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We study the Interface Control Domain Decomposition (ICD@)the Stokes equation. We reformulate this
problem introducing auxiliary control variables that repent either the traces of the fluid velocity or the normal
stress across subdomain interfaces. Then, we characseitable cost functionals whose minimization permits
to recover the solution of the original problem. We analymewell-posedness of the optimal control problems
associated to the different choices of the cost functigrzedd we propose a discretization of the problem based
on hp finite elements. The effectiveness of the proposed mettsaitlastrated through several numerical tests.
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1. INTRODUCTION independence on the size of the overlapping. The choice
of the cost functional is crucial to ensure the uniqueness of

. . the solution on the overlapping area. In particular, we show
The Interche ControI.Domaln Decompqsmon (ICDD) that, for the Stokes problem, the cost functionals must ac-
method was introduced inl[4, 5] as a solution strategy for

bound | bl d by elliti dal dif count for both the velocity and the pressure across the in-
ouncary value problems governed by €lliplic partial ti o ¢4 a5 to ensure the matching of these two variables in the
ferential equations. In this paper we extend this methodol

: . X overlapping regions.
ogy to the Stokes equations and we study its effectiveness pping reg

in computing the solution of this linear model for laminar

incompressible flows. What makes the ICDD method even more attractive is
The ICDD method, which shares some similarities withalso its capability of handling differential problems ofthe

the classic overlapping Schwarz methbd [17-19] and wittEr09€neous type, i.e., governed by different type of equa-

the Least Square Conjugate Gradiéni [10] and the virtualions in different subregions of the computational domain.

Control [13] methods, is characterized by a decompositiorp® M€ examples of such application of the method were pro-
of the original domain into overlapping regions and by theVided in [4[5] in the case of advection/advection-diffusio

introduction of new auxiliary variables on the subdomainProblems. Another interesting problem with many signifi-
interfaces. In the case of the Stokes problem, these varfant @pplications is the coupling of Stokes and Darcy equa-
ables may represent either the trace of the fluid velocity oFON {0 model filtration processes (sebl[3.4, 6, 14)).

the normal stress across the interfaces. In either case, the

play the role of control variables that can be determined The outline of the paper is as follows. In sect@nve

as solution of an optimal control problem that imposes thyrite the Stokes problem in a bounded domain and we re-
minimization of a suitably defined cost functional involgin - formulate it in equivalent ways after splitting the origina
the solutions of well-posed local subproblem. domain into two overlapping regions. In sect@rafter in-

The ICDD method can thus be regarded as a novel dotroducing a discretization of the problem using hp finite el-
main decomposition method whose interest lies in the faceéments, we present the ICDD method considering the cases
that, at least in the case of two subdomains, it may shovwef Dirichlet, Neumann and mixed control variables. In each
convergence rates independent of the computational grid¢ase we write the corresponding optimality system with its
of the polynomial degree used for the numerical approximaalgebraic counterpart. In secti@we present several nu-

tion and, for a particular choice of the cost functionalpals merical results aimed at studying the convergence behavior
of the proposed ICDD methods with respect to the grid size,

the polynomial degree, and the size of the overlapping re-
gion. Finally, sectiofis devoted to the theoretical analysis
*Corresponding author. Email: marco.discacciati@upc.edu of the different methods.



2. PROBLEM SETTING

LetQ c R? (d = 2, 3) be an open bounded domain with &
Lipschitz boundary). We assume thalQ) = T'p UT'
withTp NIy = () and thatl'p # () while T' 5 might be
empty. We consider the Stokes problem:

ProblemPg:

—divT(u,p) = f in Q
divua = 0 in Q
u = ¢p onl'p
T(u,p) - n = ¢5 onT'y

(1)

FIG. 1: Representation of the computational donfaiand of its
describing the motion of a steady, viscous, incompressibl@verlapping splitting.
fluid confined in the regiof. Here, T(u, p) = 2vVsu—pl
is the Cauchy stress tensor befigu = 3 (Vu + (Vu)7),

v > 0 is the fluid viscosity,u its velocity andp its pres- ProblemPr.;:
sure andn is the unit normal vector t@S2 directed out- ) ) .
wards the domair2. We assume thaf € [L?(Q)]%, —divT(w,p;) = £ in€;, i=12
¢p € [H/2(Tp)]?andgy € [H1/2(I'y)]* are assigned divw; = 0 inf, i=1,2,
functions. 1foQ = I'p (i.e., Ty = 0), the compatibility w = ¢p onlp, i=12 (4)
condition [,, ¢, - n = 0 must hold, and a further condi- T(u,pi) n = ¢y only, i=12
tion onp, e.g., u = uy only Ul
In casely, = () for somei, we would supplemen} with
/Qp =0 the condition
must be enforced to guarantee the well-posedness of prob- / pi =0
lem (@. Q

The weak form of problenfl]) is: findu € [H'(Q)],

u = ¢, onTp, andp € L2(Q) such that, for allv € to ensure the well-posedness of the corresponding local

[H'(Q)]Y,v=00nTp, g € L*(Q), problem.
ProblemPr ;:

a(u,v)+b(p,v) = /Qf-v-i- - On -V divT(unp) — f i 12,
blgu) =0, divu; = 0 inQ, i =1,2,

u, = ¢p only, i=1,2,

where T(u;,p;)) n = ¢y onT%, i=1,2,

T(ug,p1) -n = T(ug,p2) -n onl; Ul
a(u,v) = / v(Vu+ (Vu)T) Vv (2) (5)
Q Condition B)5 onT'; should be understood as follows.

The normal vecton on I'y is directed outward of2; and
the normal component of the tensBfus,, p2) is computed
. upon restricting it to2;5. On the other hand, of, the
b(g:v) =~ /Q gdivv. (3)  normal vectom is directed outward of2, and the normal
component of the tens@f(uy, p1 ) is taken upon restricting
For simplicity of exposition, in the rest of the paper we will it to Q5.
often use the strong form of the Stokes problem, but it must Moreover, we consider the problem:
be understood that the analysis is carried out in the weak ProblemPr ;:

and

setting.

We consider an overlapping decomposition of the domain  —div T(u;,p;) = f inQ;, i=1,2,
Q in two subdomain§); andQ,: Q = Q; U Q,. We denote divu; = 0 inQ;, 1=1,2,
the overlapping region b 1> = 2,1, and letl’; = 99Q;\ u = ¢p only, i=1,2,
o9Q. Moreover, lely, = T'p N 9Q; andTy, = T'n N IQ; T(u;,p;) - n = ¢y onT%, i=1,2,
(see figurdd). u; = us onl'y,

We reformulate the Stokes problef) (on the split do- T(u1,p1) n = T(ug,p2) -n onlsy.

main in the following possible ways. (6)



If 'y, = 0, we should impose By construction, the functions andq satisfy prob-
lem ({I0Q) with boundary conditions
/lel:() T(W,q)n =0 onangﬂFN

. w = 0 onodf2 I'y.
to guarantee the well-posedness of the Stokes problem in 12\ I

Q. This problem is well-posed and admits the unique so-
Let us introduce the following spaces lutionw = 0 andg = 0, henceu; = us andp; = ps
in 215. Thus, we can set
V=[HQ, Vi=[H Q) i=12 .
Q= L*(Q), QO:{qEQ:qu:O} u !nﬂl\QIQ
Qi=L*(), Qio={qeQ;: J;‘liq:()} i=1,2 u=gq u =uy N (11)
7) uy in Qg \ Q12,
and the following affine manifolds q
an
Vep =1{ve [Hl(lg)]d ;v:¢D onTp} o N\ Qo
Viep =4{ve[H ()" : v= onl'y}, i=1,2. .
op = (v e Q)] : v=ponl}) 2 =4 = it 12)
Finally, we set p2 in 2\ Q2.
Vie={ve[H'(Q): v=00nT%}, i=12. By construction_, functions andp belqng toV 4, x
(9) Q and they satisfy problenfl). In this caseC; =
To prove that the Stokes probleff) (s equivalent to ei- C2 = 0.
ther @), or @), or @), we will denotew = uyq,, — uzjq,, 2. Let nowI'y N 9912 = () and assume thaty is con-
andg = p1ja,, — P2j0,, the difference in2,, between the nected. In this case, eith&r, = () or T3 = 0.
local solutions. Note thatw, ¢) satisfies the Stokes equa- We consider the latter case; the former can be treated
tions: analogously.
—divT(w,g) = 0 inQyy (10) If (u,p) € V4, x Q is the solution ofPg, if we set
divw = 0 in Q. w; =), (i = 1,2),p1 = pja,,

The boundary conditions fulfilled bw andq on 0912, as 1

well as the spaces to which these functions belong will be P2 =P, — m/ P>

specified case by case. 21 /0,

we canimmediately verify thdu;, p;) € V; 4, X Qs

Assumption 2.1 We suppose that one of the following as- (i = 1,2) are solutions ofPy.; with sz e = 0,

sumptions is verifiedl' y = 0; T'y # 0 andT' y N 0N # )
0; Ty N 0o = O with Ty # () connected. Thus,Cy = 0 andCy = — 5 fsb P|Qs-

Viceversa, lettui,p1) € Vig, X Q1, (u2,p2) €
Va6, X Q2,0 be the solutions oPr ;. The functions
(w, q) satisfy Q) with w = 0 on Q5. Then,w =
0 andq = const in Q1. The functiong is uniquely
determined by(, ¢ = [, (1 —p2) whichimplies

Proposition 2.1 (Equivalence between Pq and Pr ;) The
Stokes problemBq, andPr ; are equivalent if Assumption
21 holds. Equivalence holds in the sense thafuif p)
and (u;, p;) (i = 1,2) are the unique solutions ¢, and
Pr:, respectively, there exist two uniquely determined
constants’, Cy € R, possibly null, such that, far= 1, 2, 1
ujo, = w; andpjo, =p; + Ci. 9= 7577
12| Ja,,

If we takeu as in [LT) and

(p1 — p2).
Proof. We treat the different cases separately.
1. Assume first thalf y N 912 # (. Then, problen )

is well-posed in(u, p) € V4, x Q and the restric- p1 in €\ Qg
tions of its solution td?; satisfy @) by construction. p=4§Pr=p2tqgin M2
Viceversa, fori = 1,2, let (u;,p;) € Vigp X Qi P2 +4 in Q2 \ Q12
(i = 1,2) be the solutions of the well-posed local then (u,p) satisfy P and the thesis follows with
problems Cy =0andCs = q.
_diVT(“%"pi) = f inQ, 3. Let(u,p) € V4, x Qo be the solution ofPg,. Then,
dive; = 0 ing for i = 1,2, the functions

u, = ¢p onFlb
T(u;,pi) -n = ¢y only

1
) ) u; = u|q, = - — .
w = w; only, j=3—i. i Q5 Pi =P, 1] Qip|ﬂl



|

belong toV; 4,, x Qi and they satisfyPr ,. Thus,
C, =0andC, = fﬁ Ja, P

Viceversa, lef(u;, p;) € V4, X Qi 0 be solutions
of Pr .. Then, the functionss andq satisfy [L0) with
boundary conditionw = 0 ond€2;5. Then,w = 0in
Q12 andg = const in Q1. The constang is uniquely
determined by

/ q:/ (p1 — p2)
Q1o Q12

1

q = —
12| Jo,,

If we define the constants

1
@ = (/p A 1"’)
Cy— = / 10|
27|Q| 9121?2 19 ),

sinceCy — C = g, thenp; + Cy = pa + Cz in Qys.
Thus, we can easily verify that the functionandp
defined respectively as ifLf) and as

that is

(pl *pz)-

and

p1+ Ch ?n O\ Q2
p=< p1+C1=ps+Cs !n D) (13)
p2+02 n QQ\ng

are solutions ofP, with [, p = 0.

Remark 2.1 If Q12 N Ty = 0 andT% # 0 (i = 1,2),
problemsP, andPr . are not equivalent.

In fact, if (u;, p;) are the solutions oPr,, the functions

w and ¢ satisfy (0 with boundary conditiorw = 0 on
0Q12. Then,w = 0 andg = const in 15 with ¢ uniquely
given by

Then, proceeding similarly to the third case of the proof;;

1

2] Jay,

q (p1 — p2)-

of Propositior2.1 there exist two unique constartts, Cs
with ¢ = Cy — C; so that we can define andp as in (1)

and (I3, respectively. The Neumann boundary conditions

in Pr ; imply

T(u;,p;) -n=¢y only

and, by definition ofi andp, we have

T(u,p)-n=¢y+Cmn onl.

Thus,(u, p) satisfy problen®Pq, if and only ifC; = Cy = 0,
but we cannot guarantee that this condition is fulfilled.

Proposition 2.2 (Equivalence between P, and Pr ;) If

912 NT'p # 0, the Stokes problenB, and Pr ¢ are
equivalent in the sense that there exist unique constants
C1,C5 € R such thatllmi =u; andpmi =p;+C;, (u,p)

and (u;,p;) (¢ = 1,2) being, respectively, the unique
solutions ofPy andPr ;.

Proof. The proof goes along the same arguments used for
Propositiori2.1 so that we only define the constants in the
cased'y # P orT'y = 0.

In the first case it is straightforward to see ttraequiv-
alence holds withC;, = Cy = 0. On the other hand, if
I'y = 0, the functionsw and ¢ satisfy the problem0)
with boundary conditions

on 8912 N o
onl’'y UTs.

w =0
T(w.q)-n = 0

This problem is well-posed and its solutionvis = 0 and
q = 0. Thus,u; = uy andp; = ps in Q15 and we can
define velocityu and a pressurg analogously to[T1) and
(@2. However, the functiop would belong taQ but not to
Qo, so that we define

1 [
01102:*@/Qp

andp = p + C; to recover the null averagB.

Remark 2.2 ProblemsPr and Pr ; are not equivalent if
0012 NTp = 0. In fact, in this case problenfl) in
Q12 would be supplemented with the boundary condition
T(w,q) - n = 0 on 992 which has infinite non-trivial
solutions that may differ one from another not only by a
constant.

Proposition 2.3 (Equivalence between P, and Pr ;)

The Stokes problenf&, andPr ;; are equivalent if either
I'n = 0, or Ty N ONo ?é B, or Ty NON, = 0 and
'y, # 0. Equivalence holds in the sense that(if, p)
and(u;,p;) (i = 1,2) are the unique solutions ¢, and
Pr:, respectively, there exist two uniquely determined
constants’y, Cy € R, possibly null, such that, far= 1, 2,
ujo, = u; andp|o, = p; + Ci.

Proof. The proof develops along the lines of the previ-
ous propositions. Let us only point out ttiae equivalence
holds withC; = Cy = 0if 'y # (). Otherwise, iflC'y = 0,
(u,p) € V4, xQo is the solution ofPq, thenu; = uyq,,

P2 = pjo, and

1
P1 =P, — m/ﬂ ydioht
1

are the solutions oPr ;.

Viceversa, if(ul,pl) S V1,¢D X QLO and (UQ,pg) c
Va4 X Q2 are the solutions dPr . ¢, then we need to set
1
Ci=0=—— D2

12 a1,

O



Remark 2.3 ProblemsPr and Pr ,; are not equivalent if  particular, we consider either inf-sup stable finite dimen-
02 NTy = 0, T = 0, andT3 # 0. Infact, if sional spaces or stabilized couples of spaces of the same
(u,p1) € Vigp X Qio and (uz,p2) € Vag, x Q2  degree (see[7] 8,1111,115]) to approximate the velocity and
are the solutions oPr ¢, then(w, ¢) satisfy problen{I0)  the pressure and we assume that the polynomials used for
in Q12 with boundary conditio'(w,¢) -n =00nT; and the pressure are continuous (see, elgl. [0, 16]). More pre-
w = 0 on 915 \ I's. The solution of this problem if}15 cisely, given an integey > 1, letP, be the space of poly-

is identically null. However, sincg?Ql2 qa=fo  (p1—p2) nomials whose global degree is less than or equal ito

with p; € Q1,0 and p, uniquely determinedzby the Neu- the variables:y, ..., zq andQ, be the space of polynomi-
mann boundary condition dii%;, we cannot guarantee that als that are of degree less than or equal taith respect to
q = 0. each variablery, ..., z4. The spacé?, is associated with

simplicial partitions, whileQ, to quadrilateral ones. We
Notice that a result similar to Propositi@a3 could be  introduce the finite dimensional space@ndefined by
obtained by switching the role of the interface conditions 0
©)s and B)s, i.e., considering X?, ={veC%() : v €Pp, VT € Ti}

ProblemPr, s+ in the simplicial case, and by

7diVT(u17p’L) =1 ?n Q’iv 1= 1725 X’Lph = {’U S Co(ﬁz) S uTo Fr e Qp, VT € 7;}
diva; = 0 n Qi, i:1,2, '
u, = ¢p onT%, i=1,2, for quadrilaterals. Then, the finite dimensional spaces for
T(u,pi) -n = ¢y onTy,, i=1,2, velocity and pressure are, respectively,
T(uy, -n = T(uyg, -n onl
(ur,p1) u = u2( 2,p2) onl“;. Vin=[X000Vie, Qin=X]), (15)
(14)  for suitable polynomial degregsandr.
3. FORMULATION OF THE ICDD METHOD FOR THE 3.2. 1CDD method with Dirichlet controls
STOKESPROBLEM

Assume, for simplicity, tha®Q1oNTy # @ andl'p # 0.
For the sake of simplicity we will consideilomogeneous  (We will discuss this issue more in detail in secti@h We
boundary conditions, i.e., we will sef, = 0 onI'p and  define the space of discrete Dirichlet controls as
¢ = 0 onI'y. Moreover, since we will be interested in IS 0 .
computing a finite dimensional approximation of the solu-Ain = {Ain € C7(I%) = Fvin € Vip With Xi = vipr, }.
tion of the Stokes problem, we introduce the ICDD methodand let
directly at the discrete level.
AP = AP, x AD,.

31 hp-FEM discretization Fori = 1,2, we consider two control functions; ;, €
AP, and the state problems: fiid; 1, pi.n) € Vin % Qin

We introduce two regular computational grids and such that, for altvin, gi,n) € Vin X Qiy vin = 0 0nly,

T2 in Q1 andQ, made by either simplices or quadril_ater- ai (Wi, vin) + bi(in, Vin) = fg, £ vin
als/hexahedra. We suppose that each elerfiert 7; is bi(qin, win) =0 ‘ (16)
obtained by aC'' diffeomorphismF; of the reference el- i\dih, ik
ement] and we suppose that two adjacent elementg; of
share either a common vertex or a complete edge or a comvherea; andb,; denote the restriction of the bilinear forms
plete face (wheml = 3). Moreover, we assume that they (@) and B) to ;. In fact, (u; 5, p; ») depends on both; ;,
coincide inQ25 and that both interfacels; andI'; do not  andf, however such dependence will be understood for the
cross any element d; or 2,. We discretize both primal sake of notation.

and dual problems in each subdomaintyfinite element The unknown controls on the interface are obtained by
methods kp-FEM). Because of the difficulty to compute solving a minimization problem for a cost functional suit-
integrals exactly for large, typically when quadrilaterals ably depending on the difference betwesr, andu; ;, on

are used, Legendre-Gauss-Lobatto quadrature formulas aitee interface$’; andl's. More precisely, inspired by,
employed to approximate the bilinear formag,, andbq, we look for

(see D)-@)) as well as the 2-inner products irf2; and on 2

the interfaces. This leads to the so calzalerkin approach _ inf Ji(A) = lz Juyp — u27}IrH2L2(F,v) )

with Numerical IntegratioiG-NI) [1,[2] and to the Spectral 2, =(A1.n.A2.) 2

Element Method with Numerical Integration (SEM-NI). In a7

u; p = >\i.,h on Fi
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To the minimization problenfllZ) we can associate the Moreover, we will indicate byM/r, the mass matrix on the
following optimality system: find\;, = (A1 5, A2,p) € AhD interfacel’;.

and, fori = 1,2, (W, pin) € Vin X Qiny (Win, qin) € Finally, in the rest of the section, we will denote Bythe
Vin x Qi such that, for al(v; ;i n) € Vin x Qi right-hand side for the state problems(¥, while U; and
with v; , = 0onT}, ‘W, will be the vectors of unknown velocity and pressure in

Q; for the state and the adjoint problems, respectivaly.

(Wi, Vin) + bi(pin, vin) = fszi £ovin is the vector of the unknown Dirichlet controls &n

bi(Yin,uin) =0 (18)
ui(-,h :h )‘i,hhz)n F’L )\Fi = (()\Fi)l’ ) ()‘F1)er) )
(Ary)j = Ain(xj), JeGi,

ai;(Win,Vin) +bi(qn, vin) =0
bi(Yin, Win) =0 (19)
Wih = (_1)Z+1(U-1,h — 1127h) onTl';,

whereg; is the set of theVr, indices corresponding to the
velocity degrees of freedom on the interfdgeandx; is a
node orl’; ((Ar, ), is the nodal value of the discrete control
function; ;, at the nodex;).

We consider now the optimality system associated with
the functionalJ; with Dirichlet controls that we introduced
in section55.15.1.1 If R;; denotes the algebraic restric-

and, for all(pt; 5, p15.5) € AY,

[ (= o)+ wap g s
I

ion operator of the velocity unknowns in; to the inter-
(20) " tion operator of the velocity unk i, to the int
. (= (i —uzn) + Wi p)pa dU' = 0. facel; (i,j = 1,2), the algebraic counterpart §-(20
? reads:
3.3. Algebraic formulation of ICDD with Dirichlet controls Sty: = by (21)
— T —
To the Stokes problem in subdoméln(i = 1,2)wecan Wherey: = (Ul%v Up, Wi, Wi, Ar,, Ar, )", by =
associate the matrix (F1,F2,0,0,0,0)" and the matrixS; is defined as
T
S = (Az' B; ) Sn, 0 0 0 [Snr, 0
Bi 0 0 St 0 0 0 Snr,
where A; corresponds to the finite dimensional approxi- 0 =Snr,Ri2| Snr, 0 |Snr, 0
mation of the bilinear formuq, (see @), while B; cor- —S1,r, Ro1 0 0 Szt 0 Spr,
responds to the discretizationif,, (see[B)). When stabi- 0 —Mr, Ri2 0 Mr,Ria| My, 0
lization is used, the matrice% take the form —Mr, Roy 0 Mr, Roy 0 0 M,
T A RT . . .
S, = (Ai B; ) + (41 B; ) For the numerical solution of the linear systel@3)( we
Bi 0 Bi G compute the Schur complement system with respect to the

P ~ control variablegAr, , Ar,) and solve them through an it-
whereA;, B; andC; are assembled locally, element by el- erative method like, e.g., Bi-CGstaﬂ[ZO]).

ement, and they take into account the integration of the dif- The Sch I

ferential Stokes operator. e Schur complement system reads
In the following we will denote by the indek; the de-

grees of freedom for the velocity and the pressure belong- , <)\r1> —x (22)

ing to2; \ T';, while the index; will refer to the degrees of Ar, !

freedom on the interfacie;. For the sake of exposition, we

will reorder the nodes if); putting those associated with where

Q; \ T; first followed by those on the interfaces. Corre-

spondingly, with obvious choice of notation, we can rewrite _ -1 2
tk?e Stok%gmatriﬁ- as Xy = Mr, (Ir, (Rmsﬁfl Shrl)z)
’ Mr, (Ir, — (R21S7,1,561,)%)
AIiIi BEIZ- AIiFi BEFZ-
g Brr, 0 |Brr, 0 and
| A Bt Are Br, Mr, Ris(Ir, — S7% Spr, Ria)S: ) F
BFi]i 0 BFiFi 0 Xt _ I 12( Iy — [_11[1 11Ty 12) ]_1{1 1
MF2R21(IF2 - 51212512F2R21)51212F2

— SI'LI'L SI'LF'L
Sr;1; Srirs Ir, is the identity matrix on the interfadg.



3.4. 1CDD method with Neumann and mixed controls

Let A2, denote the space of discrete Neumann controls

onT;. We require than ¥, c L(T;).

Fori = 1,2, given the control functions\; ;, € Af\fh,
considerthe discretestate problems: findu, 5, pi ) €
Vi X Qin, suchthat, forallv; n,¢;n) € Vin X Qin,

a; (Wi h, Vin) + bi(Dih, Vin) = fpi ik Vi
+ Jo, £ vin
bi(qi,n, uin) = 0.

(23)

Let T, C Q; be a generic element i/2;; we introduce
the seté;, = {k : mea$odT; NT;) > 0} and, for any
k € &;, the edges;;, = dT) N T';. Thanks to the definition
of [Xffh]d, foranyv;, € [X?, ]*andg; , € X7, it holds
Vinlg, € [CH(T))? andg; |7, € C%(T},), and then we
define thaliscrete normal stress

‘i%‘,z',h =T(un,pip)-n only.
This definition makes sense in classic way on egghC
I;, so that®, ; , € [L2(T;)]%

We are interested in evaluating the discrete normal stress

associated with{u; 1, p; ») also on the interfac®; (j =
3 — 1), which is internal td?;.

With this aim we first restrictu; 5, p; ) t0 Q212 and then
extend it tof2; in such a way that such extensiom, 1, p; 1)
belongs toV; ;, x Q;,». Then we define

®; i ="Tn, pin) N onT

and it holds®, ; ;, € [L3(T';)]
Following {B)s, the discrete Neumann contros ;, on

the interfacel’; are obtained as solution of the following

minimization problem

inf

Tt A
A1, hA2,h f( Lk Qh

anmh BinlFar, |
(24)

In practice, the discrete normal stresses on the interfac

TI'; are obtained as residuals of the first equatiof2@),(as
we are going to show.

LetZ! ande be the sets of indices of the nodes of the

as

(®ir;)e = ai(in, w; ) +bi(Pin, Pig)
- fQi f- Pie-

Similarly, for any? € G} ande, , € B} we define the
vectors(®; r; )¢ € R9 of the weak discrete normal stresses
onT'; associated witliu; 5, p; 1) as

(25)

(®ir;)e = aj(Qin, @) +bj(Dinspj0)

It holds

(®ir,)e = / @ n- Pl Ve e gy, i, j e {1,2}.
Ly

To the minimization of problem2d) we can associate
the following optimality system: find;, = (A1,5, A2n) €
A}, and, fori = 1,2, (Wi n,pin), (Wi, ¢in) € Vin X
Q.5 such that

ai(ui,}u ‘Pi,z) + bi(pi,ha %‘,4) = fri Aih Pie
+ Jo, £ P veezr  (27)
bi(Yi g, uipn) =0 Vk € 1P,
ai(Win, Pig) +0i(qinspi0) = (®ir,)e — (®51,)e
V0 e 74 (28)
bi (Vi g, win) =0 Vk e 17,
and
2
03] [ . )] =
; [(®ir,)e ir)e+ (¥jr,)e] =0 29)
Ve € G,

wherej = 3 — i and

(Pir)e=aj(Win, @;j0) +bi(Gin Pje)

the weak representation of the discrete normal stress on
; associated with the dual state solutiem; 1, g; »).

An alternative strategy consists in choosing mixed con-
trols, e.g., a discrete Dirichlet contral, , € ADh onT

meshes in2; for the velocity and the pressure, respectively.2nd @ Neumann control, ;, € A3}, onT and to min-
Moreover, letG* C Z* be the subsets of indices of the imize the difference between both interface velocities and
nodes lying onl’;. We consider matching meshes on theinterface normal stresses.
overlap(;2. In [X?,]* we take the basi8} of the charac- Following (6); and B)s, the corresponding minimization
teristic Lagrange ponnomlal;az , With ¢ € 7. Similarly, ~ Problems would read:
in Q; » we consider the bast of the charactenstlc La-
grange polynomialg; j, with k& € Z?.

Now, let (u; ,p;n) be the solution offZ3. For any
¢ € G, we define the vector@P; r, ), € R? of the weak
discrete normal stresses dn associated withi{u; 1, p; 1)

inf

1 2
At JipAams Azn) = gl — v,

1. .
+ 5l ®r2n §2,27h||2L2(F2):| (30)



Alternatively, following [I4)s and f[4)s, we could con-
sider a discrete Neumann control @3 and a discrete
Dirichlet control onl'; and the corresponding minimization
problem:

inf
A1,k A2,k

1 . .
Jr(ALn Azn) = =[|@1a.n — PoanllFer
2 (T'1)

1
+ §Hu1,h —wplier, |- (31)

To the minimization probleni30) we associate the fol-
lowing optimality system: findA, = (A1 n,A2n) €
AP, x AY, and, fori = 1,2, (Wi, pin) € Vin % Qin,
(Wi, qi) € Vi x Q4,5 such that

ai(ay,p, <P1,e) + b1(p1,hs 901,/3) = fgl £,V eI}
by (1,5, u1,) =0 Vk € IV,

u;p = A1, only
(32)

a2(u2,h7 ‘102,@) + 52(P2,h7 (102,[) = sz Ao p - Yo

+ Jo, £ P2 VeeTy (33)
ba (1o i, uzp) =0 Vk € 7%,
a1 (Wi, 1) +01(qun, 1) =0 VE €T
by (Y1, wi,n) =0 VkeIl, (34)

Wih =Upp— Uz, ONIYy

a2(W2,hy P2 0) + 02(q2,n, Pa,0) = (2,15 )e — (P1,1ro)e

Ve e Ty
ba (Y26, Wa,n) =0 Vk € I
(35)
and
[(ur ey )e — (W piry )e + (Wopr, )e)
+[=(®1r,); + (P2r,); + (Pir,),l =0 (36)

V0 € Gy, V)€ Gy

To the minimization problenifl) we now associate the
optimality system: find\;, = (A1n, A2,n) € AL, x AD),
and, fori = 1,2, (ui_,h,pi_,h) € Vi,h X Qi,hl (wi,qi) S
Vin % Qi such that

ai(uyp, ‘101,2) + b1(p1.1, ‘101,@) = fF1 ALh P10
+f91 £ vl e I}
b (1,5, u1,) =0 Vk € IV,

(37)

az(Uz,n, Pa.0) + b2(P2,h, Pa0) = [o, £ P V€LY
ba (1o i, uzp) =0 Vk € 7,
Uz p = )\27}1 onl'y

(38)

ar(Win, ¢10) +b1(q1,n, p1,0) = (Prry)e — (P, e
Ve e I}

Vk e IV
(39)

bi(Y1k, Wi,n) =0

az(Wa h, P2 ) + balqz,n, pa,) =0 VL €T

ba (2, Wo,p) =0 Vk e I8,  (40)
Wop =Uip — Uz ONIy
and
[(®1r,); — (P2r,); + (P2r,),]
+ [(ul,h\r‘2>€ — (ug,pry e + (W1,h\r2>8} (41)

Yy € G¥, VI € GY.

3.5. Algebraic formulation of ICDD with Neumann and
mixed controls

Using the previous notations, the discrete values of the
Neumann controls are given by

(Ain)e = Z/ Xin @i, VLEGH
ik

ke&; €

Denoting byT’;; the finite dimensional counterpart of the
operator that associates to the velocity and pressufg in
the corresponding normal stress tensor on the inteiface
(G = 1,2) (as in £9), after discretization the optimality
system[Z7)-(29) for the functional/; with Neumann con-
trols yields the following matrix:

S5 0 lo o=, o
0 S |0 0] 0 —In
0 Twl|S 0|-Ir, 0 42)
Ty, 0 |0 S| 0 —Ip,
0 —Tw| 0 To|lIr, 0
~Tyy 0 [Ty 0| 0 Ip,

The corresponding Schur complement system becomes

A
2y ( “) = X; (43)
Ar,
where
Ir, — (T12S7h)?
Ef: T ( 12 1_1)2
Ir, — (T2155 )
and

;= Ty2S7 (Ir, + T12S7 H)Fy
P\ Ty S5 (In, + T9155 1) Fs



Finally, the matrix associated with the optimality system

1/2
: 1 with _ o — ( _ 2 Ty — 2 ) ,
(32)-(39) for the functionall; ; with mixed controls is: 0 = \IPr = Prallzaa,) + Iz = Porliay

efr0 = lurn—u2nll2(0.15), €120 = [IP1.a—P2,n ]| 22(012)

Sin 0 0 0 Spr, 0 whereu; ;, € V,;; andp; € @, are the solutions of

0 S 0 0 0 —I (19-(0. NS ,

2 s The number of iterations is independent of both the grid

0 =SurRi2|Spn 0 |Spry 0 sizeh and the polynomial degree Notice that the conver-
15 0 0 So 0 —Ip, gence order for the erroe§ andel, in tablel] agrees with the

0 —Mp,Ri2| 0 Mp,Ri2|Mpr, 0 expected optimal accuracy for the Taylor-Hood elements.
—Ty 0 Tn 0 0 Ip,

TABLE I: Test case with analytic solution. Results for thedu
tional J; with Taylor-Hood elements with respect to different val-
ues ofh. Fixed overlap withy = 0.2.

S ()\r1> = Xy (44) h #iter infJ, e eb ela0 els o
Ar, 272 8 1.047e-16 1.146e-02 9.322e-03 8.081e-05 5.982e-03
273 9 8.612e-20 2.835e-03 2.175e-03 6.033e-06 5.832e-04
274 9 6.003e-20 7.088e-04 5.345e-04 5.432e-07 8.516e-05

Its corresponding Schur complement system becomes

where

S = My, (Ir, — (R12S1,},S1,1,)?)
Ir, — (T155')?
TABLE II: Test case with analytic solution. Results for thané-

and tional J; with stabilizedQ, —Q, elements with respect to different
. o polynomial degreep. Fixed overlap with = 0.2.
Xij = <MF1312511£11(IF1 - ShFlf_?QShh)Fl) p #iter infJ, e} b elho g
TSy (Ir, + TS5 )F 2 10 1.759e-19 1.402e-03 2.676e-03 8.471e-06 1.543e-03

3 9 1.402e-19 6.719e-05 1.299e-04 6.220e-07 1.124e-04
4. NUMERICAL RESULTS 4 9 3.766e-20 3.922e-07 3.157e-07 5.870e-10 8.652e-08
5 9 1.308e-20 8.740e-09 1.269e-08 7.617e-11 1.079e-08

4.1. Test caseswith respect to an analytic solution
Next, we study the case where the width of the over-

We consider the domaift = (0,1) x (0, 2) with Q; = Iap tends to zero on a fixed computational mesh. When
(0,1) x (1 — 6/2,2) andQy = (0,1) x (0,1 + §/2), Using the Taylor-Hood elements, we set= 0.04 and
5 > 0 being a suitable parameter characterizing the widttf) = 2/ - - - h; the subdomains are defined as follows: for
of the overlapping region. The viscosity is set to 1, 9 = 5/ 21 = (0,1)x(0.92,2) and€2, = (0,1)x(0, 1.12);
while the forcef and the boundary conditions are cho- for & = 4h, &1 = (0,1) x (0.92,2) and€), = (0,1) x
sen such that the Stokes problem admits the solution (0, 1.08); for & = 3k, ©, = (0,1) x (0.96,2) and 2, =
(exp(y), — exp(x))T andp = exp(z)sin(y). Concern- (0,1) x (0,1.08); for 6 = 2h, 27 = (0,1) x (0.96,2) and
ing the boundary conditions, we impose Neumann condif’2 = (0,1) x (0,1.04); for§ = h, 1 = (0, 1) x (0.96, 2)
tions on the boundary x (0, 2) while Dirichlet boundary @nd €2 = (0,1) x (0,1). For stabilizedQ, — Q, ap-
conditions are imposed on the remaining boundaries. WEroximations, we take = 4 and we partition each sub-
compute the solution of the optimality system using the Bi-domainin4 x 5 quad elements; \ ©2,, is partitioned into
CGStab method on the Schur complem@3) (setting the 4 * 4 €qual quad elements of sizg - i, h, = 0.25 and
tolerance td.0-?. hy = (1 —4/2)/4; Q42 is partitioned inl x 5 quads of

First, we consider the case of an overlap with fixed widthSiZ€ /2 - 9; the value ofj ranges from 0.2 to 0.01. Results
§ = 0.2. We use both Taylor-Hood elements with three 'éPorted in tablefllandVishow that the required number
computational meshes characterizediby 272,273 274, of iterations increases wherdecreases. _
and stabilizedip-FEM Q, — Q,, [8]. In the latter case, w Finally, we carry out a convergence test with Tz_iylor-
considert x 5 quad elements in each subdomgin 4 x 1 Hood elements setting = A and lettingh — 0. Also in

elements iM2,» and each quad element has sides of Iengtﬁhis case we can see that the number of iterations required
h—9-2 to converge grows wheh decreases. Results are reported

In tabledl] andlll we report the number of iterations re- in tablelVl

quired to converge, the computed infimum of the cost func- 1 €S€ numerical results show that the ICDD method is
tional .J, and the errors not very effective especially when considering small over-

) ) 1/2 lapping regions. This behavior may due to the fact that the
ef = (Hu1 - ul,hHHl(Ql) + [Juz — u2,h||H1(92)) ) functional J; involves no information on the pressure fields
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TABLE IlI: Test case with analytic solution. Results for thunc- TABLE VI: Test case with analytic solution. Results for thaé-
tional J; with Taylor-Hood elements with = 0.04 andd — 0. tional J; with Taylor-Hood elements with respect to different val-
ues ofh. Fixed overlap withy = 0.2.

o #iter infJ, et e €20 a0
5h 9 9.281e-20 4.020e-04 3.271e-04 2.525e-07 3.270e-05 Nt #iter infJy et i ei,0 €120

4h 10 1.565e-16 3.991e-04 3.242e-04 2.553e-07 3.611e-052 ~ 9 1.904e-19 1.150e-02 9.065e-03 7.206e-04 1.878e-03
3h 13 8.237e-19 3.967e-04 3.213¢-04 2.418e-07 4.456e-052 = 9 2.070e-18 2.839e-03 2.154e-03 7.145¢-05 2.391e-04
2h 18 7.275e-17 3.994e-04 3.345¢-04 2.699e-07 1.362e-042 9 1.233¢-18 7.087€-04 5.319¢-04 7.679¢-06 3.352¢-05
h 37 1.923e-14 4.780e-04 6.030e-04 1.688e-07 3.249e-04

) ] ) TABLE VII: Test case with analytic solution. Results for thc-
TABLE IV: Test case with analytic solution. Results for té-  tignal 7, with stabilizedQ, — Q, elements with respect to differ-
tional J; with stabilizedQ, —Q, elements with respect to different - ot polynomial degrees. Fixed overlap withs = 0.2.

polynomial degreep for § — 0. By * we denote that the method - -
did not converge within 250 iterations. p #iter _inf J; et € efa0 €l2.0

5 #iter infJ, o o et o 2 10 2.249e-24 1.235e-03 2.370e-03 1.485e-05 5.159e-04
0.1 15 2.391e-17 5.956e-07 7.930e-07 1.729e-09 4.741e-074 9 2.438e-18 3.889e-07 3.031e-07 3.230e-09 2.777e-08
0.05 25 1.266e-17 2.806e-06 5.088e-06 1.333e-09 2.561e-065 9 2.377e-18 6.996e-09 6.726e-09 7.773e-10 1.596e-09
0.02 71 3.369e-16 2.699e-05 4.974e-05 2.856e-09 1.571e-05
0.01 250 4.208e-04 1.614e+01 2.909e+01 2.056e-03 7.755e+00

Finally, we study the behavior of the ICDD method with

in the overlap, since itimposes only the continuity of veloc functionals/y and.J;; using Taylor-Hood elements setting
ities on the interfaces. 0 = hand lettingh — 0. Results are reported in tab[EE/]
The number of iterations is independent of the mesh sizé‘ndm
h and of the polynomial degree However, a dependence  Differently from the case of Dirichlet controls with func-
on the size of the overlap can be estimated as tional J;, we can see that both functionalg and.J;; re-
) . quire a much lower number of iterations to converge. This

fiter ~ Co™, shows thatontrolling the pressure and not only the velocity

for a suitable positive consta6t > 0. on the interfaces is crucial for the Stokes problem

. . Moreover, w n hat th nvergence resul
We consider now the case of Neumann and mixed con- ' O€OVer, We can see that the best co Ve ge. ce results
trols are obtained with mixed controls and functiong}: as a

First, we consider the case of an overlap with fixed Wid,[hmatter of fact, in this case the number of iterations is inde-
0 = 0.2. The setting and the discretization are the sam gndent from the mesh size from the degreg of polyno-
used before. In tablégll andVII]we report the number of mial used, and from the measuref the overlap.
iterations and the computed errors for the case of the func- Neumann controls with functional; also provide a
tional .J; using Taylor-Hood and stabilize@, — Q, ap-  humber of iterations independent of the mesh gizand
proximations, respectively, while in tablE8I[]andIX]we  Of the polynomial degreg. However, a dependence on the
report the results obtained for the functiora}. size of the overlap can be noticed as

Then, we consider the case where the width of the over-
lap tends to zero on a fixed computational mesh. Results
are shown in tabldXlandXIIlfor the Taylor-Hood elements
with h = 0.04 and in table& and[XIIT] for the stabilized
Qp, —Q, elements witlp = 4. Both functionals/; andJ;;  for a suitable positive constatt > 0.
are used.

H#iter ~ C6~1/?

TABLE V: Test case with analytic solution. Results for thedu  TABLE VIII: Test case with analytic solution. Results foreth

tional J; with Taylor-Hood elements with = h andé — 0. functionalJ; s with Taylor-Hood elements with respect to different
5 — h #iter infJ, i e o o values ofh. Fixed overlap withy = 0.2.
1/3 6 4.687e-18 2.615e-02 2.345¢-02 5.390e-04 2.558e-02_h #iter inf Jis et €6 eiz,0 €120

1/6 10 1.309e-17 6.779e-03 5.792e-03 3.262e-05 3.035e-03 272 6 1.211e-16 1.126e-02 8.778e-03 5.597e-05 2.285e-03
2/25 19 4.989e-19 1.626e-03 1.533e-03 2.240e-06 7.548e-04 273 6 2516e-16 2.829e-03 2.143e-03 4.352e-06 2.885e-04
1/25 37 1.923e-14 4.780e-04 6.030e-04 1.688e-07 3.249e-042"* 6 1.445e-16 7.082e-04 5.314e-04 3.417e-07 3.938e-05
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TABLE IX: Test case with analytic solution. Results for than€-  TABLE XlI: Test case with analytic solution. Results for thmc-
tional J;; with stabilizedQ, — Q, elements with respect to dif- tional J.s with Taylor-Hood elements with = 0.04 andé — 0.
ferent polynomial degrees Fixed overlap withd = 0.2.

0 #iter inf Ji et e €l2,0 elso

p #iter inf Ji; e €6 ei2,0 €l2.0 5h 6 1.861e-16 4.019e-04 3.268e-04 4.044e-07 2.324e-05
2 6 4.003e-18 1.231e-03 2.391e-03 1.101e-05 6.378e-044y, 2.339e-16 3.989e-04 3.239e-04 3.723e-07 2.348e-05
3 6 3.044e-18 2.147e-05 5.461e-05 1.894e-07 1.281e-053p, 1.441e-16 3.964e-04 3.206e-04 3.163e-07 2.153e-05
4 6 2.334e-18 3.890e-07 3.038e-07 3.459e-10 3.191e-082p 4.691e-15 3.935e-04 3.176e-04 2.709e-07 2.561e-05
5 6 2.185e-18 6.358e-09 6.231e-09 8.761e-11 2.384e-09 p, 5.075e-15 3.907e-04 3.141e-04 1.596e-07 1.332e-05

NN~

TABLE X: Test case with analytic solution. Results for thedu  TABLE XIIl: Test case with analytic solution. Results foreth
tional J; with Taylor-Hood elements with = 0.04 andé — 0. functional J;; with stabilizedQ, — Q, elements with respect to
different polynomial degregsfor 6 — 0.

0 #iter inf Jy el ey €12,0 el
5h 9 1.743e-18 4.019e-04 3.268e-04 3.778e-07 1.523e-05_0 #iter inf Ji; et eb ei,0 €120

4h 11 1.734e-21 3.990e-04 3.238e-04 4.201e-07 1.577e-050.2 6 2.334e-18 3.890e-07 3.038e-07 3.459e-10 3.191e-08
3h 14 5.866e-21 3.964e-04 3.206e-04 4.590e-07 1.453e-05 0-1 7.935e-16 4.621e-07 4.239e-07 8.769e-10 4.387e-08

7
2h 18 3.328e-15 3.935e-04 3.176e-04 1.011e-06 1.904e-050-05 7 6.422e-16 5.093e-07 4.877e-07 4.043e-10 3.179e-08
h 35 8.742e-15 3.917e-04 3.160e-04 5.071e-06 9.156e-060-02 7 1.103e-14 5.421e-07 5.183e-07 9.533¢-10 2.265¢-08

001 8 4.678e-14 5.511e-07 5.318e-07 5.511e-10 4.550e-08

4.2. A test case without analytic solution 1/2
et = (1ULn = il o, + 1Uzn — w2l s

We consider the computational domdh = (0,1) x , ) ) 1/2
(0,2) with Q; = (0,1) x (1 —§/2,2) andQs = (0,1) x € = (HPLh = PinllTaa,)  1Pon —pz,hl\mmz)) ,
(0,14 0/2), as represented schematically in Figdr&he  where(U; 1, P, 1,) is the restriction to the subdoméih of
forceis settd = 0 and the viscosity is = 2.e—3. Weim-  the solution computed on the same mesh but considering
pose homogeneous Neumann boundary condiionthe  the domain as a whole without any splitting and solving
fluid normal stres®n the edges; and/;. On the remain- ().
ing boundaries, apart from the edgewe impose homoge- First, we impose homogeneous Dirichlet boundary con-
neous Dirichlet boundary conditioriisr the fluid velocity  ditions onls. The results obtained in correspondence of the
unless on{0} x (1.1,2) where we set a parabolic profile different functionals/;, J; and.J;; are reported in table
with maximum equal td. [XVTlfor Taylor-Hood elements and in talff&/I[] for stabi-

On the edgés; we may impose either homogeneous Neu-lized Q, — Q, elements witlp = 6.
mann or Dirichlet boundary conditions to compare the be- As expected, the minimization of the functionildoes
havior of the different methods that we have studied. In parnot allow to recover the correct solution, whereas béth
ticular, we want to show that the functionalwith Dirichlet  and .J;; converge to the correct solution. In FigiBeve
controls will not provide a correct solution whénis setas  show the original solution, while in Figuré® andB we
a Dirichlet boundary, since this case violates Assumptiorshow, respectively, the solutions obtained through mini-

Z1 mization of the functional; and.J; f. We can see that the
For this problem, besides the errars, , andef, , on  functional J; has no control on the pressure, which there-
the overlap, we also compute fore does not match on the overlap.

Now, we impose homogeneous Neumann boundary con-
ditions onlg. In this case, according to the theory, all func-

TABLE XI: Test case with analytic solution. Results for thng-  10Nals allow to correctly compute the single-domain solu-

tional J; with stabilizedQ, — Q, elements with respect to dif-
ferent polynomial degregsfor 6 — 0. By * we denote that the

method did not converge within 250 iterations. TABLE XIV: Test case with analytic solution. Results for the

§ #iter infJs e eb €% o ey functional J¢ with Taylor-Hood elements with = h andd — 0.
0.2 9 2.438e-18 3.889e-07 3.031e-07 3.230e-09 2.777e-085 = h #iter inf Jy et e ei2,0 el

0.1 15 3.759e-17 4.635e-07 4.247e-07 8.579e-09 2.059e-08 1/3 6 2.610e-18 2.510e-02 2.051e-02 1.112e-03 5.119e-03
0.05 25 4.783e-15 6.835e-07 7.114e-07 5.991e-08 2.168e-08 1/6 10 6.433e-16 6.723e-03 5.416e-03 1.038e-04 5.577e-04
0.02 96 2.032e-16 6.653e-07 6.873e-07 3.315e-08 2.328e-082/25 18 7.986e-16 1.576e-03 1.280e-03 2.405e-05 7.098e-05
0.01 250 5.751e-04 8.371e-01 9.842e-01 5.206e-02 1.733e-03 1/25 35 8.742e-15 3.917e-04 3.160e-04 5.071e-06 9.156e-06
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TABLE XV: Test case with analytic solution. Results for tim€-  TABLE XVI: Test case without analytic solution. Dirichlebbnd-

tional J;5 with Taylor-Hood elements with = ~» and§ — 0. ary condition onls. Results for the functionals; (top), J; (mid)
5 — I #iter inf J,, e o oo o Zzg;k f_> (t(a)ottom) with Taylor-Hood elements with fixéd= 0.04

1/3 5 4.337e-18 2.487e-02 2.051e-02 7.757e-04 8.554e-03 -
/ ° 5 #iter infJ, et eb €l2,0 elso

1/6 6 1.506e-15 6.709e-03 5.411e-03 4.145¢-05 8.970e-04
2/25 7 7.951e-15 1.572e-03 1.275e-03 2.503¢-06 1.067e-04 > 8 9.779€-23 4.556e-02 6.647e-04 8.754e-04 8.841e-04
1/25 7 5.075e-15 3.907e-04 3.141e-04 1.596e-07 1.332e-05 41 9 5.197e-21 2.805e-01 3.740e-03 9.122e-04 4.568e-03

3h 12 5.289e-23 2.967e-01 3.917e-03 1.002e-03 4.261e-03
A 2h 16 6.533e-21 2.618e-02 3.220e-04 8.911e-05 2.979e-04
h 31 8.042e-22 1.921e-01 2.231e-03 9.904e-05 1.510e-03

O
l1o l7 .
0 #iter inf Jy et e €l2,0 elso
T 5h 7 9.209e-26 1.592e-03 8.534e-05 1.452e-03 1.192e-04
l q l 4h 8 2.376e-24 3.395e-03 7.345e-05 2.684e-03 8.409e-05
9 12 6

3h 10 3.043e-24 5.410e-03 9.049e-05 3.822e-03 8.284e-05
I, 2h 15 2.700e-27 2.634e-03 3.620e-05 1.786e-03 2.044e-05
h 28 1.563e-25 4.216e-02 4.909e-04 1.975e-02 8.692e-05

lg 0

I 0 #iter inf Jyf et eh €20 elso
5h 5 2.98%e-20 1.295e-03 8.531e-05 6.078e-04 1.206e-04

FIG. 2: Schematic representation of the computational doma 47 6 1.843e-22 9.068e-04 6.122e-05 3.653e-04 8.674e-05
3h 6 1.311e-20 9.063e-04 6.157e-05 3.419e-04 8.737e-05
6
7

2h 1.540e-21 2.885e-04 2.160e-05 9.796e-05 3.046e-05
8.444e-20 1.208e-03 9.366e-05 2.619e-04 1.284e-04

tion and their behaviors are similar to those observed in theh
previous tests with analytic solution. The functiodgl as-
sociated with mixed controls is the one that converges i
the lowest number of iterations with a slight dependence
0. Results are reported in ta¥&/TIT] for Taylor-Hood el-
ements and in tabEIX] for stabilizedQ, — Q, elements
with p = 6.

In Figureld we show the single-domain solution, while
in Figured7 and8 we show, respectively, the solutions ob-
tained through minimization of the functiond] and.J;.
We can see that, although the functiodahas no control 5. ANALYSISOF THE ICDD METHOD FOR THE
on the pressure, the Neumann boundary condition on the STOKESPROBLEM
edgels allows the pressure to match almost perfectly in the
overlapping region. Notice that the difference showninFig |, this section we analyze the ICDD method that we have
[dis of the same order of the errors reported in talf&8l]  resented in the previous sections with the aim of guaran-

andX[x1 teeing the well-posedness of the minimization problem. We

_ Finally, let us consider a test case in which the interfac,qqin with the analysis in the continuous case with Dirithle
is a piecewise linear curve (identified by element edges), asyntrols.

shown in Fig.@ We compute the solution by imposing a

Neumann boundary condition on the boundgrgonsider-

ing stabilizedQ, — Q, elements withp = 6 andd — 0.

The iterations numbers shown in taB&lbehave similarly ~ 5.1.  Analysisof the optimal control problem with Dirichlet

Or%ider a discretization by Taylor-Hood elements on a mesh
With fixed » = 0.04 andd — 0 and we set the viscosity

v = 1072,10*,10~%. Numerical results are reported in

tabledXXT [XXII} clearly they show that the method is ro-

bust with respect to variations of the parameter

to those presented in the third block of taBEXt the al- controls
gorithm is not strongly influenced by the shape of the inter-
face. Fori = 1,2, we introduce the following spaces:

To assess the robustness of the method with respect to
the viscosity coefficient, we compute t_h_e soluthn of the A = {pe [H1/2(Fi)]d . Jv e [HY Q)]
problem with Neumann boundary condition rusing the p
ICDD method associated with the function&l;, the one v=ponl;andv=0o0nlY} (45)
that provided the best results in the previous tests. We con- A, = {p € A; : fri“ -n =0} (46)
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Velocity (x)
TABLE XVII: Test case without analytic solution. Dirichlet

boundary condition orls. Results for the functionald; (top),
J¢ (mid) andJ; ¢ (bottom) with stabilized), — Q, elements with
fixedp = 6 andd — 0.

S ;}ﬁ
SO0,

SISO,
iter i v p . v oooo oo
0 #iter infJ; ey € €12,0 €120 ] VAVAVAYAYA uﬂ%%%gg‘%
pAVAYAYA

0.2 8 1.582e-20 3.151e-02 1.239e-04 2.158e-05 1.176e-04
0.1 14 1.582e-24 2.884e-01 9.612e-04 3.424e-05 7.473e-0¢
0.05 25 1.698e-22 4.565e-01 1.389e-03 2.740e-05 8.364e-0¢
0.02 65 4.433e-22 2.349e+00 7.292e-03 4.594e-05 2.861e-0:
0.01 214 2.483e-23 6.278e+00 2.021e-02 4.281e-05 5.738e-0

0 #iter inf J; et e €120 els.0

0.2 6 1.955e-26 3.475e-03 3.354e-06 1.761e-04 1.605e-0%
0.1 11 1.431e-25 4.699e-03 1.056e-05 4.011e-04 1.344e-0%
0.05 22 1.154e-24 1.235e-02 3.908e-05 1.148e-03 1.213e-0f
0.02 55 1.241e-24 1.037e-02 2.953e-05 6.474e-04 1.436e-0f
0.01 165 2.021e-23 3.626e-02 1.025e-04 1.660e-03 2.086e-0

B
S DSNHS
eI

; . w u K 77 = /[)‘y//
o _#iter inf Jis €1 € 12,0 €12.0 SO0 asa
5 Ay IS, 0())/// ///
02 5 3071e-23 3.360e-03 1.862e-06 5.640e-05 1.618e-0F ?%%%%W%%MW%W
' ' ' ' ' ' LT
0.1 I //////

. NREAH AL 7 %
2.434e-21 3.506e-03 2.626e-06 4.390e-05 1.396e-0E i (%’””’N/'/%.//M,w{&,{//y;’///% )

6 7
0.05 7 7.309e-22 3.656e-03 4.075e-06 3.731e-05 1.384e-0¢ 4

7

7

b

T
N\ N\ ", i
WA "

)
0.02 5.923e-20 4.451e-03 2.545e-05 4.227e-05 2.417e-0%
0.01 2.192e-20 5.731e-03 4.025e-05 2.936e-05 3.735e-0%

We will denote by

Pressure

AD{AZ- o0 #0 45 )

‘ Ao if 0Q;NTxN =0,

the spaces ahdmissible Dirichlet controlsMoreover, we
will denote

AP = AP x AY. (48)

Fori = 1,2, we consider two unknown control functions
A € Af and the associated state problems

—divT(u} ", p") = £ inQ
divudf =0 inQ, (49)
uj‘i’f = X\ onl’;

FIG. 3: Test case without analytic solution. Dirichlet bdarny

with Suitable homogeneous boundary conditionsién \ condition onls. Reference monodomain solution computed using
r;. If Ty = 0, we add the Constrain[tb_ pf‘i"f = 0. The  Taylor-Hood finite elements.

unknown controls on the interface are obtained by solving
the minimization problem

This yields an optimal control problem where both the

2 : . .
. 1 M Aelfy2 control functions and the observations are of boundary (in-
AZ()\:};\E)EAD Ji(A) == 5; [ut " — w5 7o, terface) type. y
- (50) Thanks to the linearity of the problem, we havg” =

o A:,0 o,f Aif 2:,0 0,f
where, for the sake of simplicity, we adopt the same notau; "~ +u; "~ andp;"" = p;"" + p;". For the sake of

tion as in the discrete case. simplicity, we will indicateu™ = u}° andp} = p}°
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Pressure Pressure

FIG. 4: Test case without analytic solution. Dirichlet bdary FIG. 5: Test case without analytic solution. Dirichlet bdarny
condition onis. Solution computed by minimizing the functional condition onls. Solution computed by minimizing the functional
J: using Taylor-Hood finite elements. Jis using Taylor-Hood finite elements.

andu? = (u, uy?), p* = (p}', p3?).



TABLE XVIII: Test case without analytic solution. Neumann
boundary condition orls. Results for the functionald; (top),
Jr (mid) andJ: ¢ (bottom) with Taylor-Hood elements with fixed
h =0.04 and$ — 0.
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TABLE XIX: Test case without analytic solution. Neumann
boundary condition orls. Results for the functionald; (top),
J# (mid) andJ; ¢ (bottom) with stabilized, — Q, elements with
fixedp = 6 andé — 0. By * we denote that the method did not

5 #iter infJ, el a0 converge within 250 iterations.

5h 8 3.771e-21 1.164e-02 2.069e-04 7.870e-04 2.954e-04 J #iter inf J; ei2.0 €120

4h 9 1.942e-20 2.075e-02 3.106e-04 8.418e-04 4.235e-04 0.2 8 7.054e-24 1.398e-02 8.173e-05 1.539%-04 6.044e-05
3h 12 2.629e-23 4.843e-02 6.650e-04 9.458e-04 8.056e-04 0.1 14 1.005e-25 3.046e-02 1.121e-04 1.233e-04 8.945e-05
2h 17 1.470e-25 1.385e-03 2.994e-05 7.864e-05 3.913e-050.05 25 1.388e-23 6.101e-02 1.964e-04 8.335e-05 1.249e-04

h 34 1.077e-24 5.109e-02 5.826e-04 2.688e-04 4.050e-040-02 65 3.579e-23 9.699e-01 3.047e-03 6.782e-05 1.272e-03
0.01 211 8.323e-21 6.444e+00 1.995¢-02 8.936e-05 5.899e-0

ey eb

ey eb

6 #iter inf J
5h 9 1.419e-24
4h 11 8.495e-27
3h 14 4.060e-27
2h 19 1.990e-27
h 38 1.353e-25

et
7.686e-03
1.126e-02
1.903e-02
2.787e-03
2.812e-03

p u P
€o €12,0 €12.0

. . u P u P
1.113e-04 7.8626-03 7.401e-05_0_#iter inf Jy €1 €0 €120 iz
L 567004 1.0450.02 7660005 02 8 3724025 1240e-02 5.379¢-05 1271e-04 3.804e-05

20r7edn L5002 51600002 14 OO 10ke7 01050 0o o
3.860e-05 1.839%-03 l'2839'050.02 107 zlozse-zs 1.8766-02 7'0748-05 9.042e-o4 2.7!98e-0
4.766€-05 1.326€-03 3.166€-05 VeS8 s LO/beIs 1974805 9AseIa 2. [98e

0.01 250 4.232e-17 5.735e-01 2.461e-03 2.657e-02 7.751e-06

o titer

inf Jy5 et ey

€12,0 €120 5 #Hiter
5.532e-05 3.452e-04 7.837e-05 0.2
5.761e-05 3.464e-04 8.162e-05 01
5.716€-05 3.127e-04 8.108e-05, o
1.233¢-05 5.739e-05 1.728e-054 >
2.774e-05 1.060e-04 3.649e-05( o7

inf Jy s el ef €12,0 ela 0

1.208e-22 1.288e-02 7.894e-05 3.015e-04 5.537e-05
2.256e-21 1.660e-02 7.874e-05 2.277e-04 5.645e-05
2.385e-22 1.690e-02 7.153e-05 1.438e-04 5.033e-05
1.144e-20 1.373e-02 4.956e-05 6.421e-05 3.249e-05

6.640e-21 1.048e-02 3.657e-05 2.670e-05 2.421e-05

5h
4h
3h
2h
h

1.173e-19
1.723e-23
2.645e-21
3.243e-21
2.232e-20

7.973e-04
8.329e-04
8.210e-04
1.868e-04
5.438e-04

Then, we can equivalently express the cost functional as

2

1, A
R = Y [5hu = w e,
i=1
51
+(ut —U?,U?’f—ug’f)m(rl) (1)
+1Hu0"ffu0’f 2 }
! 2 llr2ry) |-
In this section we will denote |||All|p =

2 A As
Zi:l ”ul t—ujy? HLz(Ff)'

Lemma5.1 If the boundary conditions imposed on the
Stokes probler(f) satisfy Assumptid®.J then|||A|||p de-
fines a norm on the space”.

Proof. Sincel||A|||p is obviously a semi-norm oA”,
we only have to prove that, if|A|||p = 0, thenA = 0.
Obviously, |[|A|[[p = 0 implies thatu}' = u)? a.e. on
[, UTy. Asu), p) is the solution of g9) with f = 0,

A A A A fof
(w,q) = (U0, — Y50, Pla, — Paja,,) Satisfies

—div T(W,q) = 0 in D)
divw 0 in D) (52)
w = 0 onI'y UT'y

with suitable homogeneous boundary condition§fns N
9Q. Sinceu) belongs toH*(1;), condition B2); has to

TABLE XX: Test case without analytic solution. Piecewisedar
interfaces. Neumann boundary condition lgn Results for the
functionalsJ, s with stabilizedQ, —Q, elements with fixegh = 6
andd — 0.

0 #iter inf Jyy
0.2 6
0.1
0.05
0.02
0.01

et ef} equ,o 611)2,0

2.908e-24 1.614e-02 7.436e-05 4.385e-04 5.197e-05
2.593e-20 1.709e-02 6.813e-05 2.951e-04 4.782e-05
8.702e-22 1.637e-02 5.600e-05 1.589e-04 4.031e-05
5.131e-19 1.439e-02 4.559e-05 7.481e-05 3.995e-05

1.323e-18 1.114e-02 4.391e-05 3.330e-05 3.991e-05

6
7
9
9

be interpreted in the sense of traces of zeroth ordéf bf
functions onl’; U T'5.

Following the same arguments used in the proof of
Propositior2.7, it can be shown that problei2) is well-
posed and its solution i&r = 0 andg = const. Thus,
u = uy? andp) + C1 = py? + Cy a.e. inQyy with
C1,C5 € R, g = Cy — C1, and we can define

ui\l in O \ Q1o
u= ui‘l = u§2 in 912 (53)
u§\2 in Qo \ Q1o
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FIG. 6: Test case without analytic solution. Neumann bounda
condition onls. Reference monodomain solution computed using

Taylor-Hood finite elements.

and
pi‘l + Cl in Ql \ ng
P=< pM+CL=p}2+Cy inQy (54)
p;‘Q + CQ in QQ \ ng.
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FIG. 7: Test case without analytic solution. Neumann bomnda
condition onis. Solution computed by minimizing the functional
J: using Taylor-Hood finite elements.

with 'y # (0. This problem is well-posed and, in particular,
u = 0 a.e. in{2. This implies thain = 0 onT'; UT'; and,
fori=1,2,\;, =0inA;.0

Although we cannot guarantee that” is a complete
space with respect to the nori\|||p, we can construct

. . - . _ ~D
By construction, the paifu, p) satisfies a Stokes problem its completion, sayA , with respect to such norm. In
in 2 with null force and homogeneous boundary conditionspractice, we will always consider a finite dimensional space
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FIG. 8: Test case without analytic solution. Neumann bounda
condition onls. Solution computed by minimizing the functional
J:# using Taylor-Hood finite elements.

~ D .
A,? c AP C A7 and, at the discrete level, all norms are
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FIG. 9: Computational mesh for stabiliz€l, — Q, elements in
the case of piecewise linear interfaces. In the figure 0.01.

Theorem 5.1 Consider the minimization problem

inf Jt (A)

(55)
AEAP

If AssumptiofZ. T holds, problen{55) has a unigue solution
satisfying

(AD)/<J£(A)aH>AD =
S (et —up

~u)
forall p e A”.

Ky (56)

Ha
9 ul

—u,

Jr2ry) =0

Proof ForanyA € A, let us define

2

1 A e >
W(Aaﬂ) = 52(111 — Uy ’ullL - ug )L2<Fi>’
=1
1 2
o,f 0.f _py .
L(p) = _52(‘11 —uy”,uft —uh?)
i—1
so that

2
equivalent. Thus, this would not be a problem for the appli- .J,(A) = 7(A, A) — 2L(A) + 1ZHu‘l’*f —udf |3,
cation that we have in mind. For the sake of notation, in the 23

following we will still denote the completion oA ” by the
same symbol.

The bilinear formn : AP x AP — R is symmet-
ric by definition and, thanks to Lemnf&l, is continuous
and coercive with respect to the noftf\|||p. Moreover,



18

TABLE XXI: Test case without analytic solution. Neumann TABLE XXII: Test case without analytic solution. Neumann
boundary condition ofs. Results obtained for the functionajs boundary condition ofs. Results obtained for the functionas
with Taylor-Hood elements with fixed = 0.04 andd — 0. The  with stabilizedQ, — Q, elements with fixe¢p = 6 and§ — 0.
viscosity isv = 1072 (top),» = 10~* (mid),» = 10~° (bottom).  The viscosity isv = 1072 (top), v = 10~* (mid), v = 107

v=10"? (bottom).
—2
0 #iter inf Jif et eb elao s V= 19
5h 5 2.688e-18 1.668e-03 2.766e-04 3.452e-04 3.918e-04 _ O #iter inf.Jy ef eo efa o €120
Ah 6 4.2426-22 1.7406-03 2.880e-04 3.464e-04 4.081e-04 02 5 2.202e-21 1.288e-02 3.947e-04 3.015e-04 2.769e-04
3h 6 6.5536-20 1.7266-03 2.8586-04 3.127e-04 4.054e-04 0-1 6 5.438e-20 1.660e-02 3.937e-04 2.277e-04 2.823e-04
oh 6 8.0636-20 4.0776-04 6.1666-05 5.7396-05 8.638e.05 005 7 5.672e-21 1.690e-02 3.576e-04 1.438e-04 2.517e-04
L 7 55236-19 1.1506-03 1.3876-04 1.0606-04 1.824e.04 0-02 7 2.684e-19 1.373e-02 2.478e-04 6.421e-05 1.624e-04
0.01 7 1.594e-19 1.048e-02 1.829e-04 2.670e-05 1.211e-04
v=10"*
§ #iter infJ, ev eP ot P v=10"*
tf 1 0 12,0 12,0 § #iter infJy, e e ei2,0 a0

5h 5 8.632e-22 3.544e-04 2.766e-06 3.452e-04 3.918e-06

0.2 5 3.063e-25 1.288e-02 3.947e-06 3.015e-04 2.769e-06

4h 6 4.311e-26 3.731e-04 2.880e-06 3.464e-04 4.081e-06 01 6 5648e-24 1.6606-02 3.9376-06 2.9776-04 2.8236-06
3h 6 6.614e-24 3.558e-04 2.858e-06 3.127e-04 4.054e-06 0'05 7 5.9946-25 1.690e-02 3.5768-06 1.4386-04 2.5176-06
2: 3 i;gze-ig gg;ie-gi i;:?e-gé i;z(g)e-gi ?ggje-g; 0.02 7 3.142e-23 1.373e-02 2.478e-06 6.421e-05 1.624e-06
. & . & . & - € : & 0.01 7 8.512e-23 1.048e-02 1.829e-06 2.670e-05 1.211e-06
_ 10—6
V= ?0 : . . . _ v =10"%
0 #iter_inf Jis 2l il €12,0 12,0 0 #iter inf Jis et eb €20 oo

5h 5 ©5.704e-22 3.147e-04 2.766e-08 3.452e-04 3.918e-08
4h 8.725e-30 3.321e-04 2.880e-08 3.464e-04 4.081e-08

0.2 5 1.017e-26 1.288e-02 3.947e-08 3.015e-04 2.769e-08

6 0.1 6 2.382e-25 6.667e-02 4.800e-08 2.277e-04 2.823¢-08
3h 6 6.694e-28 3.131e-04 2.858e-08 3.127e-04 4.054e-08 (o5 7 4591e-25 1.690e-02 3.576-08 1.438e-04 2.517e-08
2h 6 8.158e-28 4.540e-05 6.166e-09 5.739%-05 8.638¢-09 gy 7 6.312e-24 1.373-02 2.478e-08 6.421e-05 1.624e-08
h 7 5584e-27 1.983e-04 1.387e-08 1.060e-04 1.824e-08 o1 7 3.803e-21 1.048¢-02 1.829e-08 2.670e-05 1.211e-08

L : AP — Ris alinear continuous functional. Then, being quire thatp;, ¢; € Q.0 and the non-null constan, Cs

D H D
(A7 I - [[[p) & Hilbert space (recall that now™ denotes  gre those identified in the proof of Proposit@l

?ts comp!etion with respect to the nqrm |llp), apply- The Euler-Lagrange equatidB@) becomes:
ing classical results of calculus of variations (see, ¢1&.,

Theorem 1.1]), the existence and unigueness of the solution ) N .

is guaranteed. (ary (Ji(A), p)ar = / (up'” —uy*")-(u;' —uy?) =0
The Euler-Lagrange equatioB@) follows by observing St (57)

that, for a”A,E S AD, (AD)/<J£(A)7E>AD = QW(A, H) — for all We AD.

SL(H)- Solving equatior§7) is equivalent to solving the follow-

ing optimality system: findh = (A1, X2) € A” and, for

i=1,2, (u,p;) € Viox Qi, (Wi qi) € Vi x Q; such
Remark 5.1 Notice that, although the definition of the that

functional J; involves the difference between the traces of

the velocity o’y U I'; only, the requirement thai(2;, N —divT(u;,p;) = £ inQ;
'y # () guarantees that the local pressurgsand po will divae, = 0 inQ,

. . . . _ . 1 T 1 58
match in the overlapping region, i.ex; = ps a.e. inQa. w, = X\ onl; (58)

T(ui,pi) -n =0 Onfﬁv
5.1.1. The optimality system for Dirichlet controls
After Theoreni5.], we assume that Assumpti@al is _dWT(Wf’qi) =0 n %

satisfied. More in particular, we consider the c8sg-, N divw; =0 . in £; (59)
I'yv # 0 andT'p # 0 so that the constants; andC, of w; = (=1)"(u; —uy) onT;
Lemmab5.J are both null. In the other cases, we would re- T(w;,¢) - n = 0 onT%



and, for all(p,, ) € AP,
/ ((u1 — 112) + WQ);,LI dar +/ (—(111 — 112) + Wl)ufz dl' = 0.
T 1)
(60)
Proposition 5.1 The optimality systen(&8-(&0 has a
unique solution whose control componente A” is the

solution of the Euler-Lagrange equati@id).

Proof. Let A be the solution off0). Theorent. 1 guar-

antees that such solution exists and is unique. Then, it is
Indeed, the solution satisfies

also a solution of38)- (]BI])

(&D which implies thata?*f = u)>f onl'; UT,. As a
consequence the SO|utI0IQﬁ/Z,qi) of (B9 are identically
null and [0) is satisfied.

19

and
q% in Oy \ Q1o
A A
=19 q¢ =—q; inQ
bN .
qs n Qg \ ng

which satisfy the Stokes problem

—divT(w,q) =0 inQ
divw =0 in{2
w=0 onl'p
T(w,q) - n=0 onT'y

whose unique solution i&7 = 0 andg = 0. Thus, we can
conclude thatw> = 01in Q; (i = 1,2) andu} = u)? on

We prove now that this solution is unique. Consider firstl'1 U I'2.

the casé = 0. We define the operatar: A” — (A",

apy (X(A), )0 = / () — ) + w)psy dT

+/ (- (ui\l —u2 )+W1)N2dF
T2

(61)
w% are solutions of[§8 and
(59, respectively, withf = 0. The operatory is linear

and continuous ander(x) = {0}. Indeed, thanks to
B9, w [H1/2( )% and, if A € ker(x), due to [61),
wg‘ = —(u —u?)onT, andwi‘ = (u} —u)?) on FQ

Thus, fori = 1,2, j =3 — 4, wl- satisfies the system

where, fori = 1,2, u}

7d1VT(W_,qZ) 0 inQ;
divw; =0 inQ;
w%:f % onl’;

w> =0 onTl%,

A A i
T(wi,q;) -n=0 onl?

T A A S A A
We definew = Wila, T Waa,, andqg = D0, T Bjos,
in Q2. By constructionw, ) € V12 x L?(12) and they
satisfy the problem

7d1VT( (j) =0 in D)
divw =0 in Q1o
w=0 on['yuTIy
w=0 onl'pNaois
T(VNV,q) n=0 onl'y NoNs
whose solution is identically null. Thusy? = —w? and
q% = quA in Q12 and we can define
wi inQ;\ Q15
W = W% = 7W2A in D)
wo in Qs \ Q15

Applying a similar argument to the state equatids8) (

with f = 0 and definingw = wro o —wa andg =

112 2[5
q%\ﬂn — qglﬂu in Q15, we can prove that both these func-
tions are null and we can conclude that= 0,7 =1, 2.

If f # 0, fori = 1,2andj = 3 — i, letwf, ¢f bethe
solution of the problem

—divT(wl,¢f) =0 inQ

divw =0 in¢Q;
Wf—uof u?’f onl’;
wf =0 onT%,
T(szaqu)'n:o OnF?Va

u?’f being the solutions o588 with A; = 0. Then, we can
write (60) as

(AD)'<X(A)aI~L>AD = —(ADY <.Af,u> Vi € AD,

where
Ap : AP — (APY

(ary (Af, p)ar = ((uf = ud®) + whp, dr

Iy
+/( (u’ -
T2

udf) + whp, dr.

The thesis follows from the same arguments used befbre.

Since the spac&?’ of discrete Dirichlet controls is a sub-
set of A”, Lemma.], Theorens.d and Propositiofs.]
hold in the discrete case too and we can conclude that the
minimization problemI8)—-(17), or, equivalently, the opti-
mality system[I8—(20), has a unique solution.

The minimum of the cost functional; is zero thanks to
Propositiori2.1

Thereal valuénfy, cop J:(Ar) attained at convergence,
and reported in the second column of the Talfllesdll] is
aboute?, e = 1079 being the tolerance in the stopping cri-
terium of Bi-CGStab iterations. We notice that reducing
the tolerance, infy, cap J:(An) reduces too. The errors
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between the discrete statés; ;,, p; ) and the exact ones  Equations[§3), (64) define an optimal control problem

(u4, p;) vanish forh — 0 and increasing, accordingto the where both the control functions and the observations are

theoretical convergence rate lgf—finite element approxi- of boundary (interface) type.

mation. As for Dirichlet case, thanks to the linearity of the prob-
lem, we can equivalently express the cost functional as

5.2. Analysisof theoptimal control problem with Neumann ~ 13 N
controls Jr(A) = 52 [||T ut,ptt) - n — T(u)?, po?) -
Fori =1,2, let +(T (U-1 apl ) T(u% fvp202 -1,
T( uy’ 7p1 ) —T(uy",py") - m)sy
AY = [H™V2(1) (62) 0.f
5T ) n - T(dT 2 m. ]
denote the spaces afimissible Neumann contraésmd we (68)
set Let us denote
AN =AY x AY. (63) 2
A A
| T Ay = Y [T e n = T p3) - nll
Fori = 1,2, we consider two unknown control functions i=1

X; € AY and the state problems _
Lemma5.2 If 9Q,2NT'p # 0, then|||Al|| x defines a norm

—divT(u}f pMf) = f in Q; on the space\ .
diva}® =0 ing, 64 .
T(ur* Wu)z — X\ onT. (64) Proof. We proceed as done for Dirichlet controls:
Wi P o ! [[|A]||~ is always a semi-norm oA”, we only have to
with suitable homogeneous boundary conditions¥en \  PrOv€ that, if[[[Allly = 0, then)\ =0 ObV'OUSW’
T';. The unknown controls on the interface are obtained byl|Alllx = 0implies thatT(uy”, p*)-n = T(u)?, p3*)-n
solving the minimization problem a. e onl“l U I's. In view of Propositiorf2.2, starting from

(u},p}) we define the paifT,p) as in B3, G4), that
satisfies a Stokes problem §hwith null force and homo-

~ 1
inf_ [Jf(g) = 5Z||T(ui‘1’f,pi‘“f) ‘n geneous boundary conditions. This problem is well-posed
/\:A(Eﬁ,/\z) i=1 (65) and, in particulam = 0 andp = 0 a.e. inQ. This implies
- Aof Aolf 2 thatT(u,p) -n =0o0onT; Uy and, fori = 1,2, A\; = 0
_T( » Do ) nHH*1/2(F%) : in AND

Denoting by— Ar, the Laplace-Beltrami operator dn, We cannot guarantee thAf" is complete with respect to
for anyw, 6 ¢ H-1/2(T,) we define the following inner tAhJev norm|||A||| v, but we can construct its completion, say
product (see, e.gl, [12]): A, with respect to such norm. For the sake of notation, in

the following we will still denote the completion o by

(wv(b)H*l/?(Fi) _ /F (*Ari)_l/%/) odl (66) the same symbol.

Z Theorem 5.2 Consider the minimization problem
and the related noriw)|| ;y—1/2r,) = (1/1,1/1)}!31/2@
The fractional Laplace-Beltrami operat¢r Ar, )~ /2 /\g}fo Tr(Q). (69)
can be defined through a Neumann to Dirichlet map defined
from H=1/2(T;) to H'/?(T;) (see, e.g./{3]). Precisely, for If 90, N Tp # 0, problem(Y has a unique solution

any¢ € H~'/2(T';) we solve the problem satisfying
—AU+U: 0 in Ql (AN)’<Jf(A) >AN =
a 1 1; 2, 27
8-2:0 ond; \ T (67) S (T p) on = T, p3*f) -,
ou T, pf") - n—T(ud? p4?) -n).;, =0
R — T 1 /M1 2 112 *,7
gor ¢ onh (70)

forall p e AV,
and we sef—Ar,)"'/2¢ = ulr,. lad
Fromnowon, let-, ). ; and||-|..; replace(-, -) y—1/2(r,) Proof. The proof follows the same guidelines of the proof
and|| - || ;7-1/2(r,), respectively. of TheorenB.1 O
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In view of (€6), the Euler-Lagrange equatio@) be-  are L? functions, being 7 ~'/2(I;)]¢ their natural space,

comes: while the discrete fluxes are more regular and belong to
) [L%(T;)], as we have shown in SectiBiB.4
A V12 (ot it Since the spaceAhN of discrete Neumann controls is a
Z (_ Fi) (ui » Dy ) n N S
= Jr subset ofA”", we can conclude that also the minimization
7T(uj>.\j,f7p;\j,f) ~n)- (71)  problem
(T gty 0 =T, p) n)dr = 0 e 1 (79)

A, =(A1,nA2,n)
forall p € AV andj = 3 —i. . . -
Solving equationi{]) is equivalent to solving the follow- has a unique solution (thanks to Le_m and Theqrem
ing optimality system: find — (A1, A2) € A~ and, for and it can be compgt_ed by solving the optimality sys-

i = 1.2, (i) € Vi X Quy (Wig,) € Vi x Q such €M T4 (by Propositiotb.d).

that Following the same guidelines of LemiBa&d and Theo-
rem5.2we can prove that also the minimization problem
—divT(u;,p;) = f in® (23 has a unique solution. . _
dive = 0 inQ. At the discrete level thga s_olutlons computed by solving
¢ ¢ (72) (29 and [9) could not coincide. Nevertheless, the results
T(ui,pi) -m = A onl; of TablesVI] andiV/Tll show thatinfy, c o~ J;(An) ~ €2,
T(uw;p;)-n = 0 only wheree = 1079 is the tolerance used in the stopping test
of Bi-CGStab iterations. Moreover, as for Dirichlet con-
) . trols, the errors between the discrete states,, p; ) and
_dWT(Wf" u) =0 n §; the exact onegu;, p;) vanish forh — 0 aﬁd i'ncreragin@,
divw; = 0 in €2 according to the theoretical convergence ratéof finite
T(w;,qi) -n = (—1)”1(T(ui,pi) ‘n element approximation.
Solving [29) instead of[{5) is obviously more attractive
~T(uy,p;) - n) onT since no additional Laplace-Beltrami problems [il@&7)(
T(wi,¢;)) - n = 0 onT%, have to be solved at each Bi-CGStab iteration to update the
(73)  numerical solution.
and, for all(p,, py) € A, For what concerns the minimization probleri@§)(and

33 with mixed controls, we can apply the analysis devel-
oped for both Dirichlet and Neumann controls and draw the
same conclusions reached above for the cost functignal

i/pi(_AFi)l/Q (T(ui,pi) -n—T(uj,p;)-n

+T(wj,q5) -n) pdl =0

(74)

6. CONCLUSIONS
forj =3 —i.

We have studied the ICDD method for the mathematical
formulation and the numerical solution of the Stokes prob-
lem. This method rests on the reformulation of the original
boundary value problem as an optimal control problem in-

Prot Lt b th soluon o, ThrerZguaran-  1ON0Cortelvariabes hal epreser e e of e ve
tees that such solution exists and is unique. Then, it is als y

« Soluton G733, Indesd, e solien satgfey 1o, Sho hl choosig conl v of e
which implies tha (u}*f, p™f).n = T(w)* ", p32f)m P P

on, . e conscquencehe soue, ) of Y531 e dependert o e ezt paraclr
are identically null andqd) is satisfied. pping region.

To prove that this solution is unique, we proceed as in theextensmns of this work could consider the case of decom-

roof of Propositio by exploiting linearity, continuit positipn Wit_h more than two subdomains and heterogeneous
gnd coercivi['?y of th'E:Llap?/aceF-)Beltrgmi opergtor (SIEB)X.y couplings like, .g., the Stokes/Darcy problem (5ée [6]).

O
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