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1. INTRODUCTION

The Interface Control Domain Decomposition (ICDD)
method was introduced in [4, 5] as a solution strategy for
boundary value problems governed by elliptic partial dif-
ferential equations. In this paper we extend this methodol-
ogy to the Stokes equations and we study its effectiveness
in computing the solution of this linear model for laminar
incompressible flows.

The ICDD method, which shares some similarities with
the classic overlapping Schwarz method [17–19] and with
the Least Square Conjugate Gradient [10] and the Virtual
Control [13] methods, is characterized by a decomposition
of the original domain into overlapping regions and by the
introduction of new auxiliary variables on the subdomain
interfaces. In the case of the Stokes problem, these vari-
ables may represent either the trace of the fluid velocity or
the normal stress across the interfaces. In either case, they
play the role of control variables that can be determined
as solution of an optimal control problem that imposes the
minimization of a suitably defined cost functional involving
the solutions of well-posed local subproblem.

The ICDD method can thus be regarded as a novel do-
main decomposition method whose interest lies in the fact
that, at least in the case of two subdomains, it may show
convergence rates independent of the computational grid,
of the polynomial degree used for the numerical approxima-
tion and, for a particular choice of the cost functional, also
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independence on the size of the overlapping. The choice
of the cost functional is crucial to ensure the uniqueness of
the solution on the overlapping area. In particular, we show
that, for the Stokes problem, the cost functionals must ac-
count for both the velocity and the pressure across the in-
terfaces to ensure the matching of these two variables in the
overlapping regions.

What makes the ICDD method even more attractive is
also its capability of handling differential problems of het-
erogeneous type, i.e., governed by different type of equa-
tions in different subregions of the computational domain.
Some examples of such application of the method were pro-
vided in [4, 5] in the case of advection/advection-diffusion
problems. Another interesting problem with many signifi-
cant applications is the coupling of Stokes and Darcy equa-
tion to model filtration processes (see [3, 4, 6, 14]).

The outline of the paper is as follows. In section2 we
write the Stokes problem in a bounded domain and we re-
formulate it in equivalent ways after splitting the original
domain into two overlapping regions. In section3, after in-
troducing a discretization of the problem using hp finite el-
ements, we present the ICDD method considering the cases
of Dirichlet, Neumann and mixed control variables. In each
case we write the corresponding optimality system with its
algebraic counterpart. In section4 we present several nu-
merical results aimed at studying the convergence behavior
of the proposed ICDD methods with respect to the grid size,
the polynomial degree, and the size of the overlapping re-
gion. Finally, section5 is devoted to the theoretical analysis
of the different methods.
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2. PROBLEM SETTING

Let Ω ⊂ Rd (d = 2, 3) be an open bounded domain with
Lipschitz boundary∂Ω. We assume that∂Ω = ΓD ∪ ΓN

with ΓD ∩ ΓN = ∅ and thatΓD 6= ∅ while ΓN might be
empty. We consider the Stokes problem:

ProblemPΩ:

−divT(u, p) = f in Ω
divu = 0 in Ω

u = φD onΓD

T(u, p) · n = φN onΓN

(1)

describing the motion of a steady, viscous, incompressible
fluid confined in the regionΩ. Here,T(u, p) = 2ν∇su−pI
is the Cauchy stress tensor being∇su = 1

2 (∇u+ (∇u)T ),
ν > 0 is the fluid viscosity,u its velocity andp its pres-
sure andn is the unit normal vector to∂Ω directed out-
wards the domainΩ. We assume thatf ∈ [L2(Ω)]d,
φD ∈ [H1/2(ΓD)]d andφN ∈ [H−1/2(ΓN )]d are assigned
functions. If∂Ω ≡ ΓD (i.e., ΓN = ∅), the compatibility
condition

∫

∂Ω
φD · n = 0 must hold, and a further condi-

tion onp, e.g.,
∫

Ω

p = 0

must be enforced to guarantee the well-posedness of prob-
lem (1).

The weak form of problem (1) is: find u ∈ [H1(Ω)]d,
u = φD on ΓD, andp ∈ L2(Ω) such that, for allv ∈
[H1(Ω)]d, v = 0 onΓD, q ∈ L2(Ω),

a(u,v) + b(p,v) =

∫

Ω

f · v +

∫

ΓN

φN · v

b(q,u) = 0,

where

a(u,v) =

∫

Ω

ν(∇u+ (∇u)T ) : ∇v (2)

and

b(q,v) = −

∫

Ω

q div v. (3)

For simplicity of exposition, in the rest of the paper we will
often use the strong form of the Stokes problem, but it must
be understood that the analysis is carried out in the weak
setting.

We consider an overlapping decomposition of the domain
Ω in two subdomainsΩ1 andΩ2: Ω = Ω1 ∪ Ω2. We denote
the overlapping region byΩ12 = Ω1∩Ω2 and letΓi = ∂Ωi\
∂Ω. Moreover, letΓi

D = ΓD ∩ ∂Ωi andΓi
N = ΓN ∩ ∂Ωi

(see figure1).
We reformulate the Stokes problem (1) on the split do-

main in the following possible ways.

Ω

Γ1

Γ2

Ω1

Ω2

Ω12

n
n

FIG. 1: Representation of the computational domainΩ and of its
overlapping splitting.

ProblemPΓ,t:

−divT(ui, pi) = f in Ωi, i = 1, 2,
divui = 0 in Ωi, i = 1, 2,

ui = φD onΓi
D, i = 1, 2,

T(ui, pi) · n = φN onΓi
N , i = 1, 2,

u1 = u2 onΓ1 ∪ Γ2.

(4)

In caseΓi
N = ∅ for somei, we would supplement (4) with

the condition
∫

Ωi

pi = 0

to ensure the well-posedness of the corresponding local
problem.

ProblemPΓ,f :

−divT(ui, pi) = f in Ωi, i = 1, 2,
divui = 0 in Ωi, i = 1, 2,

ui = φD onΓi
D, i = 1, 2,

T(ui, pi) · n = φN onΓi
N , i = 1, 2,

T(u1, p1) · n = T(u2, p2) · n onΓ1 ∪ Γ2.
(5)

Condition (5)5 on Γ1 should be understood as follows.
The normal vectorn on Γ1 is directed outward ofΩ1 and
the normal component of the tensorT(u2, p2) is computed
upon restricting it toΩ12. On the other hand, onΓ2 the
normal vectorn is directed outward ofΩ2 and the normal
component of the tensorT(u1, p1) is taken upon restricting
it to Ω12.

Moreover, we consider the problem:
ProblemPΓ,tf :

−divT(ui, pi) = f in Ωi, i = 1, 2,
divui = 0 in Ωi, i = 1, 2,

ui = φD onΓi
D, i = 1, 2,

T(ui, pi) · n = φN onΓi
N , i = 1, 2,

u1 = u2 onΓ1,
T(u1, p1) · n = T(u2, p2) · n onΓ2.

(6)
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If Γ1
N = ∅, we should impose

∫

Ω1

p1 = 0

to guarantee the well-posedness of the Stokes problem in
Ω1.

Let us introduce the following spaces

V = [H1(Ω)]d, V i = [H1(Ωi)]
d, i = 1, 2

Q = L2(Ω), Q0 = {q ∈ Q :
∫

Ω q = 0}
Qi = L2(Ωi), Qi,0 = {q ∈ Qi :

∫

Ωi
q = 0} i = 1, 2

(7)
and the following affine manifolds

V φD = {v ∈ [H1(Ω)]d : v = φD onΓD}
V i,φD = {v ∈ [H1(Ωi)]

d : v = φD onΓi
D}, i = 1, 2.

(8)
Finally, we set

V i,0 = {v ∈ [H1(Ωi)]
d : v = 0 onΓi

D}, i = 1, 2.
(9)

To prove that the Stokes problem (1) is equivalent to ei-
ther (4), or (5), or (6), we will denotew = u1|Ω12

− u2|Ω12

andq = p1|Ω12
− p2|Ω12

the difference inΩ12 between the
local solutions. Note that(w, q) satisfies the Stokes equa-
tions:

−divT(w, q) = 0 in Ω12

divw = 0 in Ω12.
(10)

The boundary conditions fulfilled byw andq on ∂Ω12, as
well as the spaces to which these functions belong will be
specified case by case.

Assumption 2.1 We suppose that one of the following as-
sumptions is verified:ΓN = ∅; ΓN 6= ∅ andΓN ∩ ∂Ω12 6=
∅; ΓN ∩ ∂Ω12 = ∅ with ΓN 6= ∅ connected.

Proposition 2.1 (Equivalence between PΩ and PΓ,t) The
Stokes problemsPΩ andPΓ,t are equivalent if Assumption
2.1 holds. Equivalence holds in the sense that if(u, p)
and (ui, pi) (i = 1, 2) are the unique solutions ofPΩ and
PΓ,t, respectively, there exist two uniquely determined
constantsC1, C2 ∈ R, possibly null, such that, fori = 1, 2,
u|Ωi

= ui andp|Ωi
= pi + Ci.

Proof. We treat the different cases separately.

1. Assume first thatΓN ∩∂Ω12 6= ∅. Then, problem (1)
is well-posed in(u, p) ∈ V φD × Q and the restric-
tions of its solution toΩi satisfy (4) by construction.

Viceversa, fori = 1, 2, let (ui, pi) ∈ V i,φD × Qi

(i = 1, 2) be the solutions of the well-posed local
problems

−divT(ui, pi) = f in Ωi

divui = 0 in Ωi

ui = φD onΓi
D

T(ui, pi) · n = φN onΓi
N

ui = uj onΓi, j = 3− i.

By construction, the functionsw andq satisfy prob-
lem (10) with boundary conditions

T(w, q) · n = 0 on∂Ω12 ∩ ΓN

w = 0 on∂Ω12 \ ΓN .

This problem is well-posed and admits the unique so-
lutionw = 0 andq = 0, henceu1 = u2 andp1 = p2
in Ω12. Thus, we can set

u =







u1 in Ω1 \Ω12

u1 = u2 in Ω12

u2 in Ω2 \Ω12,
(11)

and

p =







p1 in Ω1 \ Ω12

p1 = p2 in Ω12

p2 in Ω2 \ Ω12.
(12)

By construction, functionsu andp belong toV φD ×
Q and they satisfy problem (1). In this caseC1 =
C2 = 0.

2. Let nowΓN ∩ ∂Ω12 = ∅ and assume thatΓN is con-
nected. In this case, eitherΓ1

N = ∅ or Γ2
N = ∅.

We consider the latter case; the former can be treated
analogously.

If (u, p) ∈ V φD ×Q is the solution ofPΩ, if we set
ui = u|Ωi

(i = 1, 2), p1 = p|Ω1
,

p2 = p|Ω2
−

1

|Ω2|

∫

Ω2

p|Ω2
,

we can immediately verify that(ui, pi) ∈ V i,φD×Qi

(i = 1, 2) are solutions ofPΓ,t with
∫

Ω2

p2 = 0.

Thus,C1 = 0 andC2 = − 1
|Ω2|

∫

Ω2

p|Ω2
.

Viceversa, let(u1, p1) ∈ V 1,φD × Q1, (u2, p2) ∈
V 2,φD ×Q2,0 be the solutions ofPΓ,t. The functions
(w, q) satisfy (10) with w = 0 on∂Ω12. Then,w =
0 andq = const in Ω12. The functionq is uniquely
determined by

∫

Ω12

q =
∫

Ω12

(p1−p2) which implies

q =
1

|Ω12|

∫

Ω12

(p1 − p2).

If we takeu as in (11) and

p =







p1 in Ω1 \ Ω12

p1 = p2 + q in Ω12

p2 + q in Ω2 \ Ω12,

then (u, p) satisfy PΩ and the thesis follows with
C1 = 0 andC2 = q.

3. Let (u, p) ∈ V φD ×Q0 be the solution ofPΩ. Then,
for i = 1, 2, the functions

ui = u|Ωi
, pi = p|Ωi

−
1

|Ωi|

∫

Ωi

p|Ωi
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belong toV i,φD ×Qi,0 and they satisfyPΓ,t. Thus,
C1 = 0 andC2 = − 1

|Ωi|

∫

Ωi
p|Ωi

.

Viceversa, let(ui, pi) ∈ V i,φD × Qi,0 be solutions
of PΓ,t. Then, the functionsw andq satisfy (10) with
boundary conditionw = 0 on∂Ω12. Then,w = 0 in
Ω12 andq = const in Ω12. The constantq is uniquely
determined by

∫

Ω12

q =

∫

Ω12

(p1 − p2)

that is

q =
1

|Ω12|

∫

Ω12

(p1 − p2).

If we define the constants

C1 =
1

|Ω|

(∫

Ω12

p2 − |Ω \ Ω1|q

)

and

C2 =
1

|Ω|

(∫

Ω12

p2 + |Ω1|q

)

,

sinceC2 −C1 = q, thenp1 +C1 = p2 +C2 in Ω12.
Thus, we can easily verify that the functionsu andp
defined respectively as in (11) and as

p =







p1 + C1 in Ω1 \ Ω12

p1 + C1 = p2 + C2 in Ω12

p2 + C2 in Ω2 \ Ω12

(13)

are solutions ofPΩ with
∫

Ω p = 0.

Remark 2.1 If ∂Ω12 ∩ ΓN = ∅ andΓi
N 6= ∅ (i = 1, 2),

problemsPΩ andPΓ,t are not equivalent.
In fact, if (ui, pi) are the solutions ofPΓt , the functions

w and q satisfy(10) with boundary conditionw = 0 on
∂Ω12. Then,w = 0 andq = const in Ω12 with q uniquely
given by

q =
1

|Ω12|

∫

Ω12

(p1 − p2).

Then, proceeding similarly to the third case of the proof
of Proposition2.1, there exist two unique constantsC1, C2

with q = C2 − C1 so that we can defineu andp as in(11)
and (13), respectively. The Neumann boundary conditions
in PΓ,t imply

T(ui, pi) · n = φN onΓi
N

and, by definition ofu andp, we have

T(u, p) · n = φN + Cin onΓi
N .

Thus,(u, p) satisfy problemPΩ if and only ifC1 = C2 = 0,
but we cannot guarantee that this condition is fulfilled.

Proposition 2.2 (Equivalence between PΩ and PΓ,f ) If
∂Ω12 ∩ ΓD 6= ∅, the Stokes problemsPΩ and PΓ,f are
equivalent in the sense that there exist unique constants
C1, C2 ∈ R such thatu|Ωi

= ui andp|Ωi
= pi+Ci, (u, p)

and (ui, pi) (i = 1, 2) being, respectively, the unique
solutions ofPΩ andPΓ,f .

Proof. The proof goes along the same arguments used for
Proposition2.1 so that we only define the constants in the
casesΓN 6= ∅ or ΓN = ∅.

In the first case it is straightforward to see thattheequiv-
alence holds withC1 = C2 = 0. On the other hand, if
ΓN = ∅, the functionsw andq satisfy the problem (10)
with boundary conditions

w = 0 on∂Ω12 ∩ ∂Ω
T(w, q) · n = 0 onΓ1 ∪ Γ2.

This problem is well-posed and its solution isw = 0 and
q = 0. Thus,u1 = u2 andp1 = p2 in Ω12 and we can
define velocityu and a pressurẽp analogously to (11) and
(12). However, the functioñp would belong toQ but not to
Q0, so that we define

C1 = C2 = −
1

|Ω|

∫

Ω

p̃

andp = p̃+ C1 to recover the null average.

Remark 2.2 ProblemsPΓ andPΓ,f are not equivalent if
∂Ω12 ∩ ΓD = ∅. In fact, in this case problem(10) in
Ω12 would be supplemented with the boundary condition
T(w, q) · n = 0 on ∂Ω12 which has infinite non-trivial
solutions that may differ one from another not only by a
constant.

Proposition 2.3 (Equivalence between PΩ and PΓ,tf )
The Stokes problemsPΩ andPΓ,tf are equivalent if either
ΓN = ∅, or ΓN ∩ ∂Ω12 6= ∅, or ΓN ∩ ∂Ω12 = ∅ and
Γ1
N 6= ∅. Equivalence holds in the sense that if(u, p)

and(ui, pi) (i = 1, 2) are the unique solutions ofPΩ and
PΓ,t, respectively, there exist two uniquely determined
constantsC1, C2 ∈ R, possibly null, such that, fori = 1, 2,
u|Ωi

= ui andp|Ωi
= pi + Ci.

Proof. The proof develops along the lines of the previ-
ous propositions. Let us only point out thattheequivalence
holds withC1 = C2 = 0 if ΓN 6= ∅. Otherwise, ifΓN = ∅,
if (u, p) ∈ V φD×Q0 is the solution ofPΩ, thenui = u|Ωi

,
p2 = p|Ω2

and

p1 = p|Ω1
−

1

|Ω1|

∫

Ω1

p|Ω1

are the solutions ofPΓ,tf .
Viceversa, if(u1, p1) ∈ V 1,φD × Q1,0 and(u2, p2) ∈

V 2,φD ×Q2 are the solutions ofPΓ,tf , then we need to set

C1 = C2 = −
1

|Ω|

∫

Ω2\Ω12

p2.
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Remark 2.3 ProblemsPΓ andPΓ,tf are not equivalent if
∂Ω12 ∩ ΓN = ∅, Γ1

N = ∅, and Γ2
N 6= ∅. In fact, if

(u1, p1) ∈ V 1,φD × Q1,0 and (u2, p2) ∈ V 2,φD × Q2

are the solutions ofPΓ,tf , then(w, q) satisfy problem(10)
in Ω12 with boundary conditionT(w, q) ·n = 0 onΓ2 and
w = 0 on ∂Ω12 \ Γ2. The solution of this problem inΩ12

is identically null. However, since
∫

Ω12

q =
∫

Ω12

(p1 − p2)
with p1 ∈ Q1,0 and p2 uniquely determined by the Neu-
mann boundary condition onΓ2

N , we cannot guarantee that
q = 0.

Notice that a result similar to Proposition2.3 could be
obtained by switching the role of the interface conditions
(6)5 and (6)6, i.e., considering

ProblemPΓ,ft:

−divT(ui, pi) = f in Ωi, i = 1, 2,
divui = 0 in Ωi, i = 1, 2,

ui = φD onΓi
D, i = 1, 2,

T(ui, pi) · n = φN onΓi
N , i = 1, 2,

T(u1, p1) · n = T(u2, p2) · n onΓ1

u1 = u2 onΓ2.
(14)

3. FORMULATION OF THE ICDD METHOD FOR THE
STOKES PROBLEM

For the sake of simplicity we will considerhomogeneous
boundary conditions, i.e., we will setφD = 0 on ΓD and
φN = 0 on ΓN . Moreover, since we will be interested in
computing a finite dimensional approximation of the solu-
tion of the Stokes problem, we introduce the ICDD method
directly at the discrete level.

3.1. hp-FEM discretization

We introduce two regular computational gridsT1 and
T2 in Ω1 andΩ2 made by either simplices or quadrilater-
als/hexahedra. We suppose that each elementT ∈ Ti is
obtained by aC1 diffeomorphismFT of the reference el-
ementT̂ and we suppose that two adjacent elements ofTi
share either a common vertex or a complete edge or a com-
plete face (whend = 3). Moreover, we assume that they
coincide inΩ12 and that both interfacesΓ1 andΓ2 do not
cross any element ofΩ1 or Ω2. We discretize both primal
and dual problems in each subdomain byhp finite element
methods (hp-FEM). Because of the difficulty to compute
integrals exactly for largep, typically when quadrilaterals
are used, Legendre-Gauss-Lobatto quadrature formulas are
employed to approximate the bilinear formsa|Ωi

andb|Ωi

(see (2)-(3)) as well as theL2-inner products inΩi and on
the interfaces. This leads to the so calledGalerkin approach
with Numerical Integration(G-NI) [1, 2] and to the Spectral
Element Method with Numerical Integration (SEM-NI). In

particular, we consider either inf-sup stable finite dimen-
sional spaces or stabilized couples of spaces of the same
degree (see [7, 8, 11, 15]) to approximate the velocity and
the pressure and we assume that the polynomials used for
the pressure are continuous (see, e.g., [9, 16]). More pre-
cisely, given an integerp ≥ 1, let Pp be the space of poly-
nomials whose global degree is less than or equal top in
the variablesx1, . . . , xd andQp be the space of polynomi-
als that are of degree less than or equal top with respect to
each variablex1, . . . , xd. The spacePp is associated with
simplicial partitions, whileQp to quadrilateral ones. We
introduce the finite dimensional space onΩi defined by

Xp
i,h = {v ∈ C0(Ωi) : v|T ∈ Pp, ∀T ∈ Ti}

in the simplicial case, and by

Xp
i,h = {v ∈ C0(Ωi) : v|T ◦ FT ∈ Qp, ∀T ∈ Ti}

for quadrilaterals. Then, the finite dimensional spaces for
velocity and pressure are, respectively,

V i,h = [Xp
i,h]

d ∩ V i,0, Qi,h = Xr
i,h (15)

for suitable polynomial degreesp andr.

3.2. ICDD method with Dirichlet controls

Assume, for simplicity, that∂Ω12∩ΓN 6= ∅ andΓD 6= ∅.
(We will discuss this issue more in detail in section5.) We
define the space of discrete Dirichlet controls as

ΛD
i,h = {λi,h ∈ C0(Γi) : ∃vi,h ∈ V i,h with λi,h = vi,h|Γi

}.

and let

ΛD
h = ΛD

1,h ×ΛD
2,h.

For i = 1, 2, we consider two control functionsλi,h ∈

ΛD
i,h and the state problems: find(ui,h, pi,h) ∈ V i,h×Qi,h

such that, for all(vi,h, qi,h) ∈ V i,h ×Qi, vi,h = 0 onΓi,

ai(ui,h,vi,h) + bi(pi,h,vi,h) =
∫

Ωi
f · vi,h

bi(qi,h,ui,h) = 0
ui,h = λi,h onΓi

(16)

whereai andbi denote the restriction of the bilinear forms
(2) and (3) to Ωi. In fact,(ui,h, pi,h) depends on bothλi,h

andf , however such dependence will be understood for the
sake of notation.

The unknown controls on the interface are obtained by
solving a minimization problem for a cost functional suit-
ably depending on the difference betweenu1,h andu2,h on
the interfacesΓ1 andΓ2. More precisely, inspired by (4)5,
we look for

inf
λh=(λ1,h,λ2,h)

[

Jt(λh) :=
1

2

2
∑

i=1

‖u1,h − u2,h‖
2
L2(Γi)

]

.

(17)
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To the minimization problem (17) we can associate the
following optimality system: findλh = (λ1,h,λ2,h) ∈ ΛD

h

and, fori = 1, 2, (ui,h, pi,h) ∈ V i,h ×Qi,h, (wi,h, qi,h) ∈
V i,h × Qi,h such that, for all(vi,h, ψi,h) ∈ V i,h × Qi,h

with vi,h = 0 onΓi,

ai(ui,h,vi,h) + bi(pi,h,vi,h) =
∫

Ωi
f · vi,h

bi(ψi,h,ui,h) = 0
ui,h = λi,h onΓi

(18)

ai(wi,h,vi,h) + bi(qi,h,vi,h) = 0
bi(ψi,h,wi,h) = 0
wi,h = (−1)i+1(u1,h − u2,h) onΓi,

(19)

and, for all(µ1,h,µ2,h) ∈ ΛD
h ,

∫

Γ1

((u1,h − u2,h) +w2,h)µ1,h dΓ+
∫

Γ2

(−(u1,h − u2,h) +w1,h)µ2,h dΓ = 0.
(20)

3.3. Algebraic formulation of ICDD with Dirichlet controls

To the Stokes problem in subdomainΩi (i = 1, 2) we can
associate the matrix

Si =

(

Ai BT
i

Bi 0

)

whereAi corresponds to the finite dimensional approxi-
mation of the bilinear forma|Ωi

(see (2)), while Bi cor-
responds to the discretization ofb|Ωi

(see (3)). When stabi-
lization is used, the matricesSi take the form

Si =

(

Ai BT
i

Bi 0

)

+

(

Ãi B̃T
i

B̃i C̃i

)

whereÃi, B̃i andC̃i are assembled locally, element by el-
ement, and they take into account the integration of the dif-
ferential Stokes operator.

In the following we will denote by the indexIi the de-
grees of freedom for the velocity and the pressure belong-
ing toΩi \Γi, while the indexΓi will refer to the degrees of
freedom on the interfaceΓi. For the sake of exposition, we
will reorder the nodes inΩi putting those associated with
Ωi \ Γi first followed by those on the interfaces. Corre-
spondingly, with obvious choice of notation, we can rewrite
the Stokes matrixSi as

Si =









AIiIi BT
IiIi

AIiΓi BT
IiΓi

BIiIi 0 BIiΓi 0

AΓiIi BT
ΓiIi

AΓiΓi BT
ΓiΓi

BΓiIi 0 BΓiΓi 0









=

(

SIiIi SIiΓi

SΓiIi SΓiΓi

)

.

Moreover, we will indicate byMΓi the mass matrix on the
interfaceΓi.

Finally, in the rest of the section, we will denote byFi the
right-hand side for the state problems inΩi, while Ui and
Wi will be the vectors of unknown velocity and pressure in
Ωi for the state and the adjoint problems, respectively.λΓi

is the vector of the unknown Dirichlet controls onΓi:

λΓi =
(

(λΓi)1, . . . , (λΓi)NΓi

)

,

(λΓi)j = λi,h(xj), j ∈ Gi,

whereGi is the set of theNΓi indices corresponding to the
velocity degrees of freedom on the interfaceΓi andxj is a
node onΓi ((λΓi)j is the nodal value of the discrete control
functionλi,h at the nodexj).

We consider now the optimality system associated with
the functionalJt with Dirichlet controls that we introduced
in section5 5.1 5.1.1. If Rij denotes the algebraic restric-
tion operator of the velocity unknowns inΩj to the inter-
faceΓi (i, j = 1, 2), the algebraic counterpart of (18)-(20)
reads:

Styt = bt (21)

where yt = (UI1 ,UI2 ,WI1 ,WI2 ,λΓ1
,λΓ2

)T , bt =
(F1,F2,0,0,0,0)

T and the matrixSt is defined as



















SI1I1 0 0 0 SI1Γ1
0

0 SI2I2 0 0 0 SI2Γ2

0 −SI1Γ1
R12 SI1I1 0 SI1Γ1

0

−SI2Γ2
R21 0 0 SI2I2 0 SI2Γ2

0 −MΓ1
R12 0 MΓ1

R12 MΓ1
0

−MΓ2
R21 0 MΓ2

R21 0 0 MΓ2



















For the numerical solution of the linear systems (21), we
compute the Schur complement system with respect to the
control variables(λΓ1

,λΓ2
) and solve them through an it-

erative method like, e.g., Bi-CGstab ([20]).
The Schur complement system reads

Σt

(

λΓ1

λΓ2

)

= χt (22)

where

Σt =

(

MΓ1
(IΓ1

− (R12S
−1
I1I1

SI1Γ1
)2)

MΓ2
(IΓ2

− (R21S
−1
I2I2

SI2Γ2
)2)

)

and

χt =

(

MΓ1
R12(IΓ1

− S−1
I1I1

SI1Γ1
R12)S

−1
I1I1

F1

MΓ2
R21(IΓ2

− S−1
I2I2

SI2Γ2
R21)S

−1
I2I2

F2

)

IΓi is the identity matrix on the interfaceΓi.
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3.4. ICDD method with Neumann and mixed controls

Let ΛN
i,h denote the space of discrete Neumann controls

onΓi. We require thatΛN
i,h ⊂ L2(Γi).

For i = 1, 2, given the control functionsλi,h ∈ ΛN
i,h,

considerthe discretestate problems: find(ui,h, pi,h) ∈
Vi,h ×Qi,h, such that, for all(vi,h, qi,h) ∈ Vi,h ×Qi,h,

ai(ui,h,vi,h) + bi(pi,h,vi,h) =
∫

Γi
λi,h · vi,h

+
∫

Ωi
f · vi,h

bi(qi,h,ui,h) = 0.

(23)

Let Tk ⊂ Ωi be a generic element inΩi; we introduce
the setEi = {k : meas(∂Tk ∩ Γi) > 0} and, for any
k ∈ Ei, the edgeseik = ∂Tk ∩ Γi. Thanks to the definition
of [Xp

i,h]
d, for anyvi,h ∈ [Xp

i,h]
d andqi,h ∈ Xr

i,h, it holds

vi,h|Tk
∈ [C1(T k)]

d andqi,h|Tk
∈ C0(T k), and then we

define thediscrete normal stress

Φ̂i,i,h = T (ui,h, pi,h) · n onΓi.

This definition makes sense in classic way on eacheik ⊂
Γi, so thatΦ̂i,i,h ∈ [L2(Γi)]

d.
We are interested in evaluating the discrete normal stress

associated with(ui,h, pi,h) also on the interfaceΓj (j =
3− i), which is internal toΩi.

With this aim we first restrict(ui,h, pi,h) toΩ12 and then
extend it toΩj in such a way that such extension(ũi,h, p̃i,h)
belongs toVj,h ×Qj,h. Then we define

Φ̂i,j,h = T (ũi,h, p̃i,h) · n onΓj

and it holdsΦ̂i,j,h ∈ [L2(Γj)]
d

Following (5)5, the discrete Neumann controlsλi,h on
the interfaceΓi are obtained as solution of the following
minimization problem

inf
λ1,h,λ2,h

[

Jf (λ1,h,λ2,h) =
1

2

2
∑

i=1

‖Φ̂1,i,h−Φ̂2,i,h‖
2
L2(Γi)

]

.

(24)
In practice, the discrete normal stresses on the interfaces

Γi are obtained as residuals of the first equation in (23), as
we are going to show.

Let Iu
i andIp

i be the sets of indices of the nodes of the
meshes inΩi for the velocity and the pressure, respectively.
Moreover, letGu

i ⊂ Iu
i be the subsets of indices of the

nodes lying onΓi. We consider matching meshes on the
overlapΩ12. In [Xp

i,h]
d we take the basisBu

i of the charac-
teristic Lagrange polynomialsϕi,ℓ with ℓ ∈ Iu

i . Similarly,
in Qi,h we consider the basisBp

i of the characteristic La-
grange polynomialsψi,k, with k ∈ Ip

i .
Now, let (ui,h, pi,h) be the solution of (23). For any

ℓ ∈ Gu
i , we define the vectors(Φi,Γi)ℓ ∈ Rd of the weak

discrete normal stresses onΓi associated with(ui,h, pi,h)

as

(Φi,Γi)ℓ = ai(ui,h,ϕi,ℓ) + bi(pi,h,ϕi,ℓ)

−
∫

Ωi
f · ϕi,ℓ.

(25)

Similarly, for anyℓ ∈ Gu
j andϕj,ℓ ∈ Bu

j we define the
vectors(Φi,Γj )ℓ ∈ Rd of the weak discrete normal stresses
onΓj associated with(ui,h, pi,h) as

(Φi,Γj )ℓ = aj(ũi,h,ϕj,ℓ) + bj(p̃i,h,ϕj,ℓ)

−
∫

Ωj
f · ϕj,ℓ.

(26)

It holds

(Φi,Γj )ℓ =

∫

Γj

Φ̂i,j,h ·ϕj,l ∀ℓ ∈ Gu
j , i, j ∈ {1, 2}.

To the minimization of problem (24) we can associate
the following optimality system: findλh = (λ1,h,λ2,h) ∈

ΛN
h , and, fori = 1, 2, (ui,h, pi,h), (wi,h, qi,h) ∈ Vi,h ×

Qi,h such that

ai(ui,h,ϕi,ℓ) + bi(pi,h,ϕi,ℓ) =
∫

Γi
λi,h · ϕi,ℓ

+
∫

Ωi
f ·ϕi,ℓ, ∀ℓ ∈ Iu

i

bi(ψi,k,ui,h) = 0 ∀k ∈ Ip
i ,

(27)

ai(wi,h,ϕi,ℓ) + bi(qi,h,ϕi,ℓ) = (Φi,Γi)ℓ − (Φj,Γi)ℓ

∀ℓ ∈ Iu
i

bi(ψi,k,wi,h) = 0 ∀k ∈ Ip
i ,

(28)

and

2
∑

i=1

[(Φi,Γi)ℓ − (Φj,Γi)ℓ + (Ψj,Γi)ℓ] = 0

∀ℓ ∈ Gu
i ,

(29)

wherej = 3− i and

(Ψj,Γi)ℓ = aj(w̃i,h,ϕj,ℓ) + bj(q̃i,h,ϕj,ℓ)

is the weak representation of the discrete normal stress on
Γj associated with the dual state solution(wi,h, qi,h).

An alternative strategy consists in choosing mixed con-
trols, e.g., a discrete Dirichlet controlλ1,h ∈ ΛD

1,h on Γ1

and a Neumann controlλ2,h ∈ ΛN
2,h on Γ2 and to min-

imize the difference between both interface velocities and
interface normal stresses.

Following (6)5 and (6)6, the corresponding minimization
problems would read:

inf
λ1,h,λ2,h

[

Jtf (λ1,h,λ2,h) :=
1

2
‖u1,h − u2,h‖

2
L2(Γ1)

+
1

2
‖Φ̂1,2,h − Φ̂2,2,h‖

2
L2(Γ2)

]

(30)
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Alternatively, following (14)5 and (14)6, we could con-
sider a discrete Neumann control onΓ1 and a discrete
Dirichlet control onΓ2 and the corresponding minimization
problem:

inf
λ1,h,λ2,h

[

Jft(λ1,h,λ2,h) :=
1

2
‖Φ̂1,1,h − Φ̂2,1,h‖

2
L2(Γ1)

+
1

2
‖u1,h − u2,h‖

2
L2(Γ2)

]

. (31)

To the minimization problem (30) we associate the fol-
lowing optimality system: findλh = (λ1,h,λ2,h) ∈

ΛD
1,h ×ΛN

2,h and, fori = 1, 2, (ui,h, pi,h) ∈ V i,h × Qi,h,
(wi, qi) ∈ V i,h ×Qi,h such that

a1(u1,h,ϕ1,ℓ) + b1(p1,h,ϕ1,ℓ) =
∫

Ω1

f · ϕ1,ℓ, ∀ℓ ∈ Iu
1

b1(ψ1,k,u1,h) = 0 ∀k ∈ Ip
1 ,

u1,h = λ1,h onΓ1

(32)

a2(u2,h,ϕ2,ℓ) + b2(p2,h,ϕ2,ℓ) =
∫

Γ2

λ2,h · ϕ2,ℓ

+
∫

Ω2

f ·ϕ2,ℓ, ∀ℓ ∈ Iu
2

b2(ψ2,k,u2,h) = 0 ∀k ∈ Ip
2 ,

(33)

a1(w1,h,ϕ1,ℓ) + b1(q1,h,ϕ1,ℓ) = 0 ∀ℓ ∈ Iu
1

b1(ψ1,k,w1,h) = 0 ∀k ∈ Ip
1 ,

w1,h = u1,h − u2,h onΓ1

(34)

a2(w2,h,ϕ2,ℓ) + b2(q2,h,ϕ2,ℓ) = (Φ2,Γ2
)ℓ − (Φ1,Γ2

)ℓ

∀ℓ ∈ Iu
2

b2(ψ2,k,w2,h) = 0 ∀k ∈ Ip
2

(35)
and

[

(u1,h|Γ1
)ℓ − (u2,h|Γ1

)ℓ + (w2,h|Γ1
)ℓ
]

+ [−(Φ1,Γ2
) + (Φ2,Γ2

) + (Ψ1,Γ2
)] = 0

∀ℓ ∈ Gu
1 , ∀ ∈ Gu

2 .

(36)

To the minimization problem (31) we now associate the
optimality system: findλh = (λ1,h,λ2,h) ∈ ΛN

1,h × ΛD
2,h

and, fori = 1, 2, (ui,h, pi,h) ∈ V i,h × Qi,h, (wi, qi) ∈
V i,h ×Qi,h such that

a1(u1,h,ϕ1,ℓ) + b1(p1,h,ϕ1,ℓ) =
∫

Γ1

λ1,h · ϕ1,ℓ

+
∫

Ω1

f ·ϕ1,ℓ, ∀ℓ ∈ Iu
1

b1(ψ1,k,u1,h) = 0 ∀k ∈ Ip
1 ,

(37)

a2(u2,h,ϕ2,ℓ) + b2(p2,h,ϕ2,ℓ) =
∫

Ω2

f · ϕ2,ℓ, ∀ℓ ∈ Iu
2

b2(ψ2,k,u2,h) = 0 ∀k ∈ Ip
2 ,

u2,h = λ2,h onΓ2

(38)

a1(w1,h,ϕ1,ℓ) + b1(q1,h,ϕ1,ℓ) = (Φ1,Γ1
)ℓ − (Φ2,Γ1

)ℓ

∀ℓ ∈ Iu
1

b1(ψ1,k,w1,h) = 0 ∀k ∈ Ip
1

(39)

a2(w2,h,ϕ2,ℓ) + b2(q2,h,ϕ2,ℓ) = 0 ∀ℓ ∈ Iu
2

b2(ψ2,k,w2,h) = 0 ∀k ∈ Ip
2 ,

w2,h = u1,h − u2,h onΓ2

(40)

and

[(Φ1,Γ1
) − (Φ2,Γ1

) + (Ψ2,Γ1
)]

+
[

(u1,h|Γ2
)ℓ − (u2,h|Γ2

)ℓ + (w1,h|Γ2
)ℓ
]

∀ ∈ Gu
1 , ∀ℓ ∈ Gu

2 .

(41)

3.5. Algebraic formulation of ICDD with Neumann and
mixed controls

Using the previous notations, the discrete values of the
Neumann controls are given by

(λi,h)ℓ =
∑

k∈Ei

∫

eik

λi,h · ϕi,ℓ ∀ℓ ∈ Gu
i .

Denoting byTji the finite dimensional counterpart of the
operator that associates to the velocity and pressure inΩi

the corresponding normal stress tensor on the interfaceΓj

(j = 1, 2) (as in (25)), after discretization the optimality
system (27)-(29) for the functionalJf with Neumann con-
trols yields the following matrix:



















S1 0 0 0 −IΓ1
0

0 S2 0 0 0 −IΓ2

0 T12 S1 0 −IΓ1
0

T21 0 0 S2 0 −IΓ2

0 −T12 0 T12 IΓ1
0

−T21 0 T21 0 0 IΓ2



















. (42)

The corresponding Schur complement system becomes

Σf

(

λΓ1

λΓ2

)

= χf (43)

where

Σf =

(

IΓ1
− (T12S

−1
1 )2

IΓ2
− (T21S

−1
2 )2

)

and

χf =

(

T12S
−1
1 (IΓ1

+ T12S
−1
1 )F1

T21S
−1
2 (IΓ2

+ T21S
−1
2 )F2

)
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Finally, the matrix associated with the optimality system
(32)-(36) for the functionalJtf with mixed controls is:



















SI1I1 0 0 0 SI1Γ1
0

0 S2 0 0 0 −IΓ2

0 −SI1Γ1
R12 SI1I1 0 SI1Γ1

0

T21 0 0 S2 0 −IΓ2

0 −MΓ1
R12 0 MΓ1

R12 MΓ1
0

−T21 0 T21 0 0 IΓ2



















.

Its corresponding Schur complement system becomes

Σtf

(

λΓ1

λΓ2

)

= χtf (44)

where

Σtf =

(

MΓ1
(IΓ1

− (R12S
−1
I1I1

SI1Γ1
)2)

IΓ2
− (T21S

−1
2 )2

)

and

χtf =

(

MΓ1
R12S

−1
I1I1

(IΓ1
− SI1Γ1

R12S
−1
I1I1

)F1

T21S
−1
2 (IΓ2

+ T21S
−1
2 )F2

)

.

4. NUMERICAL RESULTS

4.1. Test cases with respect to an analytic solution

We consider the domainΩ = (0, 1) × (0, 2) with Ω1 =
(0, 1) × (1 − δ/2, 2) and Ω2 = (0, 1) × (0, 1 + δ/2),
δ > 0 being a suitable parameter characterizing the width
of the overlapping region. The viscosityν is set to 1,
while the forcef and the boundary conditions are cho-
sen such that the Stokes problem admits the solutionu =
(exp(y),− exp(x))T and p = exp(x) sin(y). Concern-
ing the boundary conditions, we impose Neumann condi-
tions on the boundary1 × (0, 2) while Dirichlet boundary
conditions are imposed on the remaining boundaries. We
compute the solution of the optimality system using the Bi-
CGStab method on the Schur complement (22) setting the
tolerance to10−9.

First, we consider the case of an overlap with fixed width
δ = 0.2. We use both Taylor-Hood elements with three
computational meshes characterized byh = 2−2, 2−3, 2−4,
and stabilizedhp-FEM Qp − Qp [8]. In the latter case, we
consider4× 5 quad elements in each subdomainΩi, 4 × 1
elements inΩ12 and each quad element has sides of length
h = 2−2.

In tablesI andII we report the number of iterations re-
quired to converge, the computed infimum of the cost func-
tionalJt and the errors

eu1 =
(

‖u1 − u1,h‖2H1(Ω1)
+ ‖u2 − u2,h‖2H1(Ω2)

)1/2

,

ep0 =
(

‖p1 − p1,h‖2L2(Ω1)
+ ‖p2 − p2,h‖2L2(Ω2)

)1/2

,

eu12,0 = ‖u1,h−u2,h‖L2(Ω12), e
p
12,0 = ‖p1,h−p2,h‖L2(Ω12),

whereui,h ∈ V i,h andpi,h ∈ Qi,h are the solutions of
(18)-(20).

The number of iterations is independent of both the grid
sizeh and the polynomial degreep. Notice that the conver-
gence order for the errorseu1 andep0 in table I agrees with the
expected optimal accuracy for the Taylor-Hood elements.

TABLE I: Test case with analytic solution. Results for the func-
tionalJt with Taylor-Hood elements with respect to different val-
ues ofh. Fixed overlap withδ = 0.2.

h #iter inf Jt eu1 ep
0

eu12,0 ep
12,0

2
−2 8 1.047e-16 1.146e-02 9.322e-03 8.081e-05 5.982e-03

2
−3 9 8.612e-20 2.835e-03 2.175e-03 6.033e-06 5.832e-04

2
−4 9 6.003e-20 7.088e-04 5.345e-04 5.432e-07 8.516e-05

TABLE II: Test case with analytic solution. Results for the func-
tionalJt with stabilizedQp−Qp elements with respect to different
polynomial degreesp. Fixed overlap withδ = 0.2.

p #iter inf Jt eu1 ep
0

eu12,0 ep
12,0

2 10 1.759e-19 1.402e-03 2.676e-03 8.471e-06 1.543e-03

3 9 1.402e-19 6.719e-05 1.299e-04 6.220e-07 1.124e-04

4 9 3.766e-20 3.922e-07 3.157e-07 5.870e-10 8.652e-08

5 9 1.308e-20 8.740e-09 1.269e-08 7.617e-11 1.079e-08

Next, we study the case where the width of the over-
lap tends to zero on a fixed computational mesh. When
using the Taylor-Hood elements, we seth = 0.04 and
δ = 5h, . . . , h; the subdomains are defined as follows: for
δ = 5h,Ω1 = (0, 1)×(0.92, 2)andΩ2 = (0, 1)×(0, 1.12);
for δ = 4h, Ω1 = (0, 1) × (0.92, 2) andΩ2 = (0, 1) ×
(0, 1.08); for δ = 3h, Ω1 = (0, 1) × (0.96, 2) andΩ2 =
(0, 1)× (0, 1.08); for δ = 2h, Ω1 = (0, 1)× (0.96, 2) and
Ω2 = (0, 1)× (0, 1.04); for δ = h, Ω1 = (0, 1)× (0.96, 2)
andΩ2 = (0, 1) × (0, 1). For stabilizedQp − Qp ap-
proximations, we takep = 4 and we partition each sub-
domain in4× 5 quad elements;Ωi \Ω12 is partitioned into
4 × 4 equal quad elements of sizehx · hy, hx = 0.25 and
hy = (1 − δ/2)/4; Ω12 is partitioned in1 × 5 quads of
sizehx · δ; the value ofδ ranges from 0.2 to 0.01. Results
reported in tablesIII andIV show that the required number
of iterations increases whenδ decreases.

Finally, we carry out a convergence test with Taylor-
Hood elements settingδ = h and lettingh → 0. Also in
this case we can see that the number of iterations required
to converge grows whenh decreases. Results are reported
in tableV.

These numerical results show that the ICDD method is
not very effective especially when considering small over-
lapping regions. This behavior may due to the fact that the
functionalJt involves no information on the pressure fields
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TABLE III: Test case with analytic solution. Results for thefunc-
tionalJt with Taylor-Hood elements withh = 0.04 andδ → 0.

δ #iter inf Jt eu1 ep
0

eu12,0 ep
12,0

5h 9 9.281e-20 4.020e-04 3.271e-04 2.525e-07 3.270e-05

4h 10 1.565e-16 3.991e-04 3.242e-04 2.553e-07 3.611e-05

3h 13 8.237e-19 3.967e-04 3.213e-04 2.418e-07 4.456e-05

2h 18 7.275e-17 3.994e-04 3.345e-04 2.699e-07 1.362e-04

h 37 1.923e-14 4.780e-04 6.030e-04 1.688e-07 3.249e-04

TABLE IV: Test case with analytic solution. Results for the func-
tionalJt with stabilizedQp−Qp elements with respect to different
polynomial degreesp for δ → 0. By ∗ we denote that the method
did not converge within 250 iterations.

δ #iter inf Jt eu1 ep
0

eu12,0 ep
12,0

0.2 9 3.766e-20 3.922e-07 3.157e-07 5.870e-10 8.652e-08

0.1 15 2.391e-17 5.956e-07 7.930e-07 1.729e-09 4.741e-07

0.05 25 1.266e-17 2.806e-06 5.088e-06 1.333e-09 2.561e-06

0.02 71 3.369e-16 2.699e-05 4.974e-05 2.856e-09 1.571e-05

0.01 250∗ 4.208e-04 1.614e+01 2.909e+01 2.056e-03 7.755e+00

in the overlap, since it imposes only the continuity of veloc-
ities on the interfaces.

The number of iterations is independent of the mesh size
h and of the polynomial degreep. However, a dependence
on the size of the overlap can be estimated as

#iter ∼ Cδ−1,

for a suitable positive constantC > 0.

We consider now the case of Neumann and mixed con-
trols.

First, we consider the case of an overlap with fixed width
δ = 0.2. The setting and the discretization are the same
used before. In tablesVI andVII we report the number of
iterations and the computed errors for the case of the func-
tional Jf using Taylor-Hood and stabilizedQp − Qp ap-
proximations, respectively, while in tablesVIII andIX we
report the results obtained for the functionalJtf .

Then, we consider the case where the width of the over-
lap tends to zero on a fixed computational mesh. Results
are shown in tablesX andXII for the Taylor-Hood elements
with h = 0.04 and in tablesXI andXIII for the stabilized
Qp−Qp elements withp = 4. Both functionalsJf andJtf
are used.

TABLE V: Test case with analytic solution. Results for the func-
tionalJt with Taylor-Hood elements withδ = h andδ → 0.

δ = h #iter inf Jt eu1 ep
0

eu12,0 ep
12,0

1/3 6 4.687e-18 2.615e-02 2.345e-02 5.390e-04 2.558e-02

1/6 10 1.309e-17 6.779e-03 5.792e-03 3.262e-05 3.035e-03

2/25 19 4.989e-19 1.626e-03 1.533e-03 2.240e-06 7.548e-04

1/25 37 1.923e-14 4.780e-04 6.030e-04 1.688e-07 3.249e-04

TABLE VI: Test case with analytic solution. Results for the func-
tionalJf with Taylor-Hood elements with respect to different val-
ues ofh. Fixed overlap withδ = 0.2.

h #iter inf Jf eu1 ep
0

eu12,0 ep
12,0

2
−2 9 1.904e-19 1.150e-02 9.065e-03 7.206e-04 1.878e-03

2
−3 9 2.070e-18 2.839e-03 2.154e-03 7.145e-05 2.391e-04

2
−4 9 1.233e-18 7.087e-04 5.319e-04 7.679e-06 3.352e-05

TABLE VII: Test case with analytic solution. Results for thefunc-
tionalJf with stabilizedQp −Qp elements with respect to differ-
ent polynomial degreesp. Fixed overlap withδ = 0.2.

p #iter inf Jf eu1 ep
0

eu12,0 ep
12,0

2 10 2.249e-24 1.235e-03 2.370e-03 1.485e-05 5.159e-04

3 9 3.615e-18 2.141e-05 5.376e-05 4.256e-07 8.935e-06

4 9 2.438e-18 3.889e-07 3.031e-07 3.230e-09 2.777e-08

5 9 2.377e-18 6.996e-09 6.726e-09 7.773e-10 1.596e-09

Finally, we study the behavior of the ICDD method with
functionalsJf andJtf using Taylor-Hood elements setting
δ = h and lettingh→ 0. Results are reported in tablesXIV
andXV.

Differently from the case of Dirichlet controls with func-
tional Jt, we can see that both functionalsJf andJtf re-
quire a much lower number of iterations to converge. This
shows thatcontrolling the pressure and not only the velocity
on the interfaces is crucial for the Stokes problem.

Moreover, we can see that the best convergence results
are obtained with mixed controls and functionalJtf : as a
matter of fact, in this case the number of iterations is inde-
pendent from the mesh sizeh, from the degreep of polyno-
mial used, and from the measureδ of the overlap.

Neumann controls with functionalJf also provide a
number of iterations independent of the mesh sizeh and
of the polynomial degreep. However, a dependence on the
size of the overlap can be noticed as

#iter ∼ Cδ−1/2

for a suitable positive constantC > 0.

TABLE VIII: Test case with analytic solution. Results for the
functionalJtf with Taylor-Hood elements with respect to different
values ofh. Fixed overlap withδ = 0.2.

h #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

2
−2 6 1.211e-16 1.126e-02 8.778e-03 5.597e-05 2.285e-03

2
−3 6 2.516e-16 2.829e-03 2.143e-03 4.352e-06 2.885e-04

2
−4 6 1.445e-16 7.082e-04 5.314e-04 3.417e-07 3.938e-05
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TABLE IX: Test case with analytic solution. Results for the func-
tional Jtf with stabilizedQp − Qp elements with respect to dif-
ferent polynomial degreesp. Fixed overlap withδ = 0.2.

p #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

2 6 4.003e-18 1.231e-03 2.391e-03 1.101e-05 6.378e-04

3 6 3.044e-18 2.147e-05 5.461e-05 1.894e-07 1.281e-05

4 6 2.334e-18 3.890e-07 3.038e-07 3.459e-10 3.191e-08

5 6 2.185e-18 6.358e-09 6.231e-09 8.761e-11 2.384e-09

TABLE X: Test case with analytic solution. Results for the func-
tionalJf with Taylor-Hood elements withh = 0.04 andδ → 0.

δ #iter inf Jf eu1 ep
0

eu12,0 ep
12,0

5h 9 1.743e-18 4.019e-04 3.268e-04 3.778e-07 1.523e-05

4h 11 1.734e-21 3.990e-04 3.238e-04 4.201e-07 1.577e-05

3h 14 5.866e-21 3.964e-04 3.206e-04 4.590e-07 1.453e-05

2h 18 3.328e-15 3.935e-04 3.176e-04 1.011e-06 1.904e-05

h 35 8.742e-15 3.917e-04 3.160e-04 5.071e-06 9.156e-06

4.2. A test case without analytic solution

We consider the computational domainΩ = (0, 1) ×
(0, 2) with Ω1 = (0, 1) × (1 − δ/2, 2) andΩ2 = (0, 1) ×
(0, 1 + δ/2), as represented schematically in Figure2. The
force is set tof = 0 and the viscosity isν = 2.e−3. We im-
pose homogeneous Neumann boundary conditionsfor the
fluid normal stresson the edgesl4 andl7. On the remain-
ing boundaries, apart from the edgel6, we impose homoge-
neous Dirichlet boundary conditionsfor the fluid velocity
unless on{0} × (1.1, 2) where we set a parabolic profile
with maximum equal to1.

On the edgel6 we may impose either homogeneous Neu-
mann or Dirichlet boundary conditions to compare the be-
havior of the different methods that we have studied. In par-
ticular, we want to show that the functionalJt with Dirichlet
controls will not provide a correct solution whenl6 is set as
a Dirichlet boundary, since this case violates Assumption
2.1.

For this problem, besides the errorseu12,0 and ep12,0 on
the overlap, we also compute

TABLE XI: Test case with analytic solution. Results for the func-
tional Jf with stabilizedQp − Qp elements with respect to dif-
ferent polynomial degreesp for δ → 0. By ∗ we denote that the
method did not converge within 250 iterations.

δ #iter inf Jf eu1 ep
0

eu12,0 ep
12,0

0.2 9 2.438e-18 3.889e-07 3.031e-07 3.230e-09 2.777e-08

0.1 15 3.759e-17 4.635e-07 4.247e-07 8.579e-09 2.059e-08

0.05 25 4.783e-15 6.835e-07 7.114e-07 5.991e-08 2.168e-08

0.02 96 2.032e-16 6.653e-07 6.873e-07 3.315e-08 2.328e-08

0.01 250∗ 5.751e-04 8.371e-01 9.842e-01 5.206e-02 1.733e-03

TABLE XII: Test case with analytic solution. Results for thefunc-
tionalJtf with Taylor-Hood elements withh = 0.04 andδ → 0.

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

5h 6 1.861e-16 4.019e-04 3.268e-04 4.044e-07 2.324e-05

4h 6 2.339e-16 3.989e-04 3.239e-04 3.723e-07 2.348e-05

3h 7 1.441e-16 3.964e-04 3.206e-04 3.163e-07 2.153e-05

2h 7 4.691e-15 3.935e-04 3.176e-04 2.709e-07 2.561e-05

h 7 5.075e-15 3.907e-04 3.141e-04 1.596e-07 1.332e-05

TABLE XIII: Test case with analytic solution. Results for the
functionalJtf with stabilizedQp − Qp elements with respect to
different polynomial degreesp for δ → 0.

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

0.2 6 2.334e-18 3.890e-07 3.038e-07 3.459e-10 3.191e-08

0.1 7 7.935e-16 4.621e-07 4.239e-07 8.769e-10 4.387e-08

0.05 7 6.422e-16 5.093e-07 4.877e-07 4.043e-10 3.179e-08

0.02 7 1.103e-14 5.421e-07 5.183e-07 9.533e-10 2.265e-08

0.01 8 4.678e-14 5.511e-07 5.318e-07 5.511e-10 4.550e-08

eu1 =
(

‖U1,h − u1,h‖2H1(Ω1)
+ ‖U2,h − u2,h‖2H1(Ω2)

)1/2

,

ep0 =
(

‖P1,h − p1,h‖2L2(Ω1)
+ ‖P2,h − p2,h‖2L2(Ω2)

)1/2

,

where(Ui,h, Pi,h) is the restriction to the subdomainΩi of
the solution computed on the same mesh but considering
the domain as a whole without any splitting and solving
(1).

First, we impose homogeneous Dirichlet boundary con-
ditions onl6. The results obtained in correspondence of the
different functionalsJt, Jf andJtf are reported in table
XVI for Taylor-Hood elements and in tableXVII for stabi-
lizedQp −Qp elements withp = 6.

As expected, the minimization of the functionalJt does
not allow to recover the correct solution, whereas bothJf
andJtf converge to the correct solution. In Figure3 we
show the original solution, while in Figures4 and 5 we
show, respectively, the solutions obtained through mini-
mization of the functionalJt andJtf . We can see that the
functionalJt has no control on the pressure, which there-
fore does not match on the overlap.

Now, we impose homogeneous Neumann boundary con-
ditions onl6. In this case, according to the theory, all func-
tionals allow to correctly compute the single-domain solu-

TABLE XIV: Test case with analytic solution. Results for the
functionalJf with Taylor-Hood elements withδ = h andδ → 0.

δ = h #iter inf Jf eu1 ep
0

eu12,0 ep
12,0

1/3 6 2.610e-18 2.510e-02 2.051e-02 1.112e-03 5.119e-03

1/6 10 6.433e-16 6.723e-03 5.416e-03 1.038e-04 5.577e-04

2/25 18 7.986e-16 1.576e-03 1.280e-03 2.405e-05 7.098e-05

1/25 35 8.742e-15 3.917e-04 3.160e-04 5.071e-06 9.156e-06
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TABLE XV: Test case with analytic solution. Results for the func-
tionalJtf with Taylor-Hood elements withδ = h andδ → 0.

δ = h #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

1/3 5 4.337e-18 2.487e-02 2.051e-02 7.757e-04 8.554e-03

1/6 6 1.596e-15 6.709e-03 5.411e-03 4.145e-05 8.970e-04

2/25 7 7.951e-15 1.572e-03 1.275e-03 2.503e-06 1.067e-04

1/25 7 5.075e-15 3.907e-04 3.141e-04 1.596e-07 1.332e-05

Ω1

Ω2

Ω12

l1

l4

l5

l6

l7

l8

l9

l10

Γ1

Γ2

FIG. 2: Schematic representation of the computational domain.

tion and their behaviors are similar to those observed in the
previous tests with analytic solution. The functionalJtf as-
sociated with mixed controls is the one that converges in
the lowest number of iterations with a slight dependence on
δ. Results are reported in tableXVIII for Taylor-Hood el-
ements and in tableXIX for stabilizedQp − Qp elements
with p = 6.

In Figure6 we show the single-domain solution, while
in Figures7 and8 we show, respectively, the solutions ob-
tained through minimization of the functionalJt andJtf .
We can see that, although the functionalJt has no control
on the pressure, the Neumann boundary condition on the
edgel6 allows the pressure to match almost perfectly in the
overlapping region. Notice that the difference shown in Fig.
7 is of the same order of the errors reported in tablesXVIII
andXIX .

Finally, let us consider a test case in which the interface
is a piecewise linear curve (identified by element edges), as
shown in Fig. 9. We compute the solution by imposing a
Neumann boundary condition on the boundaryl6 consider-
ing stabilizedQp − Qp elements withp = 6 andδ → 0.
The iterations numbers shown in tableXX behave similarly
to those presented in the third block of tableXIX : the al-
gorithm is not strongly influenced by the shape of the inter-
face.

To assess the robustness of the method with respect to
the viscosity coefficientν, we compute the solution of the
problem with Neumann boundary condition onl6 using the
ICDD method associated with the functionalJtf , the one
that provided the best results in the previous tests. We con-

TABLE XVI: Test case without analytic solution. Dirichlet bound-
ary condition onl6. Results for the functionalsJt (top),Jf (mid)
andJtf (bottom) with Taylor-Hood elements with fixedh = 0.04
andδ → 0.

δ #iter inf Jt eu1 ep
0

eu12,0 ep
12,0

5h 8 9.779e-23 4.556e-02 6.647e-04 8.754e-04 8.841e-04

4h 9 5.197e-21 2.805e-01 3.740e-03 9.122e-04 4.568e-03

3h 12 5.289e-23 2.967e-01 3.917e-03 1.002e-03 4.261e-03

2h 16 6.533e-21 2.618e-02 3.220e-04 8.911e-05 2.979e-04

h 31 8.042e-22 1.921e-01 2.231e-03 9.904e-05 1.510e-03

δ #iter inf Jf eu1 ep
0

eu12,0 ep
12,0

5h 7 9.209e-26 1.592e-03 8.534e-05 1.452e-03 1.192e-04

4h 8 2.376e-24 3.395e-03 7.345e-05 2.684e-03 8.409e-05

3h 10 3.043e-24 5.410e-03 9.049e-05 3.822e-03 8.284e-05

2h 15 2.700e-27 2.634e-03 3.620e-05 1.786e-03 2.044e-05

h 28 1.563e-25 4.216e-02 4.909e-04 1.975e-02 8.692e-05

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

5h 5 2.989e-20 1.295e-03 8.531e-05 6.078e-04 1.206e-04

4h 6 1.843e-22 9.068e-04 6.122e-05 3.653e-04 8.674e-05

3h 6 1.311e-20 9.063e-04 6.157e-05 3.419e-04 8.737e-05

2h 6 1.540e-21 2.885e-04 2.160e-05 9.796e-05 3.046e-05

h 7 8.444e-20 1.208e-03 9.366e-05 2.619e-04 1.284e-04

sider a discretization by Taylor-Hood elements on a mesh
with fixed h = 0.04 andδ → 0 and we set the viscosity
ν = 10−2, 10−4, 10−6. Numerical results are reported in
tablesXXI , XXII ; clearly they show that the method is ro-
bust with respect to variations of the parameterν.

5. ANALYSIS OF THE ICDD METHOD FOR THE
STOKES PROBLEM

In this section we analyze the ICDD method that we have
presented in the previous sections with the aim of guaran-
teeing the well-posedness of the minimization problem. We
begin with the analysis in the continuous case with Dirichlet
controls.

5.1. Analysis of the optimal control problem with Dirichlet
controls

For i = 1, 2, we introduce the following spaces:

Λi = {µ ∈ [H1/2(Γi)]
d : ∃v ∈ [H1(Ωi)]

d,

v = µ onΓi andv = 0 onΓi
D} (45)

Λi,0 = {µ ∈ Λi :
∫

Γi
µ · n = 0} (46)
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TABLE XVII: Test case without analytic solution. Dirichlet
boundary condition onl6. Results for the functionalsJt (top),
Jf (mid) andJtf (bottom) with stabilizedQp −Qp elements with
fixedp = 6 andδ → 0.

δ #iter inf Jt eu1 ep
0

eu12,0 ep
12,0

0.2 8 1.582e-20 3.151e-02 1.239e-04 2.158e-05 1.176e-04

0.1 14 1.582e-24 2.884e-01 9.612e-04 3.424e-05 7.473e-04

0.05 25 1.698e-22 4.565e-01 1.389e-03 2.740e-05 8.364e-04

0.02 65 4.433e-22 2.349e+00 7.292e-03 4.594e-05 2.861e-03

0.01 214 2.483e-23 6.278e+00 2.021e-02 4.281e-05 5.798e-03

δ #iter inf Jf eu1 ep
0

eu12,0 ep
12,0

0.2 6 1.955e-26 3.475e-03 3.354e-06 1.761e-04 1.605e-05

0.1 11 1.431e-25 4.699e-03 1.056e-05 4.011e-04 1.344e-05

0.05 22 1.154e-24 1.235e-02 3.908e-05 1.148e-03 1.213e-05

0.02 55 1.241e-24 1.037e-02 2.953e-05 6.474e-04 1.436e-05

0.01 165 2.021e-23 3.626e-02 1.025e-04 1.660e-03 2.036e-05

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

0.2 5 3.071e-23 3.360e-03 1.862e-06 5.640e-05 1.618e-05

0.1 6 2.434e-21 3.506e-03 2.626e-06 4.390e-05 1.396e-05

0.05 7 7.309e-22 3.656e-03 4.075e-06 3.731e-05 1.384e-05

0.02 7 5.923e-20 4.451e-03 2.545e-05 4.227e-05 2.417e-05

0.01 7 2.192e-20 5.731e-03 4.025e-05 2.936e-05 3.735e-05

We will denote by

ΛD
i =

{

Λi if ∂Ωi ∩ ΓN 6= ∅

Λi,0 if ∂Ωi ∩ ΓN = ∅,
i = 1, 2, (47)

the spaces ofadmissible Dirichlet controls. Moreover, we
will denote

ΛD = ΛD
1 ×ΛD

2 . (48)

For i = 1, 2, we consider two unknown control functions
λi ∈ ΛD

i and the associated state problems

−divT(uλi,f
i , pλi,f

i ) = f in Ωi

divuλi,f
i = 0 in Ωi

u
λi,f
i = λi onΓi

(49)

with suitable homogeneous boundary conditions on∂Ωi \

Γi. If Γi
N = ∅, we add the constraint

∫

Ωi
pλi,f
i = 0. The

unknown controls on the interface are obtained by solving
the minimization problem

inf
λ=(λ1,λ2)∈ΛD

[

Jt(λ) :=
1

2

2
∑

i=1

‖uλ1,f
1 − u

λ2,f
2 ‖2L2(Γi)

]

(50)
where, for the sake of simplicity, we adopt the same nota-
tion as in the discrete case.
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FIG. 3: Test case without analytic solution. Dirichlet boundary
condition onl6. Reference monodomain solution computed using
Taylor-Hood finite elements.

This yields an optimal control problem where both the
control functions and the observations are of boundary (in-
terface) type.

Thanks to the linearity of the problem, we haveu
λi,f
i =

u
λi,0
i + u

0,f
i andpλi,f

i = pλi,0
i + p0,fi . For the sake of

simplicity, we will indicateuλi

i = u
λi,0
i andpλi

i = pλi,0
i
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FIG. 4: Test case without analytic solution. Dirichlet boundary
condition onl6. Solution computed by minimizing the functional
Jt using Taylor-Hood finite elements.

anduλ = (uλ1

1 ,uλ2

2 ), pλ = (pλ1

1 , pλ2

2 ).
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FIG. 5: Test case without analytic solution. Dirichlet boundary
condition onl6. Solution computed by minimizing the functional
Jtf using Taylor-Hood finite elements.
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TABLE XVIII: Test case without analytic solution. Neumann
boundary condition onl6. Results for the functionalsJt (top),
Jf (mid) andJtf (bottom) with Taylor-Hood elements with fixed
h = 0.04 andδ → 0.

δ #iter inf Jt eu1 ep
0

eu12,0 ep
12,0

5h 8 3.771e-21 1.164e-02 2.069e-04 7.870e-04 2.954e-04

4h 9 1.942e-20 2.075e-02 3.106e-04 8.418e-04 4.235e-04

3h 12 2.629e-23 4.843e-02 6.650e-04 9.458e-04 8.056e-04

2h 17 1.470e-25 1.385e-03 2.994e-05 7.864e-05 3.913e-05

h 34 1.077e-24 5.109e-02 5.826e-04 2.688e-04 4.050e-04

δ #iter inf Jf eu1 ep
0

eu12,0 ep
12,0

5h 9 1.419e-24 7.686e-03 1.113e-04 7.862e-03 7.401e-05

4h 11 8.495e-27 1.126e-02 1.562e-04 1.045e-02 7.669e-05

3h 14 4.060e-27 1.903e-02 2.647e-04 1.547e-02 7.519e-05

2h 19 1.990e-27 2.787e-03 3.860e-05 1.839e-03 1.283e-05

h 38 1.353e-25 2.812e-03 4.766e-05 1.326e-03 3.166e-05

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

5h 5 1.173e-19 7.973e-04 5.532e-05 3.452e-04 7.837e-05

4h 6 1.723e-23 8.329e-04 5.761e-05 3.464e-04 8.162e-05

3h 6 2.645e-21 8.210e-04 5.716e-05 3.127e-04 8.108e-05

2h 6 3.243e-21 1.868e-04 1.233e-05 5.739e-05 1.728e-05

h 7 2.232e-20 5.438e-04 2.774e-05 1.060e-04 3.649e-05

Then, we can equivalently express the cost functional as

Jt(λ) =

2
∑

i=1

[1

2
‖uλ1

1 − uλ2

2 ‖2L2(Γi)

+(uλ1

1 − uλ2

2 ,u0,f
1 − u

0,f
2 )L2(Γi)

+
1

2
‖u0,f

1 − u
0,f
2 ‖2L2(Γi)

]

.

(51)

In this section we will denote |||λ|||D =
∑2

i=1 ‖u
λ1

1 − uλ2

2 ‖L2(Γi).

Lemma 5.1 If the boundary conditions imposed on the
Stokes problem(1) satisfy Assumption2.1, then|||λ|||D de-
fines a norm on the spaceΛD.

Proof. Since|||λ|||D is obviously a semi-norm onΛD,
we only have to prove that, if|||λ|||D = 0, thenλ = 0.
Obviously, |||λ|||D = 0 implies thatuλ1

1 = uλ2

2 a.e. on
Γ1 ∪ Γ2. As uλi

i , pλi

i is the solution of (49) with f = 0,
(w, q) = (uλ1

1|Ω12

− uλ2

2|Ω12

, pλ1

1|Ω12

− pλ2

2|Ω12

) satisfies

−divT(w, q) = 0 in Ω12

divw = 0 in Ω12

w = 0 onΓ1 ∪ Γ2

(52)

with suitable homogeneous boundary conditions on∂Ω12∩
∂Ω. Sinceuλi

i belongs toH1(Ωi), condition (52)3 has to

TABLE XIX: Test case without analytic solution. Neumann
boundary condition onl6. Results for the functionalsJt (top),
Jf (mid) andJtf (bottom) with stabilizedQp−Qp elements with
fixed p = 6 andδ → 0. By ∗ we denote that the method did not
converge within 250 iterations.

δ #iter inf Jt eu1 ep
0

eu12,0 ep
12,0

0.2 8 7.054e-24 1.398e-02 8.173e-05 1.539e-04 6.044e-05

0.1 14 1.005e-25 3.046e-02 1.121e-04 1.233e-04 8.945e-05

0.05 25 1.388e-23 6.101e-02 1.964e-04 8.335e-05 1.249e-04

0.02 65 3.579e-23 9.699e-01 3.047e-03 6.782e-05 1.272e-03

0.01 211 8.323e-21 6.444e+00 1.995e-02 8.936e-05 5.879e-03

δ #iter inf Jf eu1 ep
0

eu12,0 ep
12,0

0.2 8 3.724e-25 1.240e-02 5.379e-05 1.271e-04 3.804e-05

0.1 14 2.542e-25 1.619e-02 6.113e-05 1.056e-03 3.920e-05

0.05 26 1.076e-24 1.899e-02 7.107e-05 1.229e-03 3.609e-05

0.02 107 2.023e-23 1.876e-02 7.074e-05 9.042e-04 2.798e-05

0.01 250∗ 4.232e-17 5.735e-01 2.461e-03 2.657e-02 7.751e-06

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

0.2 5 1.208e-22 1.288e-02 7.894e-05 3.015e-04 5.537e-05

0.1 6 2.256e-21 1.660e-02 7.874e-05 2.277e-04 5.645e-05

0.05 7 2.385e-22 1.690e-02 7.153e-05 1.438e-04 5.033e-05

0.02 7 1.144e-20 1.373e-02 4.956e-05 6.421e-05 3.249e-05

0.01 7 6.640e-21 1.048e-02 3.657e-05 2.670e-05 2.421e-05

TABLE XX: Test case without analytic solution. Piecewise linear
interfaces. Neumann boundary condition onl6. Results for the
functionalsJtf with stabilizedQp−Qp elements with fixedp = 6

andδ → 0.

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

0.2 6 2.908e-24 1.614e-02 7.436e-05 4.385e-04 5.197e-05

0.1 6 2.593e-20 1.709e-02 6.813e-05 2.951e-04 4.782e-05

0.05 7 8.702e-22 1.637e-02 5.600e-05 1.589e-04 4.031e-05

0.02 9 5.131e-19 1.439e-02 4.559e-05 7.481e-05 3.995e-05

0.01 9 1.323e-18 1.114e-02 4.391e-05 3.330e-05 3.991e-05

be interpreted in the sense of traces of zeroth order ofH1

functions onΓ1 ∪ Γ2.

Following the same arguments used in the proof of
Proposition2.1, it can be shown that problem (52) is well-
posed and its solution isw = 0 and q = const. Thus,
uλ1

1 = uλ2

2 andpλ1

1 + C1 = pλ2

2 + C2 a.e. inΩ12 with
C1, C2 ∈ R, q = C2 − C1, and we can define

u =











uλ1

1 in Ω1 \ Ω12

uλ1

1 = uλ2

2 in Ω12

uλ2

2 in Ω2 \ Ω12

(53)
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FIG. 6: Test case without analytic solution. Neumann boundary
condition onl6. Reference monodomain solution computed using
Taylor-Hood finite elements.

and

p =











pλ1

1 + C1 in Ω1 \ Ω12

pλ1

1 + C1 = pλ2

2 + C2 in Ω12

pλ2

2 + C2 in Ω2 \ Ω12.

(54)

By construction, the pair(u, p) satisfies a Stokes problem
in Ω with null force and homogeneous boundary conditions

0

0.5

1

0

1

2
−0.5

0

0.5

1

x

Velocity (x)

y

0

0.5

1

0

1

2
−0.4

−0.2

0

0.2

0.4

x

Velocity (y)

y

0
0.2

0.4
0.6

0.8
1

0

0.5

1

1.5

2

−0.02

−0.01

0

0.01

0.02

x

Pressure

y

FIG. 7: Test case without analytic solution. Neumann boundary
condition onl6. Solution computed by minimizing the functional
Jt using Taylor-Hood finite elements.

with ΓN 6= ∅. This problem is well-posed and, in particular,
u = 0 a.e. inΩ. This implies thatu = 0 onΓ1 ∪ Γ2 and,
for i = 1, 2, λi = 0 in Λi.

Although we cannot guarantee thatΛD is a complete
space with respect to the norm|||λ|||D, we can construct

its completion, sayΛ̂
D

, with respect to such norm. In
practice, we will always consider a finite dimensional space
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FIG. 8: Test case without analytic solution. Neumann boundary
condition onl6. Solution computed by minimizing the functional
Jtf using Taylor-Hood finite elements.

ΛD
h ⊂ ΛD ⊆ Λ̂

D
and, at the discrete level, all norms are

equivalent. Thus, this would not be a problem for the appli-
cation that we have in mind. For the sake of notation, in the
following we will still denote the completion ofΛD by the
same symbol.

0 1
0

1

2

FIG. 9: Computational mesh for stabilizedQp − Qp elements in
the case of piecewise linear interfaces. In the figureδ = 0.01.

Theorem 5.1 Consider the minimization problem

inf
λ∈ΛD

Jt(λ). (55)

If Assumption2.1holds, problem(55) has a unique solution
satisfying

(ΛD)′〈J
′
t(λ),µ〉ΛD =

∑2
i=1(u

λ1,f
1 − u

λ2,f
2 ,u

µ
1

1 − u
µ

2

2 )L2(Γi) = 0
(56)

for all µ ∈ ΛD.

Proof. For anyλ ∈ ΛD, let us define

π(λ,µ) =
1

2

2
∑

i=1

(uλ1

1 − uλ2

2 ,u
µ

1

1 − u
µ

2

2 )L2(Γi),

L(µ) = −
1

2

2
∑

i=1

(u0,f
1 − u

0,f
2 ,u

µ
1

1 − u
µ

2

2 )L2(Γi)

so that

Jt(λ) = π(λ,λ)− 2L(λ) +
1

2

2
∑

i=1

‖u0,f
1 − u

0,f
2 ‖2L2(Γi)

.

The bilinear formπ : ΛD × ΛD → R is symmet-
ric by definition and, thanks to Lemma5.1, is continuous
and coercive with respect to the norm|||λ|||D. Moreover,
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TABLE XXI: Test case without analytic solution. Neumann
boundary condition onl6. Results obtained for the functionalJtf

with Taylor-Hood elements with fixedh = 0.04 andδ → 0. The
viscosity isν = 10

−2 (top),ν = 10
−4 (mid),ν = 10

−6 (bottom).

ν = 10
−2

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

5h 5 2.688e-18 1.668e-03 2.766e-04 3.452e-04 3.918e-04

4h 6 4.242e-22 1.740e-03 2.880e-04 3.464e-04 4.081e-04

3h 6 6.553e-20 1.726e-03 2.858e-04 3.127e-04 4.054e-04

2h 6 8.063e-20 4.077e-04 6.166e-05 5.739e-05 8.638e-05

h 7 5.523e-19 1.150e-03 1.387e-04 1.060e-04 1.824e-04

ν = 10
−4

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

5h 5 8.632e-22 3.544e-04 2.766e-06 3.452e-04 3.918e-06

4h 6 4.311e-26 3.731e-04 2.880e-06 3.464e-04 4.081e-06

3h 6 6.614e-24 3.558e-04 2.858e-06 3.127e-04 4.054e-06

2h 6 8.109e-24 6.072e-05 6.166e-07 5.739e-05 8.638e-07

h 7 5.583e-23 2.281e-04 1.387e-06 1.060e-04 1.824e-06

ν = 10
−6

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

5h 5 5.704e-22 3.147e-04 2.766e-08 3.452e-04 3.918e-08

4h 6 8.725e-30 3.321e-04 2.880e-08 3.464e-04 4.081e-08

3h 6 6.694e-28 3.131e-04 2.858e-08 3.127e-04 4.054e-08

2h 6 8.158e-28 4.540e-05 6.166e-09 5.739e-05 8.638e-09

h 7 5.584e-27 1.983e-04 1.387e-08 1.060e-04 1.824e-08

L : ΛD → R is a linear continuous functional. Then, being
(ΛD, ||| · |||D) a Hilbert space (recall that nowΛD denotes
its completion with respect to the norm||| · |||D), apply-
ing classical results of calculus of variations (see, e.g.,[12,
Theorem 1.1]), the existence and uniqueness of the solution
is guaranteed.

The Euler-Lagrange equation (56) follows by observing
that, for allλ,µ ∈ ΛD, (ΛD)′〈J

′
t(λ),µ〉ΛD = 2π(λ,µ)−

2L(µ).

Remark 5.1 Notice that, although the definition of the
functionalJt involves the difference between the traces of
the velocity onΓ1 ∪ Γ2 only, the requirement that∂Ω12 ∩
ΓN 6= ∅ guarantees that the local pressuresp1 andp2 will
match in the overlapping region, i.e.,p1 = p2 a.e. inΩ12.

5.1.1. The optimality system for Dirichlet controls

After Theorem5.1, we assume that Assumption2.1 is
satisfied. More in particular, we consider the case∂Ω12 ∩
ΓN 6= ∅ andΓD 6= ∅ so that the constantsC1 andC2 of
Lemma5.1are both null. In the other cases, we would re-

TABLE XXII: Test case without analytic solution. Neumann
boundary condition onl6. Results obtained for the functionalJtf

with stabilizedQp − Qp elements with fixedp = 6 andδ → 0.
The viscosity isν = 10

−2 (top), ν = 10
−4 (mid), ν = 10

−6

(bottom).

ν = 10
−2

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

0.2 5 2.202e-21 1.288e-02 3.947e-04 3.015e-04 2.769e-04

0.1 6 5.438e-20 1.660e-02 3.937e-04 2.277e-04 2.823e-04

0.05 7 5.672e-21 1.690e-02 3.576e-04 1.438e-04 2.517e-04

0.02 7 2.684e-19 1.373e-02 2.478e-04 6.421e-05 1.624e-04

0.01 7 1.594e-19 1.048e-02 1.829e-04 2.670e-05 1.211e-04

ν = 10
−4

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

0.2 5 3.063e-25 1.288e-02 3.947e-06 3.015e-04 2.769e-06

0.1 6 5.648e-24 1.660e-02 3.937e-06 2.277e-04 2.823e-06

0.05 7 5.994e-25 1.690e-02 3.576e-06 1.438e-04 2.517e-06

0.02 7 3.142e-23 1.373e-02 2.478e-06 6.421e-05 1.624e-06

0.01 7 8.512e-23 1.048e-02 1.829e-06 2.670e-05 1.211e-06

ν = 10
−6

δ #iter inf Jtf eu1 ep
0

eu12,0 ep
12,0

0.2 5 1.017e-26 1.288e-02 3.947e-08 3.015e-04 2.769e-08

0.1 6 2.382e-25 6.667e-02 4.800e-08 2.277e-04 2.823e-08

0.05 7 4.591e-25 1.690e-02 3.576e-08 1.438e-04 2.517e-08

0.02 7 6.312e-24 1.373e-02 2.478e-08 6.421e-05 1.624e-08

0.01 7 3.803e-21 1.048e-02 1.829e-08 2.670e-05 1.211e-08

quire thatpi, qi ∈ Qi,0, and the non-null constantsC1, C2

are those identified in the proof of Proposition2.1.
The Euler-Lagrange equation (56) becomes:

(ΛD)′〈J
′
t(λ),µ〉ΛD =

∫

Γ1∪Γ2

(uλ1,f
1 −u

λ2,f
2 )·(u

µ
1

1 −u
µ

2

2 ) = 0

(57)
for all µ ∈ ΛD.

Solving equation (57) is equivalent to solving the follow-
ing optimality system: findλ = (λ1,λ2) ∈ ΛD and, for
i = 1, 2, (ui, pi) ∈ V i,0 ×Qi, (wi, qi) ∈ V i,0 ×Qi such
that

−divT(ui, pi) = f in Ωi

divui = 0 in Ωi

ui = λi onΓi

T(ui, pi) · n = 0 onΓi
N

(58)

−divT(wi, qi) = 0 in Ωi

divwi = 0 in Ωi

wi = (−1)i+1(u1 − u2) onΓi

T(wi, qi) · n = 0 onΓi
N

(59)
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and, for all(µ1,µ2) ∈ ΛD,

∫

Γ1

((u1 − u2) +w2)µ1 dΓ +

∫

Γ2

(−(u1 − u2) +w1)µ2 dΓ = 0.

(60)

Proposition 5.1 The optimality system(58)-(60) has a
unique solution whose control componentλ ∈ ΛD is the
solution of the Euler-Lagrange equation(57).

Proof. Let λ be the solution of (50). Theorem5.1 guar-
antees that such solution exists and is unique. Then, it is
also a solution of (58)-(60). Indeed, the solution satisfies
(57) which implies thatuλ1,f

1 = u
λ2,f
2 on Γ1 ∪ Γ2. As a

consequence the solutions(wi, qi) of (59) are identically
null and (60) is satisfied.

We prove now that this solution is unique. Consider first
the casef = 0. We define the operatorχ : ΛD → (ΛD)′,

(ΛD)′〈χ(λ),µ〉ΛD =

∫

Γ1

((uλ1

1 − uλ2

2 ) +w
λ
2 )µ1 dΓ

+

∫

Γ2

(−(uλ1

1 − uλ2

2 ) +w
λ
1 )µ2 dΓ

(61)
where, fori = 1, 2, uλi

i , w
λ

i are solutions of (58) and
(59), respectively, withf = 0. The operatorχ is linear
and continuous, andker(χ) = {0}. Indeed, thanks to
(59), wλ

i ∈ [H1/2(Γi)]
d and, ifλ ∈ ker(χ), due to (61),

w
λ
2 = −(uλ1

1 −uλ2

2 ) onΓ1 andwλ
1 = (uλ1

1 −uλ2

2 ) onΓ2.
Thus, fori = 1, 2, j = 3− i, wλ

i satisfies the system

−divT(w
λ

i , q
λ

i ) = 0 in Ωi

divw
λ

i = 0 in Ωi

w
λ

i = −w
λ

j onΓi

w
λ
i = 0 onΓi

D

T(w
λ

i , q
λ

i ) · n = 0 onΓi
N

We definew̃ = w
λ

1|Ω12

+w
λ

2|Ω12

andq̃ = q
λ

1|Ω12

+ q
λ

2|Ω12

in Ω12. By construction(w̃, q̃) ∈ V 12 × L2(Ω12) and they
satisfy the problem

−divT(w̃, q̃) = 0 in Ω12

div w̃ = 0 in Ω12

w̃ = 0 onΓ1 ∪ Γ2

w̃ = 0 onΓD ∩ ∂Ω12

T(w̃, q̃) · n = 0 onΓN ∩ ∂Ω12

whose solution is identically null. Thus,wλ
1 = −w

λ
2 and

q
λ
1 = −q

λ
2 in Ω12 and we can define

w =











w
λ
1 in Ω1 \ Ω12

w
λ
1 = −w

λ
2 in Ω12

w
λ
2 in Ω2 \ Ω12

and

q =











q
λ
1 in Ω1 \ Ω12

q
λ
1 = −q

λ
2 in Ω12

q
λ
2 in Ω2 \ Ω12

which satisfy the Stokes problem

−divT(w, q) = 0 in Ω

divw = 0 in Ω

w = 0 onΓD

T(w, q) · n = 0 onΓN

whose unique solution isw = 0 andq = 0. Thus, we can
conclude thatwλ

i = 0 in Ωi (i = 1, 2) anduλ1

1 = uλ2

2 on
Γ1 ∪ Γ2.

Applying a similar argument to the state equations (58)
with f = 0 and definingw̃ = w

λ

1|Ω12

− w
λ

2|Ω12

and q̃ =

q
λ

1|Ω12

− q
λ

2|Ω12

in Ω12, we can prove that both these func-
tions are null and we can conclude thatλi = 0, i = 1, 2.

If f 6= 0, for i = 1, 2 andj = 3 − i, let wf
i , q

f
i be the

solution of the problem

−divT(wf
i , q

f
i ) = 0 in Ωi

divwf
i = 0 in Ωi

wf
i = u

0,f
i − u

0,f
j onΓi

wf
i = 0 onΓi

D

T(wf
i , q

f
i ) · n = 0 onΓi

N ,

u
0,f
i being the solutions of (58) with λi = 0. Then, we can

write (60) as

(ΛD)′〈χ(λ),µ〉ΛD = −(ΛD)′〈Af ,µ〉ΛD ∀µ ∈ ΛD,

where

Af : ΛD → (ΛD)′

(ΛD)′〈Af ,µ〉ΛD =

∫

Γ1

((u0,f
1 − u

0,f
2 ) +wf

2)µ1 dΓ

+

∫

Γ2

(−(u0,f
1 − u

0,f
2 ) +wf

1)µ2 dΓ.

The thesis follows from the same arguments used before.
Since the spaceΛD

h of discrete Dirichlet controls is a sub-
set ofΛD, Lemma5.1, Theorem5.1 and Proposition5.1
hold in the discrete case too and we can conclude that the
minimization problem (16)–(17), or, equivalently, the opti-
mality system (18)–(20), has a unique solution.

The minimum of the cost functionalJt is zero thanks to
Proposition2.1.

The real valueinfλh∈ΛD
h
Jt(λh) attained at convergence,

and reported in the second column of the TablesI andII , is
aboutǫ2, ǫ = 10−9 being the tolerance in the stopping cri-
terium of Bi-CGStab iterations. We notice that reducing
the toleranceǫ, infλh∈ΛD

h
Jt(λh) reduces too. The errors
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between the discrete states(ui,h, pi,h) and the exact ones
(ui, pi) vanish forh→ 0 and increasingp, according to the
theoretical convergence rate ofhp−finite element approxi-
mation.

5.2. Analysis of the optimal control problem with Neumann
controls

For i = 1, 2, let

ΛN
i = [H−1/2(Γi)]

d (62)

denote the spaces ofadmissible Neumann controlsand we
set

ΛN = ΛN
1 ×ΛN

2 . (63)

For i = 1, 2, we consider two unknown control functions
λi ∈ ΛN

i and the state problems

−divT(uλi,f
i , pλi,f

i ) = f in Ωi

divuλi,f
i = 0 in Ωi

T(uλi,f
i , pλi,f

i ) · n = λi onΓi

(64)

with suitable homogeneous boundary conditions on∂Ωi \
Γi. The unknown controls on the interface are obtained by
solving the minimization problem

inf
λ∈ΛN

λ=(λ1,λ2)

[

J̃f (λ) =
1

2

2
∑

i=1

‖T(uλ1,f
1 , pλ1,f

1 ) · n

−T(uλ2,f
2 , pλ2,f

2 ) · n‖2H−1/2(Γi)

]

.

(65)

Denoting by−∆Γi the Laplace-Beltrami operator onΓi,
for anyψ, φ ∈ H−1/2(Γi) we define the following inner
product (see, e.g., [12]):

(ψ, φ)H−1/2(Γi) =

∫

Γi

(−∆Γi)
−1/2ψ φdΓ (66)

and the related norm‖ψ‖H−1/2(Γi) = (ψ, ψ)
1/2

H−1/2(Γi)
.

The fractional Laplace-Beltrami operator(−∆Γi)
−1/2

can be defined through a Neumann to Dirichlet map defined
fromH−1/2(Γi) toH1/2(Γi) (see, e.g., [3]). Precisely, for
anyφ ∈ H−1/2(Γi) we solve the problem























−∆u+ u = 0 in Ωi

∂u

∂n
= 0 on∂Ωi \ Γi

∂u

∂nΓ
= φ onΓi

(67)

and we set(−∆Γi)
−1/2φ = u|Γi .

From now on, let(·, ·)∗,i and‖·‖∗,i replace(·, ·)H−1/2(Γi)

and‖ · ‖H−1/2(Γi), respectively.

Equations (65), (64) define an optimal control problem
where both the control functions and the observations are
of boundary (interface) type.

As for Dirichlet case, thanks to the linearity of the prob-
lem, we can equivalently express the cost functional as

J̃f (λ) =
1

2

2
∑

i=1

[

‖T(uλ1

1 , pλ1

1 ) · n−T(uλ2

2 , pλ2

2 ) · n‖∗,i

+(T(uλ1

1 , pλ1

1 ) · n−T(uλ2

2 , pλ2

2 ) · n,

T(u0,f
1 , p0,f1 ) · n−T(u0,f

2 , p0,f2 ) · n)∗,i

+
1

2
‖T(u0,f

1 , p0,f1 ) · n−T(u0,f
2 , p0,f2 ) · n‖∗,i

]

.

(68)
Let us denote

|||λ|||N =

2
∑

i=1

[

‖T(uλ1

1 , pλ1

1 ) · n−T(uλ2

2 , pλ2

2 ) · n‖∗,i

Lemma 5.2 If ∂Ω12∩ΓD 6= ∅, then|||λ|||N defines a norm
on the spaceΛN .

Proof. We proceed as done for Dirichlet controls:
|||λ|||N is always a semi-norm onΛN , we only have to
prove that, if |||λ|||N = 0, then λ = 0. Obviously,
|||λ|||N = 0 implies thatT(uλ1

1 , pλ1

1 )·n = T(uλ2

2 , pλ2

2 )·n
a.e. onΓ1 ∪ Γ2. In view of Proposition2.2, starting from
(uλi

i , pλi

i ) we define the pair(u, p) as in (53), (54), that
satisfies a Stokes problem inΩ with null force and homo-
geneous boundary conditions. This problem is well-posed
and, in particular,u = 0 andp = 0 a.e. inΩ. This implies
thatT(u, p) · n = 0 onΓ1 ∪ Γ2 and, fori = 1, 2, λi = 0

in ΛN
i .

We cannot guarantee thatΛN is complete with respect to
the norm|||λ|||N , but we can construct its completion, say

Λ̂
N

, with respect to such norm. For the sake of notation, in
the following we will still denote the completion ofΛN by
the same symbol.

Theorem 5.2 Consider the minimization problem

inf
λ∈ΛN

J̃f (λ). (69)

If ∂Ω12 ∩ ΓD 6= ∅, problem(69) has a unique solution
satisfying

(ΛN )′〈J̃
′
f (λ),µ〉ΛN =

∑2
i=1(T(uλ1,f

1 , pλ1,f
1 ) · n−T(uλ2,f

2 , pλ2,f
2 ) · n,

T(u
µ

1

1 , p
µ

1

1 ) · n−T(u
µ

2

2 , p
µ

2

2 ) · n)∗,i = 0
(70)

for all µ ∈ ΛN .

Proof. The proof follows the same guidelines of the proof
of Theorem5.1.
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In view of (66), the Euler-Lagrange equation (70) be-
comes:

2
∑

i=1

∫

Γi

(−∆Γi)
−1/2

(

T(uλi,f
i , pλi,f

i ) · n

−T(u
λj ,f
j , p

λj ,f
j ) · n

)

·
(

T(u
µi

i , p
µi

i ) · n−T(u
µj

j , p
µj

j ) · n
)

dΓ = 0

(71)

for all µ ∈ ΛN andj = 3− i.
Solving equation (71) is equivalent to solving the follow-

ing optimality system: findλ = (λ1,λ2) ∈ ΛN and, for
i = 1, 2, (ui, pi) ∈ V i,0 ×Qi, (wi, qi) ∈ V i,0 × Qi such
that

−divT(ui, pi) = f in Ωi

divui = 0 in Ωi

T(ui, pi) · n = λi onΓi

T(ui, pi) · n = 0 onΓi
N

(72)

−divT(wi, qi) = 0 in Ωi

divwi = 0 in Ωi

T(wi, qi) · n = (−1)i+1
(

T(ui, pi) · n

−T(uj , pj) · n
)

onΓi

T(wi, qi) · n = 0 onΓi
N
(73)

and, for all(µ1,µ2) ∈ ΛN ,

2
∑

i=1

∫

Γi

(−∆Γi)
−1/2

(

T(ui, pi) · n−T(uj , pj) · n

+T(wj , qj) · n
)

µidΓ = 0

(74)

for j = 3− i.

Proposition 5.2 The optimality system(72)-(74) has a
unique solution whose control componentλ ∈ ΛN is the
solution of the Euler-Lagrange equation(71).

Proof. Letλ be the solution of (65). Theorem5.2guaran-
tees that such solution exists and is unique. Then, it is also
a solution of (72)-(74). Indeed, the solution satisfies (71)
which implies thatT(uλ1,f

1 , pλ1,f
1 )·n = T(uλ2,f

2 , pλ2,f
2 )·n

onΓ1 ∪Γ2. As a consequence the solutions(wi, qi) of (73)
are identically null and (74) is satisfied.

To prove that this solution is unique, we proceed as in the
proof of Proposition5.1, by exploiting linearity, continuity
and coercivity of the Laplace-Beltrami operator (see (67)).

In view of Proposition2.2, the infimum ofJ̃f is zero.
The cost functional̃Jf differs fromJf defined in (24) in

the choice of the norm. As a matter of fact, at the continuous
level we cannot guarantee that the fluxesT(uλi,f

i , pλi,f
i ) ·n

areL2 functions, being[H−1/2(Γi)]
d their natural space,

while the discrete fluxes are more regular and belong to
[L2(Γi)]

d, as we have shown in Section3 3.4.
Since the spaceΛN

h of discrete Neumann controls is a
subset ofΛN , we can conclude that also the minimization
problem

inf
λh∈ΛN

h
λh=(λ1,h,λ2,h)

J̃f (λh) (75)

has a unique solution (thanks to Lemma5.2 and Theorem
5.2) and it can be computed by solving the optimality sys-
tem (72)–(74) (by Proposition5.2).

Following the same guidelines of Lemma5.2and Theo-
rem 5.2 we can prove that also the minimization problem
(24) has a unique solution.

At the discrete level the solutions computed by solving
(24) and (75) could not coincide. Nevertheless, the results
of TablesVI and VII show thatinfλh∈ΛN

h
Jf (λh) ≃ ǫ2,

whereǫ = 10−9 is the tolerance used in the stopping test
of Bi-CGStab iterations. Moreover, as for Dirichlet con-
trols, the errors between the discrete states(ui,h, pi,h) and
the exact ones(ui, pi) vanish forh → 0 and increasingp,
according to the theoretical convergence rate ofhp−finite
element approximation.

Solving (24) instead of (75) is obviously more attractive
since no additional Laplace-Beltrami problems like (67)
have to be solved at each Bi-CGStab iteration to update the
numerical solution.

For what concerns the minimization problems (30) and
(31) with mixed controls, we can apply the analysis devel-
oped for both Dirichlet and Neumann controls and draw the
same conclusions reached above for the cost functionalJf .

6. CONCLUSIONS

We have studied the ICDD method for the mathematical
formulation and the numerical solution of the Stokes prob-
lem. This method rests on the reformulation of the original
boundary value problem as an optimal control problem in-
volving control variables that represent the trace of the ve-
locity or the normal stress across the subdomain interfaces.
We have shown that choosing control variables of mixed
type allows to set up a robust numerical method with con-
vergence rate independent of the discretization parameters
as well as of the size of the overlapping region. Possible
extensions of this work could consider the case of decom-
position with more than two subdomains and heterogeneous
couplings like, e.g., the Stokes/Darcy problem (see [6]).
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