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Abstract. The projection decomposition method (PDM) is invoked to extend the application
area of the spectral collocation method to elliptic problems in domains compounded of rectangles.
Theoretical and numerical results are presented demonstrating the high accuracy of the resulting
method as well as its computational efficiency.
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Introduction. Spectral methods represent a relatively new approach to the nu-
merical solution of partial differential equations which appeared more recently than
the widely used finite difference and finite element methods (FEMs). The first at-
tempt of a systematic analysis was undertaken by D. Gottlieb and S. Orszag in their
celebrated monograph [16], while a more comprehensive study appeared only 10 years
later in [7], where spectral methods were shown to be a viable alternative to other
numerical methods for a broad variety of mathematical equations, and particularly
those modeling fluid dynamical processes. As a matter of fact, spectral methods fea-
ture the property of being accurate up to an arbitrary order, provided the solution
to be approximated is infinitely smooth and the computational domain is a Carte-
sian one. Moreover, if the first condition is not fulfilled, the method automatically
adjusts to provide an order of accuracy that coincides with the smoothness degree of
the solution (measured in the scale of Sobolev spaces). This is undoubtedly a poten-
tial superiority enjoyed by these methods over traditional finite differences and the
h-version of the FEMs. On the other hand, when the computational domain Ω ⊂ R

d

has a complex shape, finite elements have the advantage of being more flexible in fit-
ting the domain boundaries by arbitrarily complex grids. However, spectral methods
can still be applied provided that the boundary ∂Ω is regular enough to allow the
domain to be partitioned into subregions that can be easily mapped into a reference
d-dimensional cube. This approach has led to the development of the spectral domain

decomposition methods based on the Galerkin method (the so-called “spectral ele-
ment method”; see [22], [18]) or the collocation method using Gauss–Lobatto points
on each subdomain (see [20], [7, Chapter 13] and [25]). Decompositions by overlap-
ping subdomains constructed by enlarging the original nonoverlapping ones have also
been considered (e.g., [30], [6], [23]). However, here the situation is not as simple as
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for low-order, local methods (finite differences or finite elements) since the Gaussian
grids on the enlarged subdomains do not include as a subset those on the original
subdomains, and therefore one has to apply interpolation procedures which can be
computationally very expensive. To avoid the interpolation, the enlarged subdomains
can be taken as unions of several original subdomains, as proposed by Pavarino in
[23]. The convergence behavior of such a method is quite satisfactory, but the extra
computational work is still very large due to the large amount of overlap.

In this paper we consider an extension of the spectral collocation method to el-
liptic problems in polyrectangular domains (i.e., domains compounded of rectangles)
based on the novel nonoverlapping domain decomposition algorithm—the so-called
projection decomposition method (PDM) [3, 21]. In this method the equation express-
ing the continuity of conormal derivative across the interface between the subdomains,
the so-called interface Steklov–Poincaré equation, is solved by the Galerkin projection
method. The use of a piecewise-polynomial well-conditioned basis leads to a well-
conditioned linear system for the coordinates of the Galerkin approximation in this
basis which can be solved effectively by the conjugate gradient (CG) method with the
convergence rate independent of the system dimension. This enables us to achieve a
desired accuracy of the approximate solution by increasing the degree N of polyno-
mials used for approximation in the subdomains and on the interface without slowing
down the convergence rate of the CG iterations. Besides, the combination of the piece-
wise-polynomial Galerkin approximation on the interface and the spectral collocation
method in the subdomains results in a high accuracy of the numerical solutions.

We stress that in the method proposed here a prescribed accuracy of approxima-
tion is achieved by increasing the degree of polynomials used while keeping the number

of subdomains fixed (cf. p-version of FEM): the use of preconditioning and advanced
mapping techniques, e.g., transfinite blending, allows effective exploitation of such a
method in a wide class of geometries.

Thus, one of the main objectives of this paper is to coordinate the PDM with a

well-conditioned piecewise-polynomial basis used for reducing the problem in a polyrect-

angular domain to a sequence of subproblems in rectangles and the spectral collocation

method used for solving those subproblems. We show that the resulting algorithm is
very effective and provides a solution that approximates the exact one with the spec-
tral accuracy. We show also that the convergence rate of the subdomain iterations is
independent of N and depends mildly on the number of subdomains even though no
coarse grid solver is called into play.

An outline of the paper is as follows. Sections 1 and 2 introduce the statement
of the problem and its spectral collocation approximation in the case of a rectan-
gular domain. In section 3 we briefly describe the PDM with a well-conditioned
polynomial basis: this description summarizes that from [3, 21] and is included here
for the reader’s convenience. Then in section 4 we show how this method can be
coupled with the spectral collocation method inside each subdomain, yielding a pro-
jection decomposition–spectral collocation (PD–SC) method. Finally, in section 5 we
demonstrate the numerical performance of our PD–SC method in several test cases.
An extensive comparison is carried out with two other domain decomposition meth-
ods, notably

(i) the Dirichlet–Neumann method with dynamical choice of the optimal accel-
eration parameter; and

(ii) the overlapping Schwarz method in its additive form: the CG iterations on
the spectral element matrix are preconditioned using the additive Schwarz method
with coarse grid solver induced by piecewise bilinear finite elements on the Gauss–
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Lobatto grid; this approach proposed in [15] is similar to the one in [24] and it makes
use of an overlapping region of variable thickness.

The superior efficiency of our method over both alternatives is clearly demon-
strated, leading us to the conclusion that this method represents a very efficient tool
for solving elliptic boundary value problems in complex two-dimensional (2D) domains
with the spectral accuracy.

1. The problem. Consider the following boundary value problem:
{

−∆u+ κu = f in Ω,
u = 0 on ∂Ω,

(1)

where ∆ is the Laplace operator, Ω is a bounded two-dimensional domain with
piecewise-smooth Lipschitz boundary ∂Ω, κ is a nonnegative bounded function, and
f is a function in L2(Ω).

We denote by
(i) L2(Ω) the space of measurable functions u : Ω → R such that

∫

Ω
|u(x, y)|2dΩ <

+∞ endowed with the norm

||u||L2(Ω) =

(
∫

Ω

|u(x, y)|2dΩ

)1/2

;(2)

(ii) L∞(Ω) the space of measurable functions u : Ω → R such that |u(x, y)| is
bounded outside a set of measure zero; the norm in L∞(Ω) is

||u||L∞(Ω) = ess sup
(x,y)∈Ω

|u(x, y)|;(3)

(iii) H1(Ω) the space of functions v ∈ L2(Ω) whose first-order distributional
derivatives belong to L2(Ω), endowed with the norm

||v||H1(Ω) = {||v||2L2(Ω) + ||∇v||2L2(Ω)}1/2; and(4)

(iv) H1
0 (Ω) the subspace of H1(Ω) of the functions whose trace at the boundary

is zero, i.e.,

H1
0 (Ω) = {v ∈ H1(Ω) : v|∂Ω = 0}(5)

endowed with the norm

||v||1 = ||∇v||L2(Ω).(6)

The variational formulation of (1) reads

find u ∈ H1
0 (Ω) such that

a(u, v) = b(v) ∀v ∈ H1
0 (Ω)

(7)

with

a : H1(Ω) ×H1(Ω) → R, b : H1(Ω) → R,(8)

a(u, v) =

∫

Ω

(∇u · ∇v + κuv) dΩ , b(v) =

∫

Ω

fv dΩ.(9)

It is easy to see that there exist positive constants â0, ǎ0, and b0 such that

|a(u, v)| ≤ â0 ‖ u ‖
1
‖ v ‖

1
, a(u, u) ≥ ǎ0 ‖ u ‖2

1
, |b(v)| ≤ b0 ‖ v ‖

1
;(10)

therefore problem (7) has a unique solution owing to the Riesz theorem.
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2. The spectral collocation method. Here we briefly describe the spectral
collocation method (SCM) [7, 4, 28] for the problem (7) with inhomogeneous boundary
data on a rectangle Ω∗:

{

Lu ≡ −∆u+ κu = f in Ω∗,
u = g on ∂Ω∗,

(11)

where f ∈ C0(Ω∗) and g ∈ C0(∂Ω∗) ∩ H1/2(∂Ω∗). The bilinear form associated to
the operator L is the same as in (9). The weak formulation of the inhomogeneous
problem (11) reads

find u ∈ Vg : a(u, v) =

∫

Ω∗

fv dΩ∗ ∀v ∈ V,(12)

where Vg = {v ∈ H1(Ω∗) : (v − g) ∈ H1
0 (Ω∗)} and V = H1

0 (Ω∗). To solve problem
(12) we apply the SCM at Legendre–Lobatto nodes described below.

We denote by ξ
N∗

k and γ
N∗

k (k = 0, . . . , N∗) the nodes and the weights of the
Gauss–Lobatto quadrature formula of order (2N∗ − 1) on the interval (−1, 1) with
respect to the weight function ω(x) ≡ 1. We remind the reader that (e.g., [9])

ξ
N∗

0 = −1, ξ
N∗

N∗ = 1, while ξ
N∗

k (k = 1, . . . , N∗ − 1) are the zeros of L′
N∗ .(13)

Here L
N∗ is the Legendre polynomial in (−1, 1) of degree N∗ and the weights γ

N∗

k

have the following expression:

γ
N∗

k =
2

N∗(N∗ + 1)

1

[L
N∗ (ξk)]2

, k = 0, . . . , N∗.(14)

Given two natural numbers Nx and Ny we denote by PN (Ω∗) the space of alge-
braic polynomials on Ω∗ of degree Nx and Ny with respect to the variables x and y,
respectively. We denote by (xi, yj) (for i = 0, . . . , Nx and j = 0, . . . , Ny) the nodes on

Ω∗ obtained by the Cartesian product of ξ
Nx

i and ξ
Ny

j , while ωij = γNx
i γ

Ny

j
meas(Ω∗)

4 .
We will make use of the following notations:

(u, v)
N,Ω∗ =

∑Nx,Ny

i,j=1 u(xi, yj)v(xi, yj)ωij is the discrete inner product in L2(Ω∗)
on the Gauss–Lobatto–Legendre (GLL) nodes (xi, yj) ∈ Ω∗;

(u, v)
N,∂Ω∗ is the GLL quadrature formula for the integration of uv on each side

of ∂Ω∗;
V

N
= {p ∈ PN (Ω∗) : p = 0 on ∂Ω∗}.

The discrete counterpart of the bilinear form (9) is

a
N

(u, v) = (∇u,∇v)
N,Ω∗ + (κu, v)

N,Ω∗(15)

and it can be shown that ∀u
N
, v

N
∈ P

N
(Ω∗)

a
N

(u
N
, v

N
) = (−∆u

N
+ κu

N
, v

N
)

N,Ω∗ +
(∂u

N

∂n
, v

N

)

N,∂Ω∗

(16)

(e.g., [28, Chapter 6]).
The approximation of (12) by the SCM reads

find u
N

∈ P
N

(Ω∗) : a
N

(u
N
, v

N
) = (f, v

N
)

N
∀ v

N
∈ V

N
(17)
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and u
N

= g at all collocation nodes lying on ∂Ω∗. Let {χj
N∗ (x)}j=0,N∗ be the set

of the Lagrange polynomials defined on the interval (a, b) such that χj
N∗ ∈ P

N∗ (a, b),

χj
N∗ (xk) = δkj , and let {χij

N
(x, y)}i=0,Nx

j=0,Ny

be the set of the Lagrange polynomials defined

on Ω∗ such that χij
N

∈ P
N

(Ω∗), χij
N

(x, y) = χi
Nx

(x)χj
Ny

(y). It can be derived from (16)

and (17), by setting v
N

= χij
N

, that the spectral collocation approximation to the
solution u of the problem (12) is the algebraic polynomial u

N
∈ P

N
(Ω∗) such that

{

Lu
N

= f at any (xi, yj) ∈ Ω∗,
u

N
= g at any (xi, yj) ∈ ∂Ω∗.

(18)

The spectral collocation method is known to be very accurate provided that the
solution of the problem (11) is smooth enough (see, e.g., [4], [7], [28], and the references
therein). However, in the form presented above it is restricted to problems in a
rectangle. In order to generalize this method without loss of accuracy to more general
geometries, we apply the domain decomposition technique presented in the subsequent
section.

3. The PDM. Suppose that the domain Ω is partitioned into nonoverlapping
subdomains Ωi, i = 1, . . . ,m :

Ω =

m
⋃

i=1

Ωi, Ωi ∩ Ωj = ∅ for i 6= j.(19)

All subdomains are assumed to be rectangles, each one sharing either a whole side
or a vertex with each neighbor. We denote by Ω0 = ∪mk=1Ωk the union of the subdo-
mains and by Γ = Ω \ Ω0 the union of subdomain interfaces, briefly referred to below
as the interface. Following the standard domain decomposition technique based on
the concept of the Poincaré–Steklov operator (see, e.g., [2, 27]; for the alternative
approach based on the subspace decomposition technique, see, e.g., [12] and the refer-
ences therein) we decouple problem (7) into m local boundary value problems, one in
each subdomain, and a problem on the interface between the subdomains as follows
(see also [5], where a similar technique was used). We represent the solution u of
problem (7) as the sum

u = u0 + v,(20)

where u0 ∈ H1
0 (Ω0) is the solution of the problem

a(u0, w) = b(w) ∀w ∈ H1
0 (Ω0),(21)

while v ∈ H1
0 (Ω) is the solution of the problem

a(v, w) = b(w) − a(u0, w) ≡ g(w) ∀w ∈ H1
0 (Ω).(22)

Problem (21) yields upon each subdomain Ωk a problem like (7) (i.e., an elliptic
problem with homogeneous Dirichlet condition). The problem (22) in its turn can
be reduced to a problem for the trace ϕ = u|Γ of the solution u on Γ through the
following well-known derivation used in the theory of the Poincaré–Steklov operators
[2, 27].

Let us introduce the following subspace of H1
0 (Ω):

Hharm = {w ∈ H1
0 (Ω) : a(w, z) = 0 ∀z ∈ H1

0 (Ω0)}.(23)
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From (21) and (22) it follows that a(v, w) = 0 ∀w ∈ H1
0 (Ω0), i.e., v ∈ Hharm, and

therefore problem (22) can be reformulated as

find v ∈ Hharm such that
a(v, w) = b(w) ∀w ∈ Hharm.

(24)

We note that when κ = 0 in (9), functions from Hharm are harmonic in each sub-
domain. Below we call these functions “harmonic” even when κ is different from
zero.

From the well-known results of the theory of traces (see, e.g., [14, 17, 29]) it
follows that Hharm is isomorphic to the space

H
1/2
0 (Γ) = {ϕ = w|Γ : w ∈ H1

0 (Ω)}(25)

provided with the norm

‖ ϕ ‖
H

1/2
0 (Γ)

= inf
w|Γ

=ϕ
‖ w ‖

H1
0(Ω)

.(26)

Introducing the operator EΓ : H
1/2
0 (Γ) → Hharm, the inverse of the trace operator

Tu = u|Γ restricted to Hharm, we eventually rewrite problem (24) as the following

variational problem in H
1/2
0 (Γ):

find ϕ ∈ H
1/2
0 (Γ) such that

a(EΓϕ,EΓψ) = b(EΓψ) ∀ψ ∈ H
1/2
0 (Γ).

(27)

Below this problem is referred to as the Poincaré–Steklov problem.
A specific feature of PDM is the use of the Galerkin method for the approximation

of the Poincaré–Steklov problem. A system Φn = {ϕni }i=1,νn of linearly independent
functions ϕni : Γ → R is introduced (cf. [1]) and the problem (24) is approximated by
the finite dimensional one:

find vn ∈ Hn = span {EΓΦn} such that
a(vn, w) = b(w) ∀w ∈ Hn.

(28)

Here the index n refers to the number of functions corresponding to each segment
Γij = ∂Ωi∩∂Ωj of Γ, while νn denotes the global number of functions on Γ. Functions
ϕni below are called interface basis functions and their “harmonic” extensions wni =
EΓϕ

n
i are called “harmonic” basis functions.
Representing vn as a linear combination of the “harmonic” basis functions

vn =

νn
∑

j=1

ajw
n
j ,(29)

we obtain from (28) the following linear system:

Ŝâ = b̂,(30)

where

Ŝ = [a(wnj , w
n
i )]j=1,νn

i=1,νn
, â = [aj ]j=1,νn , b̂ = [b(wni )]i=1,νn .(31)
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From (10) it follows that Ŝ is symmetric and positive definite; therefore we can solve
the system (31) using the CG method.

We note that from the Green formula related to the bilinear form a we have the
following expressions for the terms b(wni ) and a(vn, wni ) appearing in the calculation
of the residual for (30):

b(wni ) = −
m

∑

k=1

∫

∂Ωk∩Γ

ϕni
∂u0

∂nk
d(∂Ωk),(32)

a(vn, wni ) =

m
∑

k=1

∫

∂Ωk∩Γ

ϕni
∂vn

∂nk
d(∂Ωk),(33)

where ∂
∂nk

is the normal derivative on ∂Ωk and the integrals are interpreted as du-

ality pairing between H
1/2
0 (Γ) and its dual. Therefore for the implementation of the

PDM we need not calculate the “harmonic” basis functions (see also section 3.1 for a
comment on this issue).

3.1. Summary of the algorithm. The algorithm induced by the PDM can be
summarized as follows (a more detailed description will be provided in section 4.3).
Step1 Solve the Dirichlet problem (21) on each subdomain in order to obtain u0 ∈

H1
0 (Ω0). Then compute the right-hand side b̂ = [b(wni )]i=1,νn for the system

(30) as indicated in (32).
Step2 Solve (30) using a suitable iterative method (e.g., the CG method). At each

iteration l of the CG method we have to apply the matrix Ŝ to a vector which
represents the descent direction of the CG (see section 4.3). Precisely, given
a vector p̂l = [pli]

νn
i=1 we need to compute the vector q̂l = Ŝp̂l = [qli]

νn
i=1, where,

according to (33),

qli =

m
∑

k=1

∫

∂Ωk∩Γ

ϕni
∂pl

∂nk
d(∂Ωk), i = 1, . . . , νn,(34)

and the function pl ∈ Hn is defined as pl =
∑νn

i=1 p
l
iw

n
i . We point out that

the computation of pl does not require the knowledge of the {wni }, as this
function can be obtained by solving the following m independent Dirichlet
problems: for k = 1, . . . ,m







−∆pl + κpl = 0 in Ωk,
pl = 0 on ∂Ωk\Γ,
pl = plΓ on ∂Ωk ∩ Γ,

(35)

where plΓ =
∑νn

i=1 p
l
iϕ
n
i .

Since each subdomain Ωk is a rectangle, we can use the SCM for solving the
subdomain problems (21), (35).

3.2. Convergence analysis of PDM. Three main sources of the error of the
above PDM–SCM algorithm are (1) the SCM error (i.e., the error resulting from the
spectral approximation in the subdomains); (2) the CG error (i.e., the error of the
approximate solution of (30) with the CG algorithm: in exact arithmetic this error
vanishes after no more than νn steps; however, in practical calculations one usually
stops iterations earlier); and (3) the PDM error (i.e., the approximation error of the
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Galerkin method (28)). Since the first two sources are well studied, here we focus our
analysis on the third one.

THEOREM 1. Let the system Φn = {ϕni }i=1,νn consist of functions that are alge-

braic polynomials of degree not greater than n on each segment Γij = ∂Ωi ∩ ∂Ωj of

the interface Γ. Then the PDM approximation {un = u0 + vn, n ≥ 1}, where u0 is

the solution of (21) and vn is that of (28), converges to the exact solution u of the

problem (7) and the following convergence estimate holds:

‖ u− un ‖
H1(Ω)

≤ C

ns−1
max

k=1,...,m
‖ u ‖

Hs(Ωk)
(36)

provided that u|Ωk
∈ Hs(Ωk) for some s ≥ 2. Furthermore, if the sequence Φn is well

conditioned in H
1/2
0 (Γ) (in the sense of Mikhlin [19]; see also [3]), i.e., there exist two

constants ρ0, ρ
0 independent of n such that

ρ0

νn
∑

i=1

b2i ≤
∥

∥

∥

∥

∥

νn
∑

i=1

biϕ
n
i

∥

∥

∥

∥

∥

2

H
1/2
0 (Γ)

≤ ρ0
νn
∑

i=1

b2i(37)

for all [bi]i=1,νn ∈ R
νn , then the condition number of the system (30) is bounded by

the constant ρ0â0(ρ0ǎ0)
−1.

Proof. From (24) and (28) we have

a(v − vn, h) = 0 ∀h ∈ Hn;

therefore

a(v − vn, v − vn) = min
h∈Hn

a(v − h, v − h).(38)

Introducing the notation

εn = min
h∈Hn

‖ v − h ‖
1

(39)

we obtain from (10) and (38)

εn ≤‖ v − vn ‖
1
≤ εn

(

â0

ǎ0

)1/2

,(40)

and therefore PDM approximations vn converge to the solution v of problem (24) if
and only if εn → 0.

From the definition of Hharm we have immediately that

∀h ∈ Hharm a(h, h) ≤ a(z, z) ∀z ∈ H1
0 (Ω) : z|Γ = h|Γ .

Using this property together with (10), we have for any hn ∈ Hn

‖ v − hn ‖2
1

≤ ǎ−1
0 a(v − hn, v − hn) ≤ ǎ−1

0 a(z, z) ≤ ǎ−1
0 â0 ‖ z ‖2

1

∀z ∈ H1
0 (Ω) : z|Γ = (v − hn)|Γ

since v − hn ∈ Hharm. We recall that v is such that v|Γ = u|Γ . Let us take z =
u−Inu, hn ∈ Hn : hn|Γ = (Inu)|Γ

, where in each Ωk Inu is an algebraic polynomial of
degree less than or equal to n with respect to each coordinate x and y that interpolates
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u at the (n + 1)2 GLL nodes (we recall that we consider a conforming rectangular
decomposition). Using well-known estimates for polynomial interpolation in Sobolev
spaces (see, e.g., [7, Chapter 9] and [4]) and the best approximation property (38) of
the Galerkin method, we obtain the estimate (36).

Finally, the estimate for the condition number of system (30) follows from (10)
and (37).

3.3. The construction of a well-conditioned basis. Here we briefly describe
the algorithm for constructing a well-conditioned piecewise-polynomial basis for the
PDM; a detailed description and analysis of the construction outlined below can be
found in [3, 21].

We start with the domain Ω = (−1, 1) × (−1, 1) decomposed into four square
subdomains.

Consider two sequences of functions {ψ0
k(x)} and {ϕ0

k(x)}:

ψ0
k(x) = x(x− 1

k )(x− 2
k ) · · · (x− 1),

ϕ0
2k−1(x) =

{

ψ0
k(x), x > 0,

−ψ0
k(−x), x < 0,

ϕ0
2k(x) =

{

ψ0
k(x)
x , x > 0,

ϕ0
2k(−x), x < 0,

(41)

with which we construct the sequences {u0
k} and {v0

k}:

u0
k, v

0
k ∈ Hharm(D), D = (0, 1) × (0, 1) :

u0
k(x, 0) = ψ0

k(x), u0
k(x, 1) = 0, 0 < x < 1;

u0
k(0, y) = 0, u0

k(1, y) = 0, 0 < y < 1;

v0
k(x, 0) = ϕ0

k(x), v0
k(x, 1) = 0, 0 < x < 1;

v0
k(0, y) = ϕ0

k(−y), v0
k(1, y) = 0, 0 < y < 1.

(42)

To each of the latter sequences we apply the Gram–Schmidt orthogonalization pro-
cedure to obtain the sequences {uk} and {vk} orthogonal in Hharm(D). Finally, we
define on Γ0 = {(x, 0) ∈ Ω} ∪ {(0, y) ∈ Ω} the sequence {ϕxk, ϕyk, ϕ

xy
k }:

ϕxk(x, y) =

{

uk(−x, 0), −1 < x < 0, y = 0,
0, otherwise,

ϕyk(x, y) =

{

uk(−y, 0), x = 0, −1 < y < 0,
0, otherwise,

ϕxyk (x, y) =

{

vk(x, 0), 0 < x < 1, y = 0,
vk(0, y), x = 0, 0 < y < 1,

(43)

and

ϕxyk (−x, 0) = vk(x, 0), 0 < x < 1,

ϕxyk (0,−y) = vk(0, y), 0 < y < 1,
(44)

or

ϕxyk (−x, 0) = 1
2 (vk(x, 0) + vk(0, x)), 0 < x < 1,

ϕxyk (0,−y) = 1
2 (vk(y, 0) + vk(0, y)), 0 < y < 1,

(45)
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FIG. 1. “Sample” basis functions.

or else

ϕxyk (−x, 0) = vk(x, x), 0 < x < 1,

ϕxyk (0,−y) = vk(y, y), 0 < y < 1.
(46)

Three plots on Fig. 1 display, from top to bottom, {ϕxk(x, 0), k = 1, . . . , 4}, {ϕxy2k(x, 0),
{k = 1, . . . , 4}, and {ϕxy2k(−x, 0), k = 1, . . . , 4} (the latter for the case (46)) for
0 < x < 1.

It has been shown in [21] that the sequence of sets Φn = {ϕxk, ϕyk}k=1,n−1,

{ϕxyk }k=1,2n−1 is well conditioned in H
1/2
0 (Γ), therefore the PDM with the interface

basis Φn converges at a rate independent of the dimension of the discrete problem.
Furthermore, in cases (44) and (45) this basis is piecewise polynomial and therefore,
according to Theorem 1, provides a high accuracy of the PDM approximations. In
the case (46), where ϕxyk are not polynomial on {(x, y) ∈ Γ : x < 0 or y < 0}, one can
use polynomial interpolations for vk(x, x) to preserve high accuracy. Our numerical
experiments presented below in section 5 show not only a very mild dependence of the
condition number of the PDM–Galerkin system (30) obtained with this type of basis
on the number of basis functions but also a rather weak dependence of this condition
number on the number of subdomains. Thus, in Tables 1–3 we can read the number
of PDM iterations needed to solve the model problem −∆u = f in Ω = (0, 1)2 with
Dirichlet boundary condition on ∂Ω, with n basis functions on each side of Γ, and m
subdomains in each direction (x and y).

We clearly observe that the basis constructed using (46) is much better condi-
tioned than those using (44) and (45). For this reason, in our numerical tests presented
in section 5 only the former basis was used.

Further theoretical investigation of the properties of such well-conditioned bases,
in particular, the dependence of the condition number of the system (30) on the
number of subdomains, is the subject of our forthcoming research.
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TABLE 1
PDM iterations for basis (44).

m 4 6 8 10 12 14
n

4 46 86 121 153 186 217
8 57 98 133 167 203 238
12 62 100 142 178 210 245
16 63 106 146 185 213 247

TABLE 2
PDM iterations for basis (45).

m 4 6 8 10 12 14
n

4 45 75 102 129 156 184
8 63 107 141 179 226 274
12 69 117 164 214 262 313
16 71 118 166 219 275 317

TABLE 3
PDM iterations for basis (46).

m 4 6 8 10 12 14
n

4 29 35 39 42 46 51
8 31 35 39 42 46 51
12 31 35 39 42 46 51
16 31 35 39 42 46 51

Consider now a general conformal rectangular decomposition. We denote Ωi =
AiBiCiDi, where the sides AiBi and DiCi are parallel to the x-axis, and the sides
AiDi and BiCi are parallel to the y-axis. It is evident that in order to define basis
functions on the interface Γ, it is enough to define them on each pair AiBi, AiDi,
and we do it according to the following algorithm. If AiBi ∈ Γ, while AiDi ∈ ∂Ω,
then we define on AiBi a set of basis functions, obtained from the traces of uk on
Γx = [0, 1]×{0} through linear mapping Γx → AiBi. The case AiBi ∈ ∂Ω, AiDi ∈ Γ
is treated in a similar way. Finally, if AiBi ∈ Γ, AiDi ∈ Γ, then the subdomain
Ωi ≡ AiBiCiDi has the left-hand neighbor Ωl and the bottom neighbor Ωb, and
to define basis functions on DiAiBi and their prolongations onto AlAi and AiAb
(needed for the continuity) we use the functions ϕxyk and the piecewise-linear mapping
[0, 1]×{0} → AiBi, {0}× [0, 1] → AiDi, [−1, 0]×{0} → AlAi, {0}× [−1, 0] → AbAi.
(If Ωi has the right-hand and/or the top neighbor, then corresponding prolongations
on AiBi and AiDi are to be defined as well.)

In the multidimensional case the construction scheme remains essentially the
same. We start with a set of polynomials orthonormal in Hharm(D), where D is the
m-dimensional unit cube (they can be constructed, e.g., with the help of the discrete

separated variables technique by solving 1D eigenvalue problems; see, e.g., [6]). Using
prolongations analogues to (44), (45), or (46) we obtain a well-conditioned system of
functions on Γ0 = {(x1, x2, . . . , xm) ∈ (−1, 1)m : x1 = 0 or x2 = 0 or . . . or xm = 0}.
Finally, through corresponding mappings of Γ0 onto the interface Γ, analogues to
those used in the above algorithm, we construct a well-conditioned basis on Γ.

4. The spectral subdomain solvers. We have pointed out in section 3.1 that
m Dirichlet problems must be solved in order to compute u0. Then, at each iteration
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of CG method, m additional Dirichlet problems (see (35)) must be solved prior to
the computation of the terms in (34). Each Dirichlet problem is set on a subdomain,
and it is solved by the SCM illustrated above (see (18)). Below we make use of a
subindex N to denote the approximants obtained by the application of the SCM in
each subdomain. So u0 is approximated by u0N

, pl by pl
N

, and vn by vn
N

. We have
for k = 1, . . . ,m

{

−∆u0N
+ κu0N

= f at any (x
(k)
i , y

(k)
j ) ∈ Ωk,

u0N
= g at any (x

(k)
i , y

(k)
j ) ∈ ∂Ωk,

(47)

where (x
(k)
i , y

(k)
j ) are the images of (xi, yj) under the mapping Φ(k) : Ω∗ → Ωk, and

for l = 1, . . . , until convergence of CG















−∆pl
N

+ κpl
N

= 0 at any (x
(k)
i , y

(k)
j ) ∈ Ωk,

pl
N

= 0 at any (x
(k)
i , y

(k)
j ) ∈ ∂Ωk\Γ,

pl
N

= pl
Γ

at any (x
(k)
i , y

(k)
j ) ∈ ∂Ωk ∩ Γ.

(48)

A function like pl
N

satisfying the differential equation −∆pl
N

+ κpl
N

= 0 at all collo-
cation nodes internal to Ωk below are referred to as “discrete harmonic” from now
on.

4.1. Poincaré–Steklov operator in the spectral framework. As noticed in
section 3.1 the linear system (30) can be solved by a CG method. This entails that
at each CG iteration we have to apply the Poincaré–Steklov operator to the spectral
collocation approximation of functions belonging to span{Φn}.

To this aim we need to compute the coefficients qli in (34), i.e.,

qli =

m
∑

k=1

∫

∂Ωk∩Γ

ϕni
∂pl

∂nk
d(∂Ω)k,(49)

where the interface basis functions {ϕni }, defined on Γ, are polynomials of degree n
on each segment of Γ (see Theorem 1). In SCM we substitute each integral on ∂Ωk
appearing in (49) by its discrete counterpart (·, ·)

N,∂Ωk
introduced above, i.e., (49) by

m
∑

k=1

(

ϕni ,
∂pl

N

∂nk

)

N,∂Ωk

.(50)

The degree N that we take must be not less than the degree n of the polynomial
basis functions at the interfaces introduced in section 3.3. Moreover, the function pl

N

is a “discrete harmonic” polynomial satisfying a collocation problem of the form (48).
Therefore, owing to (16), formula (50) reads

m
∑

k=1

a(k)
N

(pl
N
, wni ),(51)

where a(k)
N

stands for the restriction to Ωk of the discrete bilinear form a
N

(15) and
wni = EΓϕ

n
i are the “harmonic” extensions to Ω of the interface basis functions ϕni

(see section 3). The terms (51) can be computed effectively avoiding an explicit
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knowledge of the functions wni . Indeed, let us consider on each subdomain Ωk the
set of the Lagrange polynomials {χk,ij

N
∈ P

N
(Ωk) for i, j = 0, . . . , N}, such that

χk,ij
N

(x
(k)
i , y

(k)
j ) = 1 while χk,ij

N
vanishes at all remaining collocation nodes of Ωk.

Then wni |Ωk
admits the representation

wni =

N
∑

j1=1

N
∑

j2=1

Φi,nj1j2χ
k,j1j2
N

,(52)

where Φi,nj1j2 = wni (x
(k)
j1
, y

(k)
j2

). Equation (51) becomes

m
∑

k=1

N
∑

j1=1

N
∑

j2=1

Φi,nj1j2a
(k)
N

(pl
N
, χk,j1j2

N
).(53)

Since pl
N

is “discrete harmonic” in Ωk, (53) becomes

m
∑

k=1

∑

j1,j2

Φi,nj1j2a
(k)
N

(pl
N
, χk,j1j2

N
),(54)

where the sum on j1 and j2 is restricted only to the nodes of ∂Ωk. As a matter of
fact, using (16), we have

a(k)
N

(pl
N
, χk,j1j2

N
) = −

(∂pl
N

∂n
k

, χk,j1j2
N

)

N,∂Ωk

+ (Lpl
N
, χk,j1j2

N
)

N,Ωk
,

where the latter term is equal to zero because Lpl
N

= 0 at all internal nodes, while
χk,j1j2

N
are equal to zero at all boundary nodes. On the other hand, the first term on

the right-hand side vanishes for all internal j1 j2 as χk,j1j2
N

= 0 there.
Proceeding similarly with the use of the discrete integral on ∂Ωk as in (50), we

obtain for the coefficients b(wni ) of (33) the following formula:

b(wni ) = −
m

∑

k=1

(

ϕni ,
∂u0N

∂nk

)

N,∂Ωk

.(55)

For (47) we now obtain

b(wni ) = −
m

∑

k=1

[

a(k)
N

(u0N
, wni ) − (f, wni )

N,Ωk

]

(56)

and, from (52),

b(wni ) = −
m

∑

k=1

N
∑

j1=1

N
∑

j2=1

Φi,nj1j2

[

a(k)
N

(u0N
, χk,j1j2

N
) − (f, χk,j1j2

N
)

N,Ωk

]

.(57)

Finally, in view of (47), the coefficients (55) simplify to

b(wni ) = −
m

∑

k=1

∑

j1,j2

Φi,nj1j2

[

a(k)
N

(u0N
, χk,j1j2

N
) − (f, χk,j1j2

N
)

N,Ωk

]

,(58)

where again the sum on j1 and j2 is restricted only to the nodes of ∂Ωk.
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4.2. Remark on the solution of the algebraic problem. Consider the al-
gebraic linear system associated to the approximation of the Dirichlet problems (47)
or (48) in each subdomain:

Lspv = f .(59)

Here Lsp is the pseudospectral matrix associated to the differential operator: it is a
squared matrix of dimension N=(Nx+1)·(Ny+1) and it contains entries corresponding
to the equations associated to both internal and boundary nodes; v is the vector of
unknowns (internal and boundary) of dimension N; f is the vector of the right-hand
side of dimension N and it includes the boundary data. The matrix Lsp has a diagonal
structure for the rows associated to the boundary nodes and a block sparse structure
otherwise. Unfortunately, it is not symmetric. To overcome this drawback we multiply
the rows of Lsp and f by the diagonal matrix W of quadrature weights ωij , eliminate
the rows and the columns of the matrix associated to the boundary nodes, update the
right-hand side f, and compress the remaining elements of the matrix. In this way
the dimension of the matrix is reduced from N to N1 = (Nx − 1) · (Ny − 1) and, after
a suitable row permutation, the linear system (59) becomes

Ibvb = gb,(60)

Wint(Lsp)intvint = Wintfint − (Lsp)bvb,(61)

where (Lsp)int (respectively, (Lsp)b) is the block of the matrix Lsp corresponding to
the internal (respectively, boundary) nodes of the computational domain. The same
notational convention is used for vectors v, f, and W , while Ib is the identity matrix
acting on the boundary nodes. Now L̃ = Wint(Lsp)int is a symmetric and positive
definite matrix.

The linear system (61) is solved by Cholesky factorization and subsequent forward
and backward resolution. The matrices L̃ associated to subdomains are independent
from the boundary conditions and so they can be assembled and factored once at Step
1 of the PD–SC algorithm (the computational cost is O(N3

1/6) of floating point oper-
ations for each subdomain), while at each CG iteration of Step 2 only the resolution
is carried out (with a cost of O(N2

1) floating point operations for each subdomain).

4.3. The algorithm for the PD–SC method and its parallelism. Below
we present a step-by-step description of the implementation of the PD–SC method
using the notations introduced in the previous sections.
Initialization

Step0 Construction of basis functions.
Step1 Evaluation of the solution u0N

on the domains Ωk and evaluation of the right-

hand side b̂=b(wni ) for the linear system (30).
The following algorithm is considered:
for k = 1, . . . , m

a Dirichlet problem of the form (47) is solved on Ωk, the normal derivative
of u0N

on the boundary of Ωk is computed and the coefficients b(wni ) of (32)
are evaluated (see (58)).

Step2 Evaluation of vn
N

by solving the linear system Ŝâ = b̂ (30) by CG iterations:
Initialization

p̂0 = r̂0 = Ŝâ0 − b̂:
for k = 1, . . . , m
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the computation of r̂0 = Ŝâ0 − b̂ is carried out on Ωk; i.e., a Dirichlet
“harmonic” problem similar to (48) on Ωk is solved by spectral collo-
cation method in order to find the function r0

N
on Ωk, then the terms

a(r0
N
, wni ) are computed as described in (50)–(54).

res0 = e = (r̂0, r̂0)
l = 1, . . . , until convergence

q̂l = Ŝp̂l:
for k = 1, . . . , m

the computation of q̂l = Ŝp̂l is carried out on Ωk; i.e., a Dirichlet
harmonic problem similar to (48) on Ωk is solved by spectral col-
location method in order to find the function pl

N
on Ωk, then the

terms a(pl
N
, wni ) are computed as described in (50)–(54).

α = (r̂l, r̂l)/(q̂l, p̂l)
âl = âl−1 − αp̂l

r̂l = r̂l−1 − αq̂
resl = (r̂l, r̂l)/e
if (resl < ε) convergence is obtained
β = resl/resl−1

p̂l = r̂l + βp̂l−1

Step3 u
N

= u0N
+ vn

N
on all Ω.

The algorithm offers a good level of parallelism. In fact, each time that the
Poincaré–Steklov operator is invoked, the computations in the subdomains can run
concurrently and the degree of parallelism of the algorithm is equal to the number of
subdomains.

4.4. Computational complexity comparison. In this section we make a
comparison between PDM and the other two domain decomposition methods—Diri-
chlet–Neumann method and spectral element method with additive Schwarz precon-
ditioner—in terms of computational complexity. In particular, we focus our attention
on the core of each algorithm, that is, the resolution of the CG iterations for PDM
and additive Schwarz preconditioner method and the Richardson iteration for the
Dirichlet–Neumann method. Since all three methods are based on spectral approx-
imation, it is obvious that the computational cost in order to assemble the spectral
matrices is the same for all of them. We note that the third method (CG itera-
tion on the spectral element matrix preconditioned by the additive Schwarz method)
requires the construction and the factorization of the finite element preconditioner
matrices.

We recall that N is the polynomial degree in each direction, N = (N + 1)2 is the
number of nodes in each domain, N1 = (N − 1)2 is the number of rows and columns
of the symmetrized matrices (see section 4.1), and M is the number of subdomains in
the decomposition.

PD–SC method. Inside each CG iteration the most expensive part of the PDM
is the computation of the product q̂l = Ŝp̂l. As we show in section 4.3, the compu-
tation of this product amounts to the resolution of a linear system arising from the
spectral approximation of a Helmholtz problem with Dirichlet boundary conditions in
each subdomain, and then the computation of the normal derivative on the interface.
The local matrices (one per subdomain) are symmetric and positive definite and a
Cholesky factorization can be used. The local matrices are assembled and decom-
posed (at O(N3

1/6) flops) when the solution u0 is computed, so that inside each CG
iteration we need to perform
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(i) O
(

M · N2
1

)

flops for the resolution of the linear systems;
(ii) O(M ·N2) flops for the computation of the pseudospectral derivative on the

interface; and
(iii) O(M · N) flops for the computation of the coefficients of q̂l (see formula

(34)).

Dirichlet–Neumann algorithm. At each iteration of the Dirichlet–Neumann
algorithm we have to solve M/2 Helmholtz problems with Dirichlet boundary condi-
tions; therefore we have to compute the normal derivative across the interface and to
solve M/2 Helmholtz problems with mixed boundary conditions. Finally, the relax-
ation parameter is computed by making use of the numerical solution on the interface.
As in PDM, the local matrices are assembled and decomposed (by Cholesky factor-
ization) on the first step of the procedure. The computational cost of each iteration
can be summarized as follows:

(i) O
(

M · N2
1

)

flops for the resolution of the linear systems;
(ii) O(M ·N2) flops for the computation of the pseudospectral derivative on the

interface; and
(iii) O(M ·N) flops for the computation of the relaxation parameter.

CG iteration on the spectral element matrix preconditioned by additive

Schwarz algorithm with coarse grid. At each CG iteration we need to compute
M local matrix–vector products with the spectral element matrices to solve M linear
systems on the extended subdomains and to solve a linear system on the coarse grid.
The computational cost can be summarized as follows:

(i) O(M · N2) flops for the computation of the matrix–vector product;
(ii) O(M ·N2

2) flops for the resolution of the linear systems on the precondition-
ers, N2 is the number of nodes of the enlarged element, for a minimum overlap (one
point) it is at most N2 = (N + 2)2; and

(iii) O(M2) flops for the resolution of the linear system on the coarse mesh.
Remark. We observe that the computational cost per iteration for both the PDM

and Dirichlet–Neumann method is similar, so below we make a CPU time compari-
son between PDM and the additive Schwarz preconditioner on the spectral element
matrix.

5. Numerical results. Here we illustrate numerically some properties of the
PD–SC method applied to problem (7)–(9) with inhomogeneous boundary data and
various choices of the computational domain, the number of subdomains, and the
degree of the spectral approximation.

We start with a systematic numerical comparison with the Dirichlet–Neumann
algorithm (see Appendix A for a short description of this method). The right-hand
side f and the boundary data g in (7)–(9) are chosen according to known analytical
solutions. Unless otherwise specified, Dirichlet boundary conditions on the whole
boundary are imposed. We denote by

err := log10

||u
N

− u||H1(Ω)

||u||H1(Ω)
(62)

and by NIT the number of CG iterations of the PDM or the number of iterations of
the Dirichlet–Neumann scheme in order to achieve the solution of the problem with
the tolerance ε = 10−12.

First, we analyze numerically the behavior of NIT versus the number of basis
functions N (or, equivalently, the polynomial degree of the spectral solution) on each
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TABLE 4
Number of iterations and logarithm of the error. Ω is split into M equal subdomains

Ωi = (xai , xbi
) × (ya, yb) with Nx = Ny = N and κ =0. The test solutions are (a) u(x, y) =

sin(7πx) sin(7πy) on Ω = (0, 4) × (0, 1) partitioned into six aligned subdomains, and (b) u(x, y) =
1 − eλx cos(2πy) with λ = 20 − 2

√
100 + π2 on Ω = (−1, 1) × (0, 1) partitioned into eight aligned

subdomains.

PDM Dirichlet–Neumann
solution (a) solution (b) solution (a) solution (b)

N err NIT err NIT err NIT err NIT

4 0.93 3 −1.12 19 0.93 26 −1.12 44
8 −0.51 7 −4.01 21 −0.52 22 −4.01 40

12 −1.64 9 −7.60 21 −1.65 16 −7.59 39
16 −3.29 9 −11.65 21 −3.29 7 −11.67 40
20 −5.42 10 −12.70 22 −5.42 4 −12.69 38
24 −7.91 10 −12.48 22 −7.91 4 −12.41 43
28 −10.69 10 −11.73 22 −10.70 4 −11.79 45
32 −13.02 10 −11.50 22 −13.02 4 −11.63 43

TABLE 5
Number of iterations and logarithm of the error. Ω = (0, 2) × (0, 2) is split into four equal

subdomains having one internal crosspoint, with N = Nx = Ny and κ = 0. The test solutions are

(a) u(x, y) = sin(7πx) sin(7πy) + 1, and (b) u(x, y) = 1 − eλx cos(5πy) with λ = −10.

PDM Dirichlet–Neumann
solution (a) solution (b) solution (a) solution (b)

N err NIT err NIT err NIT err NIT

4 1.64 7 −0.21 13 1.64 22 −0.21 28
8 −0.19 14 −1.20 19 −0.19 39 −1.21 36

12 −1.38 16 −3.22 21 −1.38 43 −3.22 46
16 −3.14 17 −5.71 21 −3.14 58 −5.71 62
20 −5.27 17 −8.60 22 −5.27 44 −8.60 57
24 −7.76 18 −11.80 22 −7.76 57 −11.80 68
28 −10.55 18 −12.63 22 −10.55 57 −11.57 66
32 −13.19 18 −12.49 23 −13.33 65 −12.50 62

TABLE 6
Number of iterations and logarithm of the error. Ω = (0, 2) × (0, 2) is split into 16 equal

subdomains having nine internal crosspoints, with = Nx = Ny = N and κ = 0. The test solutions

are (a) u(x, y) = sin(7πx) sin(7πy) + 1, and (b) u(x, y) = 1 − eλx cos(5πy) with λ = −10.

PDM Dirichlet–Neumann
solution (a) solution (b) solution (a) solution (b)

N err NIT err NIT err NIT err NIT

4 −0.12 29 −1.01 31 −0.12 53 −1.01 57
8 −2.16 31 −3.48 32 −2.16 74 −3.48 83

12 −4.71 32 −6.65 32 −4.71 86 −6.65 84
16 −7.78 32 −10.32 32 −7.78 89 −10.32 90
20 −11.24 32 −12.36 32 −11.24 102 −12.14 99
24 −12.37 32 −12.44 32 −12.81 102 −11.99 103

interface of the decomposition. The domain Ω is decomposed into M subdomains
along one direction (stripwise partition) (see Table 4) or into M × M equal square
subdomains (partition with internal crosspoints) (see Tables 5, 6, and 7).

In accordance with the theory, NIT is uniformly bounded with respect to N for
both PDM and Dirichlet–Neumann procedures since the subdomain partition is free of
crosspoints. Note that the convergence behavior of the Dirichlet–Neumann iterations
is not monotone. For a fixed number of subdomains sharing internal crosspoints
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TABLE 7
PDM iterations and logarithm of the error. Ω = (0, 2) × (0, 2) is split into 16 equal subdomains

with N = Nx = Ny and κ = 0. Neumann condition is imposed on vertical sides while Dirichlet

condition is assigned to the horizontal ones. The test solutions are (a) u(x, y) = sin(7πx) sin(7πy)+1,
and (b) u(x, y) = 1 − eλx cos(5πy) with λ = −10.

solution (a) solution (b)
N err NIT err NIT

4 1.72 28 0.27 29
8 −0.19 42 −1.04 41

12 −1.38 44 −3.12 42
16 −3.13 44 −5.64 44
20 −5.27 45 −8.54 44
24 −7.76 45 −11.75 46
28 −10.54 45 −12.39 45
32 −11.83 46 −12.24 45
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FIG. 2. The number of iterations of PDM and Dirichlet–Neumann versus the number of sub-

domains. Ω is split into M equal subdomains Ωi = (xai , xbi
) × (ya, yb) without internal crosspoints

(left). Ω = (−1, 2) × (−1, 2) is split into M = M1 × M1 equal subdomains with internal crosspoints

(right).

NIT depends logarithmically on the polynomial degree N for the Dirichlet–Neumann
method [26], while it is uniformly bounded for the PDM method.

For a given domain Ω and a fixed number of unknowns in each subdomain, the
rate of convergence depends on the number of subdomains M for both PDM and
Dirichlet–Neumann procedures, as can be seen in Fig. 2 (left and right), the former
referring to the stripwise partition of Ω, the latter to the crosswise partition. The
test solutions are (a) u(x, y) = 1 − eλx cos(2πy) with λ = 20 − 2

√
100 + π2, and

(b) u(x, y) = y2

1+x2 . In both cases Nx = Ny = 8 and κ = 0. We observe that for
both procedures the number of iterations depends rather mildly on the number of
subdomains, but we have two different constants which control this behavior.

Now we turn to the comparison between the PDM and the method based on the
additive Schwarz preconditioner for CG iterations on the spectral element matrix.
We consider the problem (11) in the domain Ω∗ = (0, 1)2 with κ = 0; the test

solution is u(x, y) = e− 1
3 (x3+y3)+ 1

2 (x2+y2). In our experiments we used the code in
which the amount of overlap is an input parameter. The results presented below refer
to the minimum overlap, namely, the one involving only one gridpoint outside each
subdomain because, according to all our numerical tests, this choice turned out to be
the most effective one in terms of CPU time.

In Tables 8 and 9 we show the number of CG iterations executed until the conver-
gence to the exact solution of the problem (11) with the tolerance ε = 10−12. Table
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TABLE 8
The number of CG iterations for the PDM and the additive Schwarz preconditioner with coarse

grid solver for the problem (11) with a stripwise decomposition of Ω into M subdomains. The

tolerance is ε = 10−12.

PDM Additive Schwarz
M M

N 2 3 4 5 6 7 8 N 2 3 4 5 6 7 8
4 3 6 9 12 15 18 21 4 17 23 29 33 38 40 46
8 7 12 15 18 21 24 27 8 27 40 51 57 64 71 79
12 8 13 16 19 22 25 28 12 37 55 71 79 89 97 108
16 9 13 17 19 22 26 28 16 47 67 89 100 112 121 127
20 9 13 17 19 22 26 29 20 58 80 105 118 131 137 150

TABLE 9
The number of CG iterations for PDM and the additive Schwarz preconditioner with coarse

grid solver for the problem (11) with the decomposition of Ω into M = M1 × M1 equal subdomains.

The tolerance is ε = 10−12.

PDM Additive Schwarz
M1 M1

N 2 3 4 5 6 7 8 N 2 3 4 5 6 7 8
4 7 21 30 33 35 37 38 4 19 32 36 39 39 39 40
8 14 28 32 33 35 37 39 8 28 35 38 40 39 40 40
12 17 28 32 34 35 37 39 12 38 49 51 55 53 55 55
16 17 29 32 34 35 37 39 16 49 61 64 69 71 71 71
20 17 30 33 34 35 37 39 20 60 68 75 80 79 79 80

TABLE 10
CG iteration number for solving the problem (11) up to a tolerance ε = 10−5 by the PDM. In

the squared brackets the CG iteration numbers for additive Schwarz preconditioner with one point

overlap are shown.

N M

2 3 4 5 6 7 8 9 10
3 5 [8] 12 [13] 14 [17] 15 [18] 16 [19] 17 [19] 18 [19] 20 [19] 21 [19]
4 7 [8] 12 [14] 14 [15] 15 [16] 16 [16] 17 [16] 19 [16] 19 [16] 21 [16]
5 9 [11] 13 [14] 14 [16] 15 [17] 16 [17] 17 [17] 19 [17] 19 [17] 21 [17]
6 8 [12] 13 [15] 14 [16] 15 [17] 16 [17] 17 [18] 19 [17] 20 [17] 21 [17]
7 9 [13] 13 [15] 14 [15] 15 [16] 16 [16] 17 [16] 19 [16] 20 [16] 21 [16]
8 9 [14] 13 [15] 14 [15] 15 [16] 16 [14] 17 [16] 19 [15] 20 [16] 21 [16]
9 9 [16] 13 [15] 14 [16] 15 [17] 16 [16] 17 [16] 19 [16] 20 [18] 21 [18]
12 9 [19] 13 [20] 14 [19] 15 [21] 16 [19] 17 [20] 19 [20] 20 [20] 21 [20]
16 10 [24] 13 [24] 14 [21] 15 [23] 16 [23] 17 [23] 19 [23] 20 [23] 21 [23]

8 corresponds to the stripwise partition of the computational domain into M sub-
domains and Table 9 corresponds to the partition into M subdomains with internal
crosspoints.

We also present the number of CG iterations executed until the convergence to the
exact solution of problem (11) up to a tolerance ε = 10−5 (see Table 10). We observe
that for this higher tolerance the additive Schwarz method in some cases performs
better than PDM.

We have measured the CPU time required by each CG iteration for both the
PDM and the additive Schwarz preconditioner on the same workstation (Risc6000
IBM Mod. 370). In Table 11 the total CPU times for the stripwise decomposition are
shown (above for the PDM and below for the additive Schwarz preconditioner), while
in Table 12 the total CPU times for the crosspoint decomposition are shown. In both
tables the CPU times refer to the CG iterations reported in Tables 8 and 9 with toler-
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TABLE 11
The total CPU time measured in milliseconds for the PDM (above) and additive Schwarz precon-

ditioner (below). The data refer to the solution of the problem (11) with the stripwise decomposition

of Ω∗ into M subdomains and to the CG iteration numbers reported in Table 8.

M

N 2 3 4 5 6 7 8
4 3.04 5.75 9.88 15.00 21.54 29.36 38.26

15.37 25.87 42.95 55.17 71.96 84.39 139.33
8 21.58 44.66 69.03 99.00 134.81 176.00 224.66

104.66 186.60 289.71 392.11 508.54 647.06 800.49
12 95.60 185.07 304.24 398.78 540.54 678.13 852.87

470.85 887.15 1404.97 1900.70 2507.95 3185.97 3936.45
16 319.36 555.02 859.95 1170.70 1534.45 1987.68 2417.18

1546.69 2906.97 4716.72 6434.04 8543.80 10495.45 12618.07
20 911.55 1491.75 2191.89 2984.50 3881.92 4951.59 6301.68

4227.66 7869.06 13474.92 17941.08 22779.07 27662.58 34139.42

TABLE 12
The total CPU time measured in milliseconds for the PDM (above) and the additive Schwarz

preconditioner (below). The data refer to the decomposition of Ω∗ into M = M1 × M1 equal subdo-

mains and to the CG iteration numbers reported in Table 9.

M1

N 2 3 4 5 6 7 8
4 8.10 42.10 101.87 174.19 266.32 379.00 507.85
4 35.53 108.56 221.46 379.75 598.61 901.24 1273.57
8 65.03 254.56 500.94 798.74 1233.16 1713.09 2347.84
8 233.52 642.04 1229.71 2093.38 3164.05 4601.22 6493.65

12 288.87 939.52 1747.79 3043.03 4462.52 6381.32 8694.95
12 1055.09 2903.59 5503.28 9481.33 14069.77 19766.69 26831.16
16 863.34 2760.78 5201.39 8626.60 12716.75 17854.33 24110.91
16 3440.03 9874.47 17949.77 30869.14 45804.02 64031.11 87763.55
20 2186.28 6926.20 13079.41 20929.89 30569.26 43960.94 59317.23
20 9280.80 24029.37 51796.53 79068.67 116775.66 161249.29 212681.62

TABLE 13
The total CPU time measured in milliseconds for the PDM (above) and the additive Schwarz

preconditioner (below). The data refer to the decomposition of Ω∗ into M = M1 × M1 equal subdo-

mains and to the CG iteration numbers reported in Table 10.

M1

N 2 3 4 5 6 7 8
4 8.10 26.17 51.95 85.99 131.42 187.20 269.59
4 29.37 80.48 154.89 256.93 392.99 573.72 783.01
8 47.98 138.91 257.94 420.74 661.26 897.09 1279.84
8 191.24 476.64 861.25 1427.14 2063.05 3014.82 4036.90

12 196.07 545.02 910.79 1656.03 2478.73 3524.72 4986.15
12 803.91 1951.81 3498.16 5866.79 8402.65 11765.34 15785.86
16 650.89 1674.38 3039.59 5047.00 7573.45 10845.23 14528.51
16 2524.28 6232.93 10593.33 17369.33 25670.42 35598.79 48392.51
20 1723.58 4350.19 7976.01 12921.01 19119.48 27408.34 37822.43
20 6464.58 14970.13 29469.68 43306.02 64612.53 87938.63 113352.40

ance ε = 10−12. The CPU times of Table 13 refer instead to the calculations reported
in Table 10 with relative tolerance ε = 10−5. We note that the construction of the
“sample” basis functions (43) used for generating the well-conditioned basis on Γ does
not depend on the data of the problem. This task can therefore be accomplished inde-
pendently of the problem at hand, and should not be regarded as an initialization step.
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FIG. 3. The computational domain of the first example. The capitals D and N refer to the

Dirichlet and Neumann conditions, respectively.

TABLE 14
The results on the first test case.

M = 4 M = 16 M = 64
N err NIT err NIT err NIT

4 −0.40 12 −1.78 39 −3.12 43
8 −2.67 23 −5.28 48 −7.81 42

12 −5.73 24 −9.30 49 −12.41 43
16 −9.16 25 −12.17 52 −12.41 43

(0.0) x

y

FIG. 4. The computational domain of the second example. A Dirichlet condition is imposed on

the boundary.

We now consider a couple of examples that refer to two computational domains
of more complex form. Both problems are solved by the PD–SC method.

In the first example we consider the domain of Fig. 3. and a decomposition in
4, 16, and 64 subdomains. The first subdivision is shown in Fig. 3, while the other
subdivisions are obtained by splitting each subdomain into four equal subdomains.
The test solution is u(x, y) = 1 − eλx cos(3πy) with λ = −10, κ = 0, and N = Nx =
Ny. We impose a Dirichlet boundary condition on the whole boundary except on
∂ΩN = {(x, y) : 0 ≤ y ≤ 1, x = 3}. In Table 14 we present the logarithm of the
relative error in the H1(Ω) norm and the number of CG iterations executed until the
convergence up to the relative tolerance ε = 10−12.

In the second example we consider the domain of Fig. 4 and the decomposition into
16, 64, and 256 subdomains. The first subdivision is shown in Fig. 4, while the other
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TABLE 15
The results on the second test case.

M = 16 M = 64 M = 256
N err NIT err NIT err NIT

4 −0.45 31 −1.80 40 −3.12 61
8 −2.68 33 −5.29 40 −7.81 61

12 −5.79 34 −9.31 40 −12.35 62
16 −9.16 34 −12.07 41 −12.35 62

subdivisions are obtained by splitting each subdomain into four equal subdomains.
The test solution is u(x, y) = 1−eλx cos(3πy) with λ = −10, κ = 1, andN = Nx = Ny.
In Table 15 we present the logarithm of the error in H1(Ω) norm and the number of
CG iterations executed until the convergence up to the relative tolerance ε = 10−12.

As noted above, the number of iterations depends on M and is uniformly bounded
with respect to N .

Appendix A. The Dirichlet–Neumann domain decomposition algori-

thm. In order to give a short description of the Dirichlet–Neumann algorithm we
consider again the decomposition (19), introducing the following notations to repre-
sent interfaces between subdomains:

Γij := ∂Ωi ∩ ∂Ωj for i, j = 1, . . . ,m, Γ :=

m
⋃

i,j=1

Γij .(63)

We denote by ui the restriction of u to the subdomain Ωi for i = 1, . . . ,m. The
differential problem (1) can be written in the equivalent multidomain formulation
(see [26]) ∀i = 1, . . . ,M















Lui ≡ −∆ui + κui = f in Ωi,
ui = 0 on ∂Ωi ∩ ∂Ω,
ui = uj on Γij ,
∂ui

∂ni
= − ∂uj

∂nj
on Γij .

(64)

The last two equations of (64) are the transmission conditions between subdomains
Ωi and Ωj ; the first one ensures the continuity of the solution across the interfaces,
while the second condition stresses the continuity of the flux.

We consider the domain Ω to be split in black and white subdomains, like a
chessboard, and we associate the condition of continuity of the solution to the black
subdomains and the continuity of the flux to the white ones. Then we start an iterative
procedure to solve the differential Dirichlet subproblems on black subdomains and,
subsequently, mixed Dirichlet–Neumann problems on white subdomains. In order to
ensure the convergence of the iterative scheme to the solution of the original problem,
the relaxation of the solution is needed at each iteration and it is chosen dynamically
according to an optimality criterion (see [26], [13]).

Appendix B. The additive Schwarz preconditioner on the spectral el-

ement approximation. The problem (1) can be approximated by the conformal
spectral element method based on the GLL quadrature formulas (see [18]). Every do-
main Ωk of the nonoverlapping decomposition (19) is considered as a spectral element,
and interpolation of degree N (in both x and y directions) is used on it. The con-
formal spectral element discretization produces a linear system that is solved by the
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CG iterations, preconditioned by a modified version of the additive Schwarz precon-
ditioner with coarse grid solver (see [10], [11]). We denote by Ω̂k (with k = 1, . . . ,m)
the extension of the element Ωk, internal to Ω, and we define the modified version of
the additive Schwarz preconditioner P−1

as as

P−1
as = RT0 A

−1
0 R0 +

Ne
∑

k=1

RTk,eA
−1
k,eRk,e.(65)

Here Ak,e is the local matrix generated by the bilinear finite element discretization of

the original problem at the discretization nodes inside Ω̂k, while Rk,e is a restriction

map from the nodes in Ω to the nodes in Ω̂k, and RTk,e is an extension map from Ω̂k to
Ω (see [8]). The union of all the quadrature nodes on the elements Ωk induces a fine
mesh, while the vertices of the nonoverlapping spectral element Ωk induce a coarse
mesh. A0 stands for the bilinear finite element matrix arising from the discretization
of the original problem on the coarse mesh and R0 stands for the restriction map
from the coarse mesh to the global fine mesh. This preconditioner differs from that
of Dryja and Widlund: the approximation used by the preconditioner is not the same
as used for the discretization of the problem; nevertheless, the results obtained with
this preconditioner are quite satisfactory (see [24], [15]).
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