), v ∈ L2(Ω12) s.t.





a1(u1, û1) = (f + χ12v, û1)L2(Ω1) +
∫

S1

(b1
n)−λ1û1dΓ ∀û1 ∈ H1

Γ1
(Ω1),

a2(u2, û2) = (f, û2)L2(Ω2) +
∫

S2

(b2
n)−λ2û2dΓ ∀û2 ∈ H1

Γ2
(Ω2),

J0(u1, u2) :=
1
2
‖χ12(u1 − u2)‖2

L2(Ω) = 0

(7.3)

where
H1

Γk
(Ωk) = {u ∈ H1(Ωk), u = 0 on Γk},
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ak(uk, ûk) =
∫

Ωk




2∑

i,j=1

aij
∂uk

∂ξj

∂ûk

∂ξi
− ukb · ∇ûk + b0ukûk



 dΩ

+
∫

Sk

(bk
n)+ukûkdΓ, k = 1, 2.

(7.4)

The optimal control problem reads as follows: find uk = uk(α) ∈ H1
Γk

(Ωk), λk =
λk(α) ∈ L2(S−

k ), k = 1, 2 and v = v(α) ∈ L2(Ω12) s.t.






a1(u1, û1) = (f + χ12v, û1)L2(Ω1) +
∫

S1

(b1
n)−λ1û1dΓ ∀û1 ∈ H1

Γ1
(Ω1),

a2(u2, û2) = (f, û2)L2(Ω2) +
∫

S2

(b2
n)−λ2û2dΓ ∀û2 ∈ H1

Γ2
(Ω2),

inf
λ1,λ2,v

Jα(λ1, λ2, v),

(7.5)

where

Jα(λ1, λ2, v) =
α

2




∫

S1

(b1
n)−λ2

1dΓ +
∫

S2

(b2
n)−λ2

2dΓ +
∫

Ω12

v2dΩ



+
1
2
‖χ12(u1−u2)‖2

L2(Ω).

The variational equations corresponding to (7.5) are:






a1(u1, û1) = (f, û1)L2(Ω1) +
∫

S1

(b1
n)−λ1û1dΓ

+(χ12v, û1)L2(Ω1) ∀û1 ∈ H1
Γ1

(Ω1),

a2(u1, û2) = (f, û2)L2(Ω2) +
∫

S2

(b2
n)−λ2û2dΓ ∀û2 ∈ H1

Γ2
(Ω2),

a1(q̂1, q1) = (χ12(u1 − u2), q̂1)L2(Ω1) ∀q̂1 ∈ H1
Γ1

(Ω1),

a2(q̂2, q2) = −(χ12(u1 − u2), q̂2)L2(Ω1) ∀q̂2 ∈ H1
Γ2

(Ω2),

α(b1
n)−λ1 + (b1

n)−q1 = 0 a. e. on S1,

α(b2
n)−λ2 + (b2

n)−q2 = 0 a. e. on S2,

αχ12v + χ12q1 = 0 in Ω1.

(7.6)

The following iterative process is similar to those proposed in the previous sections:
if λ0

1, λ0
2, v0 are given, then the functions λm+1

1 , λm+1
2 , vm+1 are obtained from
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the solution of:





a1(um
1 , û1) = (f, û1)L2(Ω1) +

∫

S1

(b1
n)−λm

1 û1dΓ

+(χ12v
m, û1)L2(Ω1) ∀û1 ∈ H1

Γ1
(Ω1),

a2(um
2 , û2) = (f, û2)L2(Ω2) +

∫

S2

(b2
n)−λm

2 û2dΓ ∀û2 ∈ H1
Γ2

(Ω2),

a1(q̂1, q
m
1 ) = (χ12(um

1 − um
2 ), q̂1)L2(Ω1) ∀q̂1 ∈ H1

Γ1
(Ω1),

a2(q̂2, q
m
2 ) = −(χ12(um

1 − um
2 ), q̂2)L2(Ω2) ∀q̂2 ∈ H1

Γ2
(Ω2),

(b1
n)−λm+1

1 = (b1
n)−λm

1 − γm(α(b1
n)−λm

1 + (b1
n)−qm

1 ) on S1,

(b2
n)−λm+1

2 = (b2
n)−λm

2 − γm(α(b2
n)−λm

2 + (b2
n)−qm

2 ) on S2,

χ12v
m+1 = χ12v

m − γm(αχ12v
m + χ12q

m
1 ) on Ω1,

(7.7)

for m = 0, 1, . . . and for suitable parameters {γm}.
Let us analyze the convergence of solutions given by (7.7) to the solution of

(7.1) as α → +0 and m → ∞. The following statement holds true.

Proposition 7.1. Problem (7.2) (or equivalently (7.3)) as a unique solution and it
is densely solvable. Moreover, if u(0) is the solution of (7.1), and u

(0)
k ≡ u(0) in

Ωk, um
k (α), λm

k (α), (for k = 1, 2) vm(α) is the solution obtained by the iterative
algorithm (7.7), then

2∑

k=1

‖u(0)
k − um

k (α)‖H1(Ωk) → 0 as α → +0, m → ∞. (7.8)

Proof. Under the assumptions imposed on b, b0, f, Ω in Section 2, problem (7.1)
has a unique solution u ∈ H1

0 (Ω). Hence the same function u is also solution of
problem (7.2) (or equivalently (7.3)) when v ≡ 0. Assume that (7.2) has another
solution ũ. Then the difference û = u − ũ satisfies the following equations





Lû1 = χ12v in Ω1, û1 = 0 on Γ1,

(
∂û1

∂nL
+ (b1

n)−û1

)

= (b1
n)−λ1 on S1,

Lû2 = 0 in Ω2, û2 = 0 on Γ2,

(
∂û2

∂nL
+ (b2

n)−û2

)

= (b2
n)−λ2 on S2,

û1 = û2 in Ω12.

Since the differential operators in the first and second equations coincide, then
using the latter equality we conclude: v = 0 in Ω12. (This conclusion can be
obtained also from the weak statement (7.3) of problem (7.2)). Now, let us consider
the following integral

I(u, û) ≡
∫

Ω




2∑

i,j=1

aij
∂u

∂xi

∂û

∂xj
− ub · ∇û + b0uû



 dΩ ∀û ∈ H1
0 (Ω),
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where uk = u|Ωk
for k = 1, 2 and u1 = u2 = u in Ω12. Integrating by parts we

have:

I(u, û) = (Lu1, û)L2(Ω1\Ω12) + (Lu2, û)L2(Ω2\Ω12) + (Lu, û)L2(Ω12)

+
∫

S1

(

− ∂u2

∂nL
+

∂u

∂nL

)

ûdΓ +
∫

S2

(

− ∂u1

∂nL
+

∂u

∂nL

)

ûdΓ,

where Luk = 0 in Ωk\Ω12, k = 1, 2 and Lu = 0 in Ω12. Since

u1 = u2 = u in Ω12,
∂u

∂nL
=

∂u1

∂nL
on S2,

∂u

∂nL
=

∂u2

∂nL
on S1,

then I(u, û) = 0. If we set û = u, then

I(u, u) =
∫

Ω




2∑

i,j=1

aij
∂u

∂xi

∂u

∂xj
+
(

b0 +
1
2
divb

)

u2



 dΩ = 0

and u = 0 in Ω, uk = 0 in Ωk, k = 1, 2, λ1 = 0 on S−
1 , λ2 = 0 on S−

2 i.e. the
solution of (7.2) (or equivalently (7.3)) is unique.

Let us consider now the weak statement of the adjoint problem with homo-
geneous boundary conditions: find q1, q2, w s.t.





a1(q̂1, q1) = (χ12w, q̂1)L2(Ω1) ∀q̂1 ∈ H1
Γ1

(Ω1),

a2(q̂2, q2) = −(χ12w, q̂2)L2(Ω2) ∀q̂2 ∈ H1
Γ2

(Ω2),

(b1
n)−q1 = 0 a. e. on S1, (b2

n)−q2 = 0 a. e. on S2, χ12q1 = 0 in Ω1.

(7.9)

Since χ12q1 = 0 in Ω1 then q1 = 0 in Ω12 and w = 0. If we set q̂2 = q2 then:

a2(q2, q2) =
∫

Ω2

(
2∑

i,j=1

aij
∂q2

∂xi

∂q2

∂xj
+
(

b0 +
1
2
divb

)

q2
2

)

dΩ +
1
2

∫

S2

(b2
n)+q2

2dΓ = 0

and q2 = 0 in Ω2, q1 = 0 in Ω1, w = 0, i.e. problem (7.7) has the trivial solution.
This means that problem (7.2) (or equivalently (7.3)) is densely solvable and the
following relation holds true (see [1]):

2∑

k=1

(
‖u(0)

k − uk(α)‖H1(Ωk) + ‖λ(0)
k − λk(α)‖L2(S

−
k )

)
+ ‖χ12v(α)‖L2(Ω)

+‖χ12(u1(α) − u2(α))‖L2(Ω) → 0 as α → +0, (7.10)

where uk(α), λk(α), k = 1, 2 and v(α) is the solution of the optimal control prob-
lem (7.5) for α > 0, while u

(0)
k , λ

(0)
k , k = 1, 2 and v(0) ≡ 0 denotes the solution of

the exact controllability problem (7.2).
The convergence estimate (7.8) follows by the convergence of the iterative method
(7.7), for suitable relaxation parameters γm ([1],[14],[22]). �
Remark 7.2. The results proved in Proposition 7.1 remain valid for Ω ⊂ R

3 and
for elliptic systems.
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[8] S.G. Krĕın, Linear equations in Banach spaces, translated from the Russian by A.
Iacob, with an introduction by I. Gohberg. Birkhäuser, Boston, Mass., 1982.
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