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a b s t r a c t 

We are interested in the approximation of partial differential equations on domains decomposed into two 

(or several) subdomains featuring non-conforming interfaces. The non-conformity may be due to different 

meshes and/or different polynomial degrees used from the two sides, or even to a geometrical mismatch. 

Across each interface, one subdomain is identified as master and the other as slave. We consider Galerkin 

methods for the discretization (such as finite element or spectral element methods) that make use of 

two interpolants for transferring information across the interface: one from master to slave and another 

one from slave to master. The former is used to ensure continuity of the primal variable (the problem 

solution), while the latter that of the dual variable (the normal flux). In particular, since the dual variable 

is expressed in weak form, we first compute a strong representation of the dual variable from the slave 

side, then interpolate it, transform the interpolated quantity back into weak form and eventually assign it 

to the master side. In case of slightly non-matching geometries, we use a radial-basis function interpolant 

instead of Lagrange interpolant. 

The proposed method is named INTERNODES (INTERpolation for NOnconforming DEcompositionS): it can 

be regarded as an alternative to the mortar element method and it is simpler to implement in a numer- 

ical code. We show on two dimension al problems that by using the Lagrange interpolation we obtain 

at least as good convergence results as with the mortar element method with any order of polynomials. 

When using low order polynomials, the radial-basis interpolant leads to the same convergence proper- 

ties as the Lagrange interpolant. We conclude with a comparison between INTERNODES and a standard 

conforming approximation in a three dimensional case. 

© 2016 Elsevier Ltd. All rights reserved. 
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1. Introduction 

In this paper we propose a new approach for numerically solv-

ing elliptic partial differential equations by Galerkin methods on

computational domains that are split into two (or several) sub-

domains featuring “non-conforming interfaces”. By this we mean

that either a priori independent grids and/or local polynomial de-

grees are used to discretize each subdomain. More in particular,

we refer to these two cases as “grid non-conformity” and “poly-

nomial non-conformity”, respectively. A further possible case of

non-conforming interfaces that our approach can cover is that of

subdomains that face each other through two interfaces that ge-
∗ Corresponding author. Fax: +41 216935510. 
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metrically do not fully agree one another, meaning that the two

ubdomains may either slightly overlap and/or featuring tiny holes

etween them (see Fig. 1 ). We refer to this situation of geomet-

ical mismatch as “geometric non-conformity”. It may arise when

sing CAD to generate the two subdomains, e.g. in fluid-structure

nteraction problems in hydrodynamics or aerodynamics [37,41] , or

lse when generating the computational geometries of lumen and

essel walls from DYCOM images for arterial blood flow dynamics

29,53] . 

In all these cases of non-conforming interfaces, a very cru-

ial issue is the way the subdomain solutions communicate across

ommon interfaces. More specifically, at which extent the subdo-

ain solutions and their normal fluxes do match. In this paper we

ntroduce a new method, named INTERNODES , that we are going

o describe. Across each interface, the subdomain from one side

s identified as the master while that from the opposite side as

http://dx.doi.org/10.1016/j.compfluid.2016.03.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2016.03.033&domain=pdf
mailto:davide.forti@epfl.ch
http://dx.doi.org/10.1016/j.compfluid.2016.03.033


S. Deparis et al. / Computers and Fluids 141 (2016) 22–41 23 

Fig. 1. A situation with non-matching interfaces �1 and �2 in the case d = 2 . 
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he slave. Two different interpolants are then defined for transfer-

ing information across the interface: one from master to slave and

nother one from slave to master. The former is used to ensure

ontinuity of the primal variable (the problem solution), while the

atter for ensuring the continuity of the dual variable (the normal

ux). In each subdomain we approximate the given partial differ-

ntial equation by a Galerkin projection method. In this context,

he dual variable in the slave domain is available in weak form: we

rst compute a strong representation of the dual variable from the

lave side, interpolate it, transform the interpolated quantity back

nto weak form and eventually assign the function so obtained to

he master side. This treatment of the normal flux continuity is a

istinguishing feature of our method. 

The interpolants characterizing the INTERNODES construction 

an be arbitrary: in this paper we use either Lagrangian or Ra-

ial Basis Functions (RBF) interpolants. In Section 7 , we show on

wo dimensional problems that using the Lagrange interpolation,

e can attain at least as good convergence results as using the

ortar element method. This is also true when using RBF inter-

olants with low polynomial degrees. 

The mortar element method, formerly introduced by

10,11] (see also [4,5,12,35,57] ) represents nowadays a gold

tandard for the solution of PDEs using non-conforming discretiza-

ions. The INTERNODES method, being based on interpolation

ather than on L 2 projection at interfaces, is in general simpler to

mplement than the mortar method: it only requires separate mass

atrices and not the cross mass matrix that connects interface

asis functions from both sides. It does not require any ad hoc

umerical quadrature, neither special treatment of cross-points

here more than two subdomains meet. These issues will be fur-

her elaborated in Section 6 . INTERNODES with RBF interpolants is

lso very well suited to address geometric non-conformity [22] . 

The paper is organized as follows. After introducing the el-

iptic boundary value problem in Section 2 , we formulate in

ection 3 its Galerkin discretization based on either the Finite

lement Method (FEM) or the Spectral Element Method (SEM), us-

ng non-conforming interfaces. In Section 4 we build the slave-

o-master and master-to-slave interface intergrid operators (either

agrangian or RBF based). In Section 5 we formulate the IN-

ERNODES method: we first state it in algebraic terms, then we

rovide a variational interpretation as a non-conforming general-

zed Galerkin approximation to the original elliptic boundary-value

roblem. Section 6 is devoted to an analysis of similarities and

ifferences between INTERNODES and the mortar method (both

heoretical properties and algorithmic aspects are evaluated). In

ection 7 we perform a systematic comparison of the numerical

esults that are obtained for FEM–FEM, FEM–SEM and SEM–SEM

ouplings, when approximating the Dirichlet problem in a 2D do-

ain. The same problem is addressed in Section 8 for the case

f geometric non-conformity. More realistic applications are con-

idered in Sections 9 and 10 where we treat very severe (poly-

omial and mesh) non-conformity for the simulation of external

ows in two and three dimensions. In particular, the latter simula-

ion concerns the incompressible Navier–Stokes equations: the IN-

ERNODES method has been easily extended to this case by simply
eplacing normal fluxes with normal Cauchy stresses in the new

ontext. Conclusions are drawn in Section 11 . 

. Problem setting 

Let � ⊂ R 

d , with d = 2 , 3 , be an open domain with Lipschitz

oundary ∂ �. ∂ �N and ∂ �D are suitable disjoint subsets of ∂�

uch that ∂�D ∪ ∂�N = ∂� . Given f ∈ L 2 ( �), g D ∈ H 

1/2 ( ∂�D ), g N ∈
 

−1 / 2 (∂�N ) , μ, α ∈ L ∞ ( �) such that ∃ μ0 > 0, μ ≥ μ0 , α ≥ 0, and

 ∈ W 

1, ∞ ( �) s.t. α − 1 
2 ∇ · b ≥ 0 we look for the solution u of the

econd order elliptic equation 

 

 

 

 

 

 

 

Lu ≡ −∇ · (μ∇u ) + b · ∇u + αu = f in �, 

u = g D on ∂�D , 

μ
∂u 

∂n 

= g N on ∂�N , 

(1) 

eing n the outward unit normal vector to ∂�. 

By setting V = H 

1 
∂�D 

(�) = { v ∈ H 

1 (�) : v | ∂�D 
= 0 } , the weak

orm of problem (1) reads: find u ∈ H 

1 ( �), with u = g D on ∂�D ,

uch that 

 (u, v ) = ( f, v ) � + 〈 g N , v 〉 ∂�N 
∀ v ∈ V, (2)

here 

 (u, v ) = 

∫ 
�
(μ∇u · ∇v + (b · ∇u ) v + αu v ) d�, (3)

hile (·, ·) � and 〈·, ·〉 ∂�N 
denote the inner product in L 2 ( �) and

he duality pairing between H 

1/2 ( ∂�N ) and H 

−1 / 2 (∂�N ) , respec-

ively. 

For the sake of exposition we partition � into two non-

verlapping subdomains �1 and �2 such that � = �1 ∪ �2 ; we

all one master (say �1 ) and the other slave (say �2 ), and we set

 �D,k = ∂ �D ∩ ∂ �k and ∂ �N,k = ∂ �N ∩ ∂ �k , for k = 1 , 2 . 

. Discretization 

A-priori independent discretizations of either finite element

ype (FEM) or spectral element type (SEM) are designed in �1 and

2 [18,50] . SEM will be equivalently named hp - FEM (see [55] ). 

We denote by T h,k (for k = 1 , 2 ) the meshes induced by the dis-

retization in �k and we assume that they satisfy standard regu-

arity requirements (see [50] ). In both �k ( k = 1 , 2 ) we introduce

he finite elements approximation spaces 

 

p k 
h k 

= { v ∈ C 0 ( �k ) : v | T ∈ Q p k , ∀ T ∈ T h,k } , (4)

here Q p k 
= P p k 

in the simplicial case and Q p k 
= Q p k 

◦ F −1 
T 

for

uads, being F T the C 1 diffeomorphism that maps the reference el-

ment ˆ T into the generic element T ∈ T h,k [50] . For any T ∈ T h,k ,

e assume that ∂T ∩ ∂� fully belongs to either ∂�D or ∂�N . 

For k = 1 , 2 , we introduce the finite dimensional subspaces V k, δ

nd V 0 
k,δ

of V k = H 

1 
∂�D,k 

(�k ) , where δ stands for discretization,

ore precisely 

 k,δ = X 

p k 
h k 

∩ V k , V 

0 
k,δ = { v ∈ V k,δ, v | � = 0 } . (5)

On the interface � = ∂ �1 ∩ ∂ �2 , we allow the meshes T h, 1 and

 h, 2 to induce either conforming grids (like in Fig. 2 , left) or non-

onforming grids (as in Fig. 2 , right). More precisely, the meshes

re conforming if their restrictions to � coincide; otherwise they

re non-conforming. 

Another situation we would like to address is the one when dif-

erent polynomial degrees are used on the two subdomains (called

olynomial non-conformity ), or again the case in which FEM on

implicials from one side is coupled with SEM on quads from the

ther side, with different polynomial degrees. For example, we ref-

rence to Fig. 2 , left, using FEM in � and SEM in � . 
1 2 
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Fig. 2. Conforming (at left) and non-conforming (at right) grids at the interface 

when d = 2 . 
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Finally, in some situations, while discretizing �, we could even

end up with two non-matching interfaces, that is �1 � = �2 . We

refer to this last situation as non-matching interfaces or geometri-

cally non-conforming partitions. A possible instance is when � is a

curved line that is discretized by piecewise straight segments, see

Fig. 1 . Another instance may occur when using isogeometric anal-

ysis (see [19] ). 

In order to unify our theory for both the cases of matching and

non-matching interfaces, from now on we will refer to �1 and �2 

separately, understanding that �1 = �2 = � in the geometrically

conforming case. 

Generally speaking, we call non-conforming a situation where

one (or several) of the previous cases (non-conforming grids, poly-

nomial non-conformity, non-matching interfaces) arises. 

4. Intergrid operators 

For k = 1 , 2 , let us introduce the discrete trace functional

spaces 

�k,δ = { ϕ = v | �k 
, v ∈ X 

p k 
h k 

} , n k = dim (�k,δ ) , (6)

�0 
k,δ = { ϕ ∈ �k,δ : ϕ| ∂� = 0 } ⊆ �k,δ, n 

0 
k = dim (�0 

k,δ ) , (7)

and denote by { λ(k ) 
j 

} n k 
j=1 

the Lagrange basis of �k, δ associated with

the nodes x 
(�k ) 

i 
∈ �k (for i = 1 , . . . , n k ) induced by the mesh T h,k .

Notice that �0 
k,δ

= �k,δ when dist ( �, ∂�D ) > 0. As a matter of fact,

�0 
k,δ

does not include the Lagrange basis functions of �k, δ associ-

ated with the nodes of �k ∩ ∂�D . 

For ease of notation, we suppose that the n 0 
k 

basis functions of

�0 
k,δ

coincide with the first n 0 
k 

basis functions of �k, δ , thus the

functions λ(k ) 
i 

, for i = n 0 
k 

+ 1 , . . . , n k , are those associated with the

nodes of �k ∩ ∂�D . 

To define our method we need to introduce intergrid transfer

operators, extension operators, and an interface space. 

We introduce two linear operators 


12 : �2 ,δ → �1 ,δ, 
21 : �1 ,δ → �2 ,δ (8)

that realize the intergrid transfer . We consider two different in-

stances: 

1. Lagrange interpolation, 

2. Radial Basis Function (RBF) interpolation [16,56] , in particular

RL-RBF [22] . 

For reader’s convenience, we define here the interpolation op-

erators. 

The Lagrange interpolation operator 
21 is characterized as fol-

lows. Let us consider a function η1, δ ∈ �1, δ , then 
21 η1, δ can be

written w.r.t. the basis { λ(2) 
i 

} of �2, δ as (

21 η1 ,δ

)
( x ) = 

n 2 ∑ 

i =1 

η1 ,δ

(
x 

( �2 ) 
i 

)
λ( 2 ) 

i ( x ) , ∀ x ∈ �2 . (9)
By expanding η1, δ with respect to the basis functions λ(1) 
j 

of

1, δ we have 

1 ,δ (x ) = 

n 1 ∑ 

j=1 

η1 ,δ (x 

(�1 ) 
j 

) λ(1) 
j 

(x ) ∀ x ∈ �1 , 

nd then, for any x ∈ �2 , 


21 η1 ,δ

)
( x ) = 

n 2 ∑ 

i =1 

( 

n 1 ∑ 

j=1 

η1 ,δ

(
x 

( �1 ) 
j 

)
λ( 1 ) 

j 

(
x 

( �2 ) 
i 

)) 

λ( 2 ) 
i ( x ) . 

Finally, denoting by η1 the array in R 

n 1 whose components are

he nodal values η1 ,δ (x 
(�1 ) 

i 
) , for i = 1 , . . . , n 1 , and by 

( R 21 ) ij = λ( 1 ) 
j 

(
x 

( �2 ) 
i 

)
, i = 1 , . . . , n 2 , j = 1 , . . . , n 1 , (10)

he entries of the matrix associated with the operator 
21 , we can

rite 

(
21 η1 ,δ )(x 

(�2 ) 
i 

) = (R 21 η1 ) i , i = 1 , . . . , n 2 . 

By proceeding in a similar way for 
12 , we denote the entries

f the matrix associated with the operator 
12 by 

( R 12 ) ij = λ( 2 ) 
j 

(
x 

( �1 ) 
i 

)
, i = 1 , . . . , n 1 , j = 1 , . . . , n 2 , (11)

o that 

(
12 η2 ,δ )(x 

(�1 ) 
i 

) = (R 12 η2 ,δ ) i , i = 1 , . . . , n 1 . 

The RL-RBF interpolation operators are defined as in [22] and

hey read 

(
21 η1 ,δ )(x ) = 

∑ n 1 
i =1 

γ
η1 ,δ

i 
φ(‖ x − x 

(�1 ) 
i 

‖ , r i ) ∑ n 1 
i =1 

γ 1 
i 
φ( ‖ x − x 

(�1 ) 
i 

‖ , r i ) 
, (12)

(
12 η2 ,δ )(x ) = 

∑ n 2 
i =1 

γ
η2 ,δ

i 
φ(‖ x − x 

(�2 ) 
i 

‖ , r i ) ∑ n 2 
i =1 

γ 1 
i 
φ( ‖ x − x 

(�2 ) 
i 

‖ , r i ) 
, (13)

here φ is the locally supported C 2 Wendland radial basis func-

ion [56] , r i ∈ R is the local support of the basis function, and γ f 
i 

re the weights of the interpolant of the function f ( f ≡ 1 de-

otes the constant function f (x ) = 1 ) and they are determined by

mposing the interpolation constraints at either the nodes x 
(�2 ) 

i 

 i = 1 , . . . , n 2 ) for 
21 , or at x 
(�1 ) 

i 
( i = 1 , . . . , n 1 ) for 
12 . 

Then, for k = 1 , 2 we define two linear and continuous exten-

ion operators 

 k : �k,δ → X 

p k 
h k 

, s.t. (E k λ
(k ) ) | �k 

= λ(k ) , (14)

hat extend any λ( k ) ∈ �k, δ by setting to zero the values of E k λ
( k ) 

t all nodes of T h,k not belonging to �k . 

In particular, for any Lagrange basis function λ(k ) 
j 

of �k, δ , E k λ
(k ) 
j 

s the Lagrange basis function of X 
p k 
h k 

(associated with the nodes

f the mesh T h,k ) whose restriction on �k coincides with λ(k ) 
j 

.

t follows that E k λ
(k ) 
j 

∈ V k,δ (i.e., it satisfies homogeneous Dirich-

et boundary conditions) only if λ(k ) 
j 

∈ �0 
k,δ

, or equivalently, when

j = 1 , . . . , n 0 
k 
. 

The interface space is a space of functions defined in the whole

as follows: 

V �1 
= { ϕ ∈ L 2 (�) : ∃ λ1 ∈ �0 

1 ,δ : ϕ| �1 
= E 1 λ1 , 

| �2 
= E 2 (
21 λ1 ) } . (15)

Note that its definition depends on the choice of the master �1 

nd slave �2 domain. We denote a basis of V �1 
as { λe 

j 
} n 0 1 

j=1 
, where

e ” stands for “extension”. There is a one-to-one map between λ(1) 
j 
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i

the j th basis function of �0 
1 ,δ

) and λe 
j 

(i.e., λe 
j 
| �1 

= λ(1) 
j 

), and λe 
j 

atisfies λe 
j 
| �1 

= E 1 λ
(1) 
j 

and λe 
j 
| �2 

= E 2 (
21 λ
(1) 
j 

) . 

Then, we define the subspaces of V 

 

 k,δ = { v ∈ V : v | �k 
∈ V 

0 
k,δ and v | �\ �k 

= 0 } , N 

0 
k = dim ( ̃  V k,δ ) (16)

nd we indicate their Lagrange basis as { �(k ) 
i 

} for i = 1 , . . . , N 

0 
k 

and

or k = 1 , 2 . 

Thus we set 

 δ = ̃

 V 1 ,δ � ˜ V 2 ,δ � V �1 
. (17) 

Notice that V δ �⊂ V in general. 

. Formulation of the non-conforming problem 

We define the bilinear forms a k : H 

1 (�k ) × H 

1 (�k ) → R : 

 1 (u, v ) = 

∫ 
�1 

(μ∇u · ∇v + (b · ∇u ) v + αu v ) d�, 

 2 (u, v ) = 

∫ 
�2 

(μ∇u · ∇v + (b · ∇u ) v + αu v ) d�

−
∫ 
∂�D, 2 

μ
∂u 

∂n 

v d∂�. (18) 

here the last integral in the definition of a 2 (u, v ) has to be in-

ended as a duality. The presence of the boundary integral in a 2 
ill be justified later, see Remark 5.1 . If we assume that g D ∈
 

0 ( ∂�D ) , its liftings R k g D ∈ X 
p k 
h k 

are 

 1 g D (x ) = 

N D 1 ∑ 

i =1 

g(x 

(1) 
i,D 

)�(1) 
i,D 

(x ) + 

n 1 ∑ 

i = n 0 
1 
+1 

g(x 

(�1 ) 
i 

) E 1 λ
(1) 
i 

(x ) , 

∀ x ∈ �1 , 

 2 g D (x ) = 

N D 2 ∑ 

i =1 

g(x 

(2) 
i,D 

)�(2) 
i,D 

(x ) + 

n 1 ∑ 

i = n 0 
1 
+1 

g(x 

(�1 ) 
i 

) E 2 (
21 λ
(1) 
i 

(x )) , 

∀ x ∈ �2 , (19) 

here �(k ) 
i,D 

∈ X 
p k 
h k 

(for i = 1 , . . . , N 

D 
k 

) denote the Lagrange ba-

is functions associated with the nodes x (k ) 
i,D 

∈ T h,k ∩ (∂�D,k \ �k ) ,

hile λ(1) 
i 

for i = n 0 
1 

+ 1 , . . . , n 1 are the Lagrange basis functions

ssociated with the nodes in T h, 1 ∩ (�1 ∩ ∂�D, 1 ) . Finally we define

he linear functionals as follows 

 k (v ) = ( f, v ) �k 
+ 〈 g N , v 〉 ∂�N,k 

− a k (R k g D , v ) , ∀ v ∈ H 

1 (�k ) . 

(20) 

Then, we set the matrices 

(A kk ) i j = a k (�
(k ) 
j 

, �(k ) 
i 

) , i, j = 1 , . . . , N 

0 
k , 

(A k, �k 
) i j = a k (E k λ

(k ) 
j 

, �(k ) 
i 

) , i = 1 , . . . , N 

0 
k , j = 1 , . . . , n k , 

A 

0 
k, �k 

= [ A k, �k 
] i =1 , ... ,N 0 

k 
, j=1 , ... ,n 0 

k 

(A �k ,k 
) i j = a k (�

(k ) 
j 

, E k λ
(k ) 
i 

) , i = 1 , . . . , n k , j = 1 , . . . , N 

0 
k , 

A 

0 
�k ,k 

= [ A �k ,k 
] i =1 , ... ,n 0 

k 
, j=1 , ... ,N 0 

k 

(A �k , �k 
) i j = a k (E k λ

(k ) 
j 

, E k λ
(k ) 
i 

) , i, j = 1 , . . . , n k , 

A 

0 
�k , �k 

= [ A �k , �k 
] i, j=1 , ... ,n 0 

k 
(21) 

he vectors 

f 0 
k 

= F k (�
(k ) 
i 

) , i = 1 , . . . , N 

0 
k 
, 

f �k 
= F k (E k λ

(k ) 
i 

) , i = 1 , . . . , n k , 

f 0 �k 
= 

[
f �k 

]
i =1 , ... ,n 0 

k 

, 

(22) 
nd we set 

 δg D = 

{
R 1 g D in �1 

R 2 g D in �2 . 
(23) 

In the special case of fully conforming discretizations (that is

oth grid and polynomial conformity, with �1 = �2 = � and n 1 =
 2 ), the classical conforming Galerkin approximation of (1) is de-

ned as follows: find u δ ∈ H 

1 ( �), such that (u δ − R δg D ) ∈ V δ ⊂ V,

olution of the conforming Galerkin problem 

 (u δ, v δ ) = ( f, v δ ) � + 〈 g N , v δ〉 ∂�N 
∀ v δ ∈ V δ. (24)

n view of both (21) and (22) , the well-known algebraic domain

ecomposition form of (24) reads [51] 

 

 

 

A 1 , 1 0 A 

0 
1 , �1 

0 A 2 , 2 A 

0 
2 , �2 

A 

0 
�1 , 1 

A 

0 
�2 , 2 

A 

0 
�1 , �1 

+ A 

0 
�2 , �2 

⎤ ⎥ ⎦ 

⎡ ⎢ ⎣ 

u 

0 
1 

u 

0 
2 

u 

0 
�1 

⎤ ⎥ ⎦ 

= 

⎡ ⎢ ⎣ 

f 0 1 

f 0 2 

f 0 �1 
+ f 0 �2 

⎤ ⎥ ⎦ 

, (25) 

here, for k = 1 , 2 , 

 

0 
k = [ u k,δ (x 

(k ) 
j 

)] 
N 0 

k 

j=1 
(k = 1 , 2) , and u 

0 
�1 

= [ u 1 ,δ (x 

(�1 ) 
j 

)] 
n 0 1 

j=1 
, 

(26) 

re the array of the nodal values of u k,δ = u δ| �k 
at the nodes of

k \ (�k ∪ ∂�D,k ) , and the array of the nodal values of u δ| �1 
at

he nodes of �1 �∂�D , respectively. 

Denoting by g k and g �k 
the arrays of the nodal values g D (x (k ) 

i,D 
)

or i = 1 , . . . , N 

D 
k 

and g D (x 
(�k ) 

i 
) for i = n 0 

k 
+ 1 , . . . , n k , respectively,

he solutions arrays including the Dirichlet nodal values are 

 k = 

[
u 

0 
k 

g k 

]
, u �k 

= 

[
u 

0 
�k 

g �k 

]
. 

.1. Algebraic formulation of the INTERNODES method 

In the non-conforming case we need further matrices: the local

ass matrices associated with the interfaces, that is 

(M �k 
) i j = (λ(k ) 

i 
, λ(k ) 

j 
) L 2 (�k ) 

, i, j = 1 , . . . , n k , k = 1 , 2 , (27)

nd the matrices R 12 ∈ R 

n 1 ×n 2 and R 21 ∈ R 

n 2 ×n 1 defined in (10) and

11) , respectively. Finally, by setting 

 21 = R 21 , Q 12 = M �1 
R 12 M 

−1 
�2 

, (28)

nd denoting by Q 

0 
12 

∈ R 

n 0 
1 
×n 2 the submatrix of Q 12 of its first n 0 

1 

ows, and by Q 

0 
21 

∈ R 

n 2 ×n 0 
1 the submatrix of Q 21 of its first n 0 

1 
olumns, the non-conforming generalization of (25) reads 

 

A 1 , 1 0 A 

0 
1 , �1 

0 A 2 , 2 A 2 , �2 
Q 

0 
21 

A �1 , 1 Q 

0 
12 A �2 , 2 A 

0 
�1 , �1 

+ Q 

0 
12 A �2 , �2 

Q 

0 
21 

] [ 

u 

0 
1 

u 

0 
2 

u 

0 
�1 

] 

= 

[ 

f 0 1 

f 0 2 

f 0 �1 
+ Q 

0 
12 f �2 

. 

] 

. (29) 

Notice that, in the fully conforming case, Q 12 and Q 21 coin-

ide with the identity matrix of size n 1 = n 2 , thus A 2 , �2 
Q 

0 
21 

=
 

0 
2 , �2 

, Q 

0 
12 

A �2 , 2 
= A 

0 
�2 , 2 

, and Q 

0 
12 

A �2 , �2 
Q 

0 
21 

= A 

0 
�2 , �2 

(and (29) re-

urns (25) ). 

The sketch of the algorithm is reported for reader’s convenience

n Algorithm 1 . 
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Algorithm 1 INTERNODES algorithm. 

1: Build the local stiffness matrices A k,k , A k, �k 
, and A �k ,k 

(formula 

(21)), 

2: Buildthe right hand sides f k and f �k 
for k = 1 , 2 (formula (22)), 

3: Build the local interface mass matrices M �k 
, for k = 

1 , 2 ,(formula (27)), 

4: Build the interpolation matrices R 21 and R 12 (formulas(10) and 

(11))and Q 21 and Q 12 (formula (28))(only the nodes coordinates 

on the interfaces are needed in this step), 

5: Solve system (29) 
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T

f
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u
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i

∑

a

a

a

5.2. Variational formulation of the INTERNODES method 

System (29) represents the algebraic counterpart of the follow-

ing variational problem: find u 1 ,δ ∈ X 
p 1 
h 1 

: (u 1 ,δ − R 1 g D ) ∈ V 1 ,δ and

u 2 ,δ ∈ X 
p 2 
h 2 

: (u 2 ,δ − R 2 g D ) ∈ V 2 ,δ such that 

a 1 (u 1 ,δ, v 1 ,δ ) = ( f, v 1 ,δ ) �1 
+ 〈 g N , v 1 ,δ〉 ∂�N, 1 

∀ v 1 ,δ ∈ V 

0 
1 ,δ

, 

a 2 (u 2 ,δ, v 2 ,δ ) = ( f, v 2 ,δ ) �2 
+ 〈 g N , v 2 ,δ〉 ∂�N, 2 

∀ v 2 ,δ ∈ V 

0 
2 ,δ

, 

u 2 ,δ| �2 
= 
21 ( u 1 ,δ| �1 

) 

a 1 (u 1 ,δ, w δ ) + a 2 (u 2 ,δ, ˜ w δ ) = ( f , w δ ) �1 
+ ( f , ˜ w δ ) �2 

+ 〈 g N , w δ〉 ∂�N, 1 
+ 〈 g N , ˜ w δ〉 ∂�N, 2 ∀ w δ ∈ V �1 

, with 

˜ w δ = E 2 (

∗
12 w δ| �1 

) . 

(30)

Here 
∗
12 

: �1 ,δ → �2 ,δ is the adjoint operator of 
12 w.r.t. the

L 2 product, i.e., for any η1, δ ∈ �1, δ and η2, δ ∈ �2, δ , it satisfies 

(
∗
12 η1 ,δ, η2 ,δ ) L 2 (�2 ) = (η1 ,δ, 
12 η2 ,δ ) L 2 (�1 ) . (31)

Remark 5.1. Notice that, even if η1 ,δ ∈ �0 
1 ,δ

, in general

(
∗
12 

η1 ,δ ) | ∂� is not null and by taking v = E 2 (

∗
12 

η1 ,δ ) in (18) 2 , it

holds v | ∂�D, 2 
� = 0 and the last integral in (18) 2 is non-zero. 

Remark 5.2. In the conforming case, by setting 
12 = 
21 = I,

Eq. (30) returns the well known two-domain formulation associ-

ated with the Galerkin finite element method, see [51] . 

We prove now the equivalence between (29) and (30) . Eqs.

(30) 1, 2 correspond to the first two equations of the system (29);

(30) 3 follows directly by the definition of the space V �1 
and yields

u �2 
= Q 21 u �1 

. Finally, (30) 4 corresponds to the last equation of sys-

tem (29) . To prove this statement, let us choose η2 ,δ = λ(2) 
j 

(for any

j = 1 , . . . , n 2 ) and η1 ,δ = λ(1) 
i 

(for any i = 1 , . . . , n 1 ) in (31) , thus by

(9) it holds (

12 λ

( 2 ) 
j 

)
( x ) = 

n 1 ∑ 

� =1 

λ( 2 ) 
j 

(
x 

( �1 ) 
� 

)
λ( 1 ) 

� ( x ) ∀ x ∈ �1 , 

and (

12 λ

( 2 ) 
j 

, λ( 1 ) 
i 

)
L 2 ( �1 ) 

= 

∫ 
�1 

n 1 ∑ 

� =1 

λ( 2 ) 
j 

(
x 

( �1 ) 
� 

)
λ( 1 ) 

� ( x ) λ( 1 ) 
i ( x ) d�

= 

n 1 ∑ 

� =1 

λ( 2 ) 
j 

(
x 

( �1 ) 
� 

) ∫ 
�1 

λ( 1 ) 
� ( x ) λ( 1 ) 

i ( x ) d�

= 

n 1 ∑ 

� =1 

( R 12 ) � j 

(
M �1 

)
i� 

= 

(
M �1 

R 12 

)
ij 
. 

At the same time, if we expand 
∗
12 

λ(1) 
i 

w.r.t. the basis function in

�2, δ as 

(
∗
12 λ

(1) 
i 

)(x ) = 

n 2 ∑ 

k =1 

(
∗
12 λ

(1) 
i 

)(x 

(2) 
k 

) λ(�2 ) 
k 

(x ) ∀ x ∈ �2 , (32)
nd we denote by P the associated matrix such that P ji =
(
∗

12 λ
(1) 
i 

)(x 
(�2 ) 

j 
) , we have 

(
∗
12 λ

(1) 
i 

, λ(2) 
j 

) L 2 (�2 ) = 

∫ 
�2 

n 2 ∑ 

k =1 

(
∗
12 λ

(1) 
i 

)(x 

(�2 ) 
k 

) λ(2) 
k 

(x ) λ(2) 
j 

(x ) d�

= 

n 2 ∑ 

k =1 

(
∗
12 λ

(1) 
i 

)(x 

(�2 ) 
k 

) 

∫ 
�2 

λ(2) 
k 

(x ) λ(2) 
j 

(x ) d�

= 

n 2 ∑ 

k =1 

P ki (M �2 
) jk = (M �2 

P ) ji . 

hen, the algebraic counterpart of (31) reads 

(M �1 
R 12 ) i j = (M �2 

P ) ji = (P T M �2 
) i j , 

or any i = 1 , . . . , n 1 and j = 1 , . . . , n 2 , or equivalently 

 

T = M �1 
R 12 M 

−1 
�2 

(= Q 12 by (28) ) . 

This means that the matrix associated with 
∗
12 is P = Q 

T 
12 . 

Now, let us write 

 1 ,δ (x ) = 

N 0 1 ∑ 

j=1 

u 1 ,δ (x 

(1) 
j 

)�(1) 
j 

(x ) + 

n 0 1 ∑ 

j=1 

u 1 ,δ (x 

(�1 ) 
j 

) E 1 λ
(1) 
j 

(x ) 

+ R 1 g D (x ) ∀ x ∈ �1 , 

 2 ,δ (x ) = 

N 0 2 ∑ 

j=1 

u 2 ,δ (x 

(2) 
j 

)�(2) 
j 

(x ) + 

n 0 1 ∑ 

j=1 

u 1 ,δ (x 

(�1 ) 
j 

) E 2 (
21 λ
(1) 
j 

)(x ) 

+ R 2 g D (x ) ∀ x ∈ �2 , 

nd choose w δ = λe 
i 
, (for i = 1 , . . . , n 0 

1 
) in (30) 4 . 

Recalling that λe 
i 
| �1 

= λ(1) 
i 

and by (19) and (26), (30) 4 reads for

 = 1 , . . . , n 0 
1 
: 

N 0 1 
 

j=1 

u 1 j a 1 (�
(1) 
j 

, E 1 λ
(1) 
i 

) + 

N 0 2 ∑ 

j=1 

u 2 j a 2 (�
(2) 
j 

, E 2 (

∗
12 λ

(1) 
i 

)) 

+ 

n 0 1 ∑ 

j=1 

u �1 j [ a 1 (E 1 λ
(1) 
j 

, E 1 λ
(1) 
i 

) + a 2 (E 2 (
21 λ
(1) 
j 

) , E 2 (

∗
12 λ

(1) 
i 

)) 

= F 1 (E 1 λ
(1) 
i 

) + F 2 (E 2 (

∗
12 λ

(1) 
i 

)) , 

nd thanks to both (21) and (32) , it holds 

 2 (�
(2) 
j 

, E 2 (

∗
12 λ

(1) 
i 

)) = 

n 2 ∑ 

k =1 

(
∗
12 λ

(1) 
i 

)(x 

(�2 ) 
k 

) a 2 (�
(2) 
j 

, E 2 λ
(2) 
k 

) 

= 

n 2 ∑ 

k =1 

(Q 

T 
12 ) ki (A �2 , 2 ) k j = (Q 12 A �2 , 2 ) i j , 

i = 1 , . . . , n 

0 
1 

j = 1 , . . . , N 

0 
2 , 

 2 (E 2 (
21 λ
(1) 
j 

) , E 2 (

∗
12 λ

(1) 
i 

)) 

= 

n 2 ∑ 

k =1 

(
∗
12 λ

(1) 
i 

)(x 

(�2 ) 
k 

) 

n 2 ∑ 

� =1 

(
21 λ
(1) 
j 

)(x 

(�2 ) 
� ) a 2 (E 2 λ

(2) 
� , E 2 λ

(2) 
k 

) 

= 

n 2 ∑ 

k =1 

n 2 ∑ 

� =1 

(Q 

T 
12 ) ki (A �2 , �2 

) k� (Q 21 ) � j = (Q 12 A �2 , �2 
Q 21 ) i j , 

i = 1 , . . . , n 

0 
1 

j = 1 , . . . , n 

0 
1 , 
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nd 

 2 (E 2 (

∗
12 λ

(1) 
i 

)) = (Q 12 f �2 
) i , i = 1 , . . . , n 

0 
1 , 

hus (29) 3 is the algebraic counterpart of (30) 4 . 

Eq. (30) 4 (or equivalently (29) 3 ) expresses the balance of resid-

als in strong form. Algebraically, this becomes more evident once

e reformulate (29) 3 as 

(Q 12 r 2 ) i = −(M �1 
R 12 M 

−1 
�2 

r 2 ) i = (r 0 1 ) i , i = 1 , . . . , n 

0 
1 (33)

here 

 

0 
1 = f 0 �1 

− A 

0 
�1 , 1 

u 

0 
1 − A 

0 
�1 , �1 

u 

0 
�1 

, r 2 = f �2 
− A �2 , 2 u 

0 
2 − A �2 , �2 

Q 

0 
21 u 

0 
�1

(34) 

In Eq. (33) , we notice that M 

−1 
�2 

r 2 is an approximation of the

trong form of the normal stresses on �2 ; R 12 M 

−1 
�2 

r 2 is an inter-

olation of the normal stresses on �1 , still in strong form, and

 �1 
R 12 M 

−1 
�2 

r 2 returns the weak form of the normal stresses but

ow on �1 . Note that the order of magnitude of the entries of r 2 
epend on the mesh size used to discretize �2 , that of the entries

f r 1 depend on the mesh size of �1 , while the order of magni-

ude of those of both M 

−1 
�2 

r 2 and R 12 M 

−1 
�2 

r 2 are independent of the

esh size. 

Eq. (30) 4 is the weak realization of the property 

∂u 1 ,δ

∂n 1 

= −
12 

(
μ

∂u 2 ,δ

∂n 2 

)
on �1 , (35) 

hat enforces the discrete continuity of the normal fluxes across

1 . 

.3. Non-conforming Petrov–Galerkin formulation of the INTERNODES 

ethod 

By defining the spaces 

V 

∗
�1 

= { ϕ 

∗ ∈ L 2 (�) : ∃ λ1 ∈ �0 
1 ,δ

: ϕ 

∗| �1 
= E 1 λ1 , 

ϕ 

∗| �2 
= E 2 (


∗
12 λ1 ) } . (36) 

nd 

 

∗
δ = ̃

 V 1 ,δ � ˜ V 2 ,δ � V 

∗
�1 

, (37) 

he variational statement (30) can be written in compact form as

 non-conforming Petrov-Galerkin problem: find u δ ∈ X 
p 1 
h 1 

× X 
p 2 
h 2 

with

(u δ − R δg D ) ∈ V δ: 

 1 (u δ, v ∗δ ) + a 2 (u δ, v ∗δ ) = 

2 ∑ 

k =1 

[
( f, v ∗δ ) �k 

+ 〈 g N , v ∗δ〉 ∂�N,k 

]
, ∀ v ∗δ ∈ V 

∗
δ

(38) 

.4. Non-conforming generalized Galerkin formulation of the 

NTERNODES method 

The finite element assembly of problem (38) would be rather

nvolved as it requires to generate a set of basis functions for V ∗
δ

.

or this reason we reformulate (38) as a more convenient non-

onforming generalized Galerkin problem. With this aim, for any w δ

 V δ we define 

 2 ,δ (w δ, v δ ) = 

{ 

a 2 (w δ, v δ ) , if v δ ∈ ̃

 V 1 ,δ � ˜ V 2 ,δ

a 2 (w δ, E 2 (

∗
12 v δ| �1 

)) , if v δ ∈ V �1 

( f, v δ ) 2 ,δ = 

{ 

( f, v δ ) �2 
, if v δ ∈ ̃

 V 1 ,δ � ˜ V 2 ,δ

( f, E 2 (

∗
12 v δ| �1 

)) �2 
, if v δ ∈ V �1 

(39) 
〈 g N , v δ〉 2 ,δ = 

{ 

〈 g N , v δ〉 �2 
, if v δ ∈ ̃

 V 1 ,δ � ˜ V 2 ,δ

〈 g N , E 2 (
∗
12 v δ| �1 

) 〉 �2 
, if v δ ∈ V �1 

. 

We can therefore conclude that problem (30) can be equiv-

lently reformulated as a non-conforming generalized Galerkin

roblem: 

Find u δ ∈ X 
p 1 
h 1 

× X 
p 2 
h 2 

, with (u δ − R δg D ) ∈ V δ: 

 1 (u δ, v δ ) + a 2 ,δ (u δ, v δ ) = ( f, v δ ) �1 
+ ( f, v δ ) 2 ,δ

+ 〈 g N , v δ〉 ∂�N, 1 
+ 〈 g N , v δ〉 2 ,δ, 

∀ v δ ∈ V δ. (40) 

. On the mortar method and its relationship with 

NTERNODES 

As already pointed out in the Introduction, the mortar

ethod represents nowadays a well established approach for

he solution of PDEs using non-conforming discretizations. A big

eal of attention has been devoted to the theoretical analysis

4,5,11,12,14,36,38,57] as well as to the algorithmic developments 

7–9,42,47,48] of this method, in connection with a broad vari- 

ty of applications. Notable examples concern problems in struc-

ural mechanics [28,46,47] , fluid dynamics [25] , structural dynam-

cs [26] , electromagnetism [6,13,15,52] , contact problems [20,27,43–

5] , multiphysics [1,34,40,42] , etc. 

Although the mortar method is a projection (rather than an

nterpolation-based) method, we can still represent it by the gen-

ral algebraic form (29) , provided we replace Q 

0 
21 

with the ma-

rix associated with the mortar projection (named � in [49, Sec-

ion 11.4] or P in [34, Eq. (46)] ) and Q 

0 
12 

with �T . Similarly, the

ariational formulation of the mortar method (see [11] ) can be re-

rieved from (40) by replacing V δ with the mortar space 

V 

M 

δ = { v δ ∈ L 2 (�) , v k,δ = v δ| �k 
∈ V k,δ for k = 1 , 2 and 

 2 ,δ = 
M 

21 v 1 ,δ on �} , (41) 

here 
M 

21 
is the L 2 −projection from master to slave on the inter-

ace, and by replacing 
∗
12 

with 
M 

21 
in (39) . Note in particular that

he mortar method requires a single intergrid operator, 
M 

21 , rather

han two operators 
12 and 
21 in INTERNODES. 

On the other hand, we warn the reader that INTERNODES, even

hough being interpolatory, does not coincide with the so-called

ointwise matching method that was presented in the seminal mor-

ar paper [11, Eqs. (3.5)–(3.7)] . The pointwise matching is notori-

usly sub-optimal, as proven in [11, Section 3.2] and numerically

orroborated in [3] for spectral elements discretizations. 

The algorithmic and implementation aspects of both methods

eserve some further consideration. Most often mortar method is

ormulated as a saddle point problem by introducing an extra field,

he Lagrange multiplier. This yields an inf-sup compatibility condi-

ion to be fulfilled in order to ensure well-posedness. Many algo-

ithms exist aimed at condensing the system by eliminating the

agrange multipliers, in particular the one using dual spaces for

agrange multipliers [25,57] . 

When mortar methods are formulated as a single field prob-

em, the corresponding algebraic system (29) (with 
12 and 
21 

eplaced by 
M 

21 
as indicated above) is symmetric, provided the

riginal differential operator is self-adjoint. This property is not

ulfilled by INTERNODES due to the two a-priori different intergrid

perators. 

The INTERNODES and mortar stiffness matrices of (29) feature

imilar condition numbers. For example, on a piecewise linear fi-

ite element approximation of the Dirichlet problem for the Lapla-

ian in the rectangle (0, 2) × (0, 1), we report in Fig. 3 the spectra

or both INTERNODES and the mortar method relatively to struc-

ured triangulations of variable step size (precisely, we are using
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Fig. 3. The spectra of the Dirichlet stiffness matrix of system (29) for INTERNODES (left) and mortar (right), corresponding to three different structured triangulations (Set 

D of Table 2 , k = 16 (top), 32 (middle), 64 (bottom)). 
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Set D of Table 2 for k = { 16 , 32 , 64 } ). The eigenvalues of the

mortar matrix are positive real whereas those of INTERNODES fea-

ture tiny imaginary parts that vanish as the step size does. The

iterative condition number K = max i | λi | / min i | λi | behaves right the

same way (and scales like h −2 
1 

, or equivalentely like h −2 
2 

, since h 2 
∼ h 1 /2), as reported in Table 1 . 

Concerning more specifically the implementation issues, IN-

TERNODES simply requires local mass matrices at the interface

and not the cross mass matrix connecting interface basis func-
ions from both sides as in the mortar method. Moreover, it does

ot require numerical quadratures, neither a special treatment of

ross-points where more than two subdomains meet. An in-depth

nalysis of these and other subtle implementation issues of mor-

ar methods is carried out in [25,28,39,42,48,57] . The implemen-

ation of mortar method for geometric non-conforming interfaces

s also far from trivial (INTERNODES instead does not feature any

dditional difficulty with respect to the case of geometric match-

ng interfaces): as a matter of fact, it requires several steps such as
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Fig. 4. Solution u (x, y ) = arctan (4(y − 0 . 5)) cos (πx ) of problem (42) . 

Table 1 

Iterative condition number and extreme eigenvalues. 

INTERNODES mortar 

k K max i | λi | min i | λi | K max i | λi | min i | λi | 

16 511.65 7.98 1.56e −2 518.63 7.98 1.54e −2 

32 2081.39 7.99 3.84e −3 2093.80 7.99 3.82e −3 

64 8386.54 7.99 9.54e −4 8410.09 7.99 9.51e −4 

Table 2 

Number of grid points for the meshes used in the numerical simula- 

tions. 

Master domain Slave domain Aspect ratio 

Set A (k + 1) × (k + 1) (k − 1) × (k − 1) ≈ 1 

Set B (k − 1) × (k − 1) (k + 1) × (k + 1) ≈ 1 

Set C (2 k + 1) × (2 k + 1) (k − 1) × (k − 1) ≈ 2 

Set D (k − 1) × (k − 1) (2 k + 1) × (2 k + 1) ≈ 2 
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Table 3 

Orders of convergence in H 1 norm obtained using non- 

conforming meshes and the Lagrange interpolation. In the top 

row we report the results obtained using Set A (left) and Set 

B (right) while in the bottom those with Set C (left) and Set D 

(right). 

Master \ slave P 1 P 2 P 3 

P 1 1–1 1–1 1–2 1–2 1–1 1–1 

1–1 1–1 1–2 1–2 1–1 1–1 

P 2 2–1 2–1 2–2 2–2 2–3 2–3 

2–1 2–1 2–2 2–2 2–3 2–3 

P 3 2–1 2–1 3–2 3–2 3–3 3–3 

2–1 2–1 3–2 3–2 3–3 3–3 
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rojection, intersection, local meshing and numerical quadrature to

uild up the mortar interface coupling operator. These aspects are

arefully addressed in [42] (see in particular Algorithm 1, Section

.2.3). 

. Numerical solution of an elliptic problem 

In the first preliminary test, we consider the numerical solution

f the Poisson problem 

�u (x, y ) = f (x, y ) in � = (0 , 2) × (0 , 1) , (42) 

u (x, y ) = g D (x, y ) on ∂ �D = ∂ �, 

nd we show the orders of convergence of INTERNODES when

on-conforming meshes and/or non-conforming discretizations 

based on the coupling of finite element s with spectral element

) are used. 

In (42) the functions f ( x, y ) and g ( x, y ) are chosen in such a way

hat u (x, y ) = arctan (4(y − 0 . 5)) cos (πx ) (see Fig. 4 ). We decom-

ose the domain � in two subdomains: �1 = (0 , 1) × (0 , 1) and

2 = (1 , 2) × (0 , 1) . 

.1. Coupling of non-conforming FEM–FEM discretizations 

In this Section we solve problem (42) by considering non-

onforming finite elements discretizations at the subdomains in-

erface �. The non-conformity may come from the use of differ-

nt mesh-sizes and/or different polynomial degree of the finite el-

ments basis functions between the master and slave domains. In

ur numerical experiments we considered P 1 , P 2 and P 3 finite el-

ments, using structured grids that feature an aspect ratio of 1 or
 across the interface. The details of the meshes used in our sim-

lations are reported in Table 2 , wherein k = { 8 , 16 , 32 , 64 } is an

ndex used to set up the number of grid points along each coor-

inate of the master and slave domains. Furthermore, the method

roposed is tested using both the Lagrange and the RL-RBF inter-

olants as intergrid operator. 

In Fig. 5 we show the rate of convergence obtained by IN-

ERNODES for some of the simulations performed using the La-

range interpolant and for set C (left column) and set D (right col-

mn). The results reported are the H 

1 -norms of the errors com-

uted in each individual subdomain, i.e., ‖ u − u 1 ,δ‖ H 1 (�1 ) 
and ‖ u −

 2 ,δ‖ H 1 (�2 ) 
. 

By comparing the left and right plots in the first and fourth

ows of Fig. 5 (obtained with non-conforming meshes but same

olynomial degree in the master and slave domains) we observe

hat, as expected, the most accurate results are always obtained

n the subdomain triangulated with the finer mesh, independently

hether this is a master or a slave. When the master domain is

iscretized using a polynomial degree lower than the one of the

lave (compare the left and right plots of the second row in Fig. 5 )

e notice that it is better, in terms of accuracy, to use the finer

esh on the master domain. In the opposite case, i.e. when the

aster domain is discretized using a polynomial degree that is

igher than the one of the slave (compare the left and right plots

f the third row in Fig. 5 ) we observe that more precise results are

btained using the finer mesh on the slave domain. 

In Table 3 we summarize the orders of convergence obtained

y INTERNODES using non-conforming meshes and the Lagrange

nterpolant, while in Table 4 those using matching grids but non-

onforming polynomial degrees. Let us denote by p 1 and p 2 the

olynomial degrees used in �1 and �2 , respectively. As shown in

able 3 , if | p 1 − p 2 | ≤ 1 , the use of the Lagrange interpolant yields

ates of convergence that are optimal in each individual subdo-

ain, in fact they behave as h 
p i 
i 

, independently of the choice of
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Fig. 5. FEM–FEM coupling: orders of convergence obtained using Lagrangian interpolants and non-conforming meshes with aspect ratio 2. Left column using Set C, right 

column using Set D (see Table 2 ). 
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Table 4 

Orders of convergence in H 1 norm obtained using conforming 

meshes and both conforming and non-conforming polynomial de- 

grees. In each cell of the table, on the left column we report the 

results computed using the Lagrange interpolation, on the right 

those by the RL-RBF interpolation. M stands for master while S 

for slave domain. 

M \ S P 1 P 2 P 3 

Lagr. RL-RBF Lagr. RL-RBF Lagr. RL-RBF 

P 1 1–1 1–1 1–2 1–2 1–2 1–2 

P 2 2–1 2–1 2–2 2–2 2–3 2–3 

P 3 2–1 2–1 3–2 3–2 3–3 3–3 

Table 5 

Orders of convergence in H 1 norm obtained using non- 

conforming meshes and the RL-RBF interpolation. The cells are 

organized as in Table 3 . 

Master \ slave P 1 P 2 P 3 

P 1 1–1 1–1 1–2 1–2 1–2 1–2 

1–1 1–1 1–2 1–2 1–2 1–2 

P 2 2–1 2–1 2–2 2–2 2–3 2–3 

2–1 2–1 2–2 2–2 2–3 2–3 

P 3 2–1 2–1 3–2 3–2 3–3 3–3 

2–1 2–1 3–2 3–2 3–3 2–2 
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Fig. 6. Comparison between PDE approximation errors and interpolation errors for 

P p –P p FEM, and non-conforming meshes (set D of Table 2 and k = 64 ). 
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F  
hich domain plays the role of the master or slave. In the case

here p 1 − p 2 > 1 , for instance using P 3 - P 1 finite elements, the

ate of convergence behaves like h 
p 1 −1 

1 
in �1 and like h 

p 2 
2 

in �2 

or, if p 2 − p 1 > 1 , as h 
p 1 
1 

in �1 and as h 
p 1 + 1 
2 

in �2 ). 

These results can be summarized by the help of the following

mpirical formula, holding for Lagrange interpolants: if both h 1 , h 2 
 0, 

 u − u i,δ‖ H 1 (�i ) 
≤ C i (p 1 , p 2 ) h 

min (q i ,s i −1) 
i 

‖ u ‖ H s i (�i ) 
for i = 1 , 2 , 

(43) 

here 

 1 = min (p 1 , p 2 + 1) , 

 2 = 

{
p 2 if p 2 ≤ p 1 + 1 

p 1 if p 2 > p 1 + 1 . 

In (43) , C i are positive constants independent of h i , while s i >

 is the order of the Sobolev regularity of the exact solution in �i .

The results obtained on non-conforming meshes using the RL-

BF interpolant are reported both in Tables 4 and 5 . We notice

hat, if | p 1 − p 2 | ≤ 1 , the method leads to optimal rates of con-

ergence in all the numerical experiments performed, apart from

he case of the P 3 –P 3 discretization with grids of Set D. This may

e due to the fact that, as shown in Eq. (12) , the construction of

he RL-RBF interpolant does not take into account the polynomial

egree of the trace of the finite element basis functions at the in-

erface since it only requires the nodal coordinates and corresponding

odal values at the two interfaces, separately . 

However, this same feature makes RL-RBF a flexible interpola-

ion tool to deal with problems with geometrically non-conforming

nterfaces (as in the case of Fig. 1 ). The treatment of non-matching

nterfaces in the mortar setting is instead more involved as it re-

uires, in particular, an ad-hoc projection to retrieve a yet another

virtual) common interface, cf. [24,34] . 

In Fig. 6 we report the PDE’s approximation errors in broken

orm (see [49, Section 11.3] ) and the pure interpolation errors for

oth Lagrange and RL-RBF interpolants versus the polynomial de-

ree p when non-conforming meshes are used (Set D, k = 64 ). We

otice that the approximation error and the interpolation error

eature almost the same rate of decay with respect to p . In partic-
lar, for p = 1 the RL-RBF interpolation leads to more accurate re-

ults w.r.t. the Lagrange one; for p = 2 both interpolants yield the

ame accuracy while for p = 3 the Lagrange interpolation is more

ccurate. This justifies the sub-optimal orders of the block P 1 –P 3 of

able 3 w.r.t. the corresponding block of Table 5 , as well as those

f the P 3 –P 3 simulation with Set D in Table 5 . 

.2. Coupling of non-conforming SEM–SEM discretizations 

In this section we consider SEM discretization in both mas-

er and slave domains and we compare the errors obtained by

NTERNODES (using the Lagrange intergrid operator) with those

enerated by the mortar approach. As in the previous subsec-

ion, we plot the errors in H 

1 -norm, i.e., ‖ u − u 1 ,δ‖ H 1 (�1 ) 
and

 u − u 2 ,δ‖ H 1 (�2 ) 
. 

Pictures in the left column of Fig. 7 refer to INTERNODES, while

hose in the right column to the mortar approach. 

Let p 1 and p 2 denote the polynomial degrees used in �1 and

2 , respectively. The errors displayed by the two methods are

omparable; moreover, for i = 1 , 2 , they decay as h 
p i 
i 

if | p 1 − p 2 | ≤
 , while the order of convergence is downgraded when | p 1 − p 2 | >
 , as we can see in the last row of Fig. 7 , where p 1 = 5 and p 2 = 2 .

n fact, in the latter case, the error in the master domain behaves

ike h 3 
1 

for both the methods and not as h 5 
1 
. 

More precisely, the plot in the first row refers to a test case

ith polynomial conformity and mesh non-conformity; the one in

he second row to a case with both polynomial and mesh non-

onformity, with p 1 = p 2 + 1 ; that in the third row again to a case

ith both polynomial and mesh non-conformity, with p 1 = p 2 − 1 ;

nally the last row to a situation with p 1 − p 2 > 1 . 

In Tables 6 and 7 we show the rates of convergence with re-

pect to h both for INTERNODES and the mortar approach, re-

pectively, when considering different non-conforming situations, 

s those in Tables 3 and 5 . 

First of all we notice that INTERNODES is accurate as well as

he mortar method. Furthermore, the trend observed for the FEM

iscretization (and reported in formula (43) ) holds also for SEM

ase. 

In Table 8 the orders of convergence in H 

1 norm versus the

esh sizes h 1 and h 2 are shown in the case of conforming meshes

nd different (but also equal) polynomial degrees. 

The convergence analysis w.r.t. the polynomial degrees p i is

ore involved and it is currently under investigation. See however

ig. 8 below where the error behavior of both INTERNODES and
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Fig. 7. Convergence history with respect to the mesh sizes h 1 and h 2 for INTERNODES (left) and mortar (right) approaches. SEM discretization. First line: Set C; second line: 

Set D; third line: Set D; fourth line: Set A. 
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Table 6 

SEM–SEM coupling: orders of convergence with respect to the mesh 

sizes h 1 and h 2 of INTERNODES using non-conforming meshes. M 

stands for master domain while S for slave domain. The cells are or- 

ganized as in Table 3 . 

M \ S Q 2 Q 3 Q 4 Q 5 

Q 2 2–2 2–2 2–3 2–3 2–2 2–3 2–2 2–3 

2–2 2–2 2–3 2–3 2–2 2–3 2–2 2–3 

Q 3 3–2 3–2 3–3 3–3 3–4 3–4 3–3 3–4 

3–2 3–2 3–3 3–3 3–4 3–4 3–4 3–4 

Q 4 4–2 3–2 4–3 4–3 4–4 4–4 4–5 4–5 

3–2 3–2 4–3 4–3 4–4 4–4 4–5 4–5 

Q 5 4–2 3–2 5–3 4–3 5–4 5–4 5–5 5–5 

3–2 3–2 5–3 5–3 5–4 5–4 5–5 5–5 

Table 7 

SEM–SEM coupling: orders of convergence with respect to the mesh 

sizes h 1 and h 2 of the mortar approach using non-conforming 

meshes. M stands for master domain while S for slave domain. The 

cells are organized as in Table 3 . 

M \ S Q 2 Q 3 Q 4 Q 5 

Q 2 2–2 2–2 2–3 2–3 2–2 2–3 2–2 2-3 

2–2 2–2 2–3 2–3 2–2 2–3 2–2 2–3 

Q 3 3–2 3–2 3–3 3–3 3–4 3–4 3–3 3-4 

3–2 3–2 3–3 3–3 3–4 3–4 3–4 3–4 

Q 4 4–2 3–2 4–3 4–3 4–4 4–4 4–5 4–5 

3–2 3–2 4–3 4–3 4–4 4–4 4–5 4–5 

Q 5 4–2 3–2 5–3 4–3 5–4 5–4 5–5 5–5 

3–2 3–2 5–3 5–3 5–4 5–4 5–5 5–5 

Table 8 

SEM–SEM coupling: orders of convergence with respect to the mesh 

sizes h 1 and h 2 , using conforming meshes. In each cell of the table, 

on the left and on the right we report the results computed using 

INTERNODES and mortar approach, respectively. 

M \ S Q 2 Q 3 Q 4 Q 5 

Q 2 2–2 2–2 2–3 2–3 2–2 2–2 2–2 2–2 

Q 3 3–2 3–2 3–3 3–3 3–4 3–4 3–4 3–4 

Q 4 4–2 4–2 4–3 4–3 4–4 4–4 4–5 4–5 

Q 5 4–2 4–2 5–3 5–3 5–4 5–4 5–5 5–5 
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Table 9 

FEM–SEM coupling: orders of convergence with re- 

spect to the mesh sizes h 1 and h 2 when using con- 

forming meshes. 

Master–slave Lagrange RL-RBF mortar 

P 1 –Q 2 1–1 1–2 1–1.6 

P 1 –Q 3 1–1 1–2 1–1.7 

P 1 –Q 4 1–1 1–2 1–1.7 

Q 2 –P 1 2–1 2–1 2–1 

Q 3 –P 1 2–1 2–1 2–1 

Q 4 –P 1 2–1 2–1 2-1 

Fig. 8. Comparison between PDE approximation errors and interpolation errors for 

SEM–SEM couplings 8 × 8 and 6 × 6 spectral elements are used in the master and 

in the slave subdomains, respectively. 

Fig. 9. SEM–FEM coupling. H 1 norm errors versus h 2 when Q 4 are used in �1 (mas- 

ter) with fix h 1 = 1 / 6 , and P 1 are used in �2 (slave). The black line denotes the 

error obtained by discretizing the global domain by conforming Q 4 SEM. 

c  

g  

T

 

t  

i  

g  
he mortar methods versus the polynomial degree p are shown.

he two curves are practically overlaid when using Lagrangian in-

erpolation for INTERNODES. In the same figure we also plot the

ure interpolation errors: as it can be appreciated, the approxi-

ation error and the interpolation error feature the same rate of

ecay with respect to p . Also reported are the RL-RBF interpola-

ion errors: for moderate polynomial degrees ( p ≤ 5) the rate of

ecay is the same as for Lagrangian interpolation, whereas (as ex-

ected) it flattens for larger values of p . Note that the better ac-

uracy displayed for the RL-RBF interpolation errors with respect

o that of Table 5 is due to the fact that interpolation nodes now

oincide with the (non-uniformly spaced) Gauss–Lobatto–Legendre

odes [17] . 

.3. Coupling of FEM–SEM discretizations 

We consider now the coupling of FEM–SEM discretizations.

e set �1 = (0 , 1) × (0 , 1) , �2 = (1 , 2) × (0 , 1) and the func-

ion u (x, y ) = arctan (4(y − 0 . 5)) cos (π(x − 0 . 1)) as exact solution

f the problem (42) . 

Polynomial non-conformity: In Table 9 we show the convergence

rders w.r.t. the mesh sizes h when the master domain �1 is dis-

retized by P 1 finite elements and the slave domain �2 by Q p 

pectral elements with p = 2 , 3 , 4 and vice versa. h denotes the di-

meter of the structured and regular triangular mesh, that coin-

ides with the diameter of the spectral elements. In this first test
ase we consider mesh conformity and interpolation by either La-

range and RL-RBF. Finally we compare the results obtained by IN-

ERNODES with those generated by the mortar method. 

The advantage of using RL-RBF instead of Lagrange interpola-

ion is clear when the master discrete space is the poorest one,

.e. when it is discretized by P 1 . More precisely, when using La-

range interpolation, the first order of convergence driven by P in
1 
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Fig. 10. SEM–FEM coupling. Meshes (at left) and solution contours (at right) obtained using Q 4 in �1 (master) and P 1 in �2 (slave). At top h 2 = 1 / 8 , at bottom h 2 = 1 / 32 . 

Table 10 

FEM–SEM coupling: orders of convergence w.r.t. the mesh-sizes h 1 
in �1 and h 2 in �2 when using non-conforming meshes. The cells 

are organized as in Table 3 . 

Master–slave Lagrange RL-RBF mortar 

P 1 –Q 2 1–1.5 1–2 1–2 1–2 1–2 1-2 

1–2 1–1.5 1–2 1–2 1–2 1-2 

P 1 –Q 3 1–1 1–2 1–2 1–2 1–1.5 1-2 

1–1 1–1.5 1–2 1–2 1–2 1-2 

P 1 –Q 4 1–1 1–2 1–2 1–2 1–1.5 1-2 

1–1 1–1 1–2 1–2 1–2 1-2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11 

SEM–FEM coupling: orders of convergence w.r.t. the respective 

mesh-sizes h 1 in �1 and h 2 in �2 when using non-conforming 

meshes. The cells are organized as in Table 3 . 

Master–slave Lagrange RL-RBF mortar 

Q 2 –P 1 2–1 2–1 2–1 2–1 2–1 2-1 

2–1 2–1 2–1 2–1 2–1 2-1 

Q 3 –P 1 2–1 2–1 2–1 2–1 2–1 2-1 

2–1 2–1 2–1 2–1 2–1 2-1 

Q 4 –P 1 2–1 2–1 2–1 2–1 2–1 2-1 

2–1 2–1 2–1 2–1 2–1 2-1 

Fig. 11. Domain decomposition considered for the example with geometrically non- 

conforming interfaces. 
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�1 is observed in �2 as well, even if in �2 a higher degree, p ≥ 2,

is used. Conversely, when using RL-RBF, the order of convergence

in the slave domain is equal to 2, thus reflecting the more accu-

rate discretization used. In any case, even when p > 2 the order of

convergence in �2 is still 2. 

When the master domain is discretized more finely by Q p ( p ≥
2) and P 1 are used in the slave, the rates of convergence are 2 and

1 in the master and the slave domain, respectively, for both the

approaches. 

Mesh non-conformity: We consider now non-conforming meshes

and, as in the previous sections, four different situations, charac-

terized by a varying aspect ratio between the mesh sizes h 1 and

h 2 , as well as by the refinements of the grids. In Tables 10 and 11

the convergence orders w.r.t. the mesh sizes h 1 and h 2 are shown.

As for the mesh conforming case, when the master domain is dis-

cretized by P 1 , the Lagrange interpolation downgrades the higher

approximation degree of the slave domain, while the RL-RBF in-

terpolation always provides convergence order 1 in the master do-

main and 2 in the slave one. On the contrary, when the master

domain is discretized by SEM, the convergence orders w.r.t. h are 2

in the master domain and 1 in the slave one for all the considered

approaches. 

The higher accuracy of the SEM discretization is downgraded

by that of the P FEM approximation. To verify this statement,
1 
e fix now the discretization in �1 (master domain) by using 6

6 quads Q 4 , while we refine the P 1 mesh in �2 by choosing

 2 = 1 / 8 , 1 / 16 , 1 / 32 , 1 / 64 , 1/128. In Fig. 9 , the H 

1 norm of the

rrors with respect to the exact solution are shown versus h 2 . The

rror in �1 decays as h 2 2 until the accuracy prescribed by global

 4 discretization is reached, while the error in �2 is O(h 2 ) . In

ig. 10 we show the meshes used and contours of the computed

olutions when h 2 = 1 / 8 and h 2 = 1 / 32 . The rough approximation

round the interface is evident when h = 1 / 8 . 
2 
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Fig. 12. Solutions obtained using P 1 –P 1 finite elements for the master and slave domains using meshes of increasing refinement that are geometrically non-conforming. In 

the top row we show the numerical results on the whole domain while in the bottom row a zoom of the solution close to the interface is displayed. 

Fig. 13. Rates of convergence in H 1 norm using geometrically non-conforming interfaces. 
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. Coupling of geometrically non-conforming subdomains 

To assess the robustness of INTERNODES with respect to the ge-

metrically non-conforming case, we solve problem (42) with ex-

ct solution u (x, y ) = sin ((x − 1 . 2)(y − 1 . 2)2 π) + 1 in the domain

= (−0 . 5 , 0 . 5) × (−0 . 5 , 0 . 5) , decomposed as shown in Fig. 11 . The

nner circle is centered at point (0, 0) and has radius R = 0 . 35 . 

In Fig. 12 we show the results obtained using P 1 finite elements

n both the slave and the master domains. Although many gaps

nd overlaps are present at the interface between the subdomain

rids (see bottom row in Fig. 12 ), we observe that the quality of

he numerical solutions obtained does not worsen. In Fig. 13 the

esults obtained using first or second degree polynomials in the

aster and slave domains are reported. From Fig. 13 (a) we observe

hat when using linear basis functions, INTERNODES leads to first

rder rate of convergence in both the master and the slave subdo-

ains. Finally, as shown in Fig. 13 (b), we notice that quadratic con-

ergence is obtained with P 2 finite elements only for sufficiently

mall mesh sizes for which the gaps and overlaps between the
 c  
aster and slave subdomains tend to become imperceptible (see

ottom-right picture of Fig. 12 ). 

. Diffusion of the pollutant around an industrial chimney 

We consider now a 2D numerical simulation that mimics the

iffusion of the pollutant concentration u ( x ) in a bounded region

round an industrial chimney. To this aim we solve problem (1) in

= (0 , 1) 2 , with constant diffusion coefficient μ = 10 −3 , null re-

ction coefficient α, null convection b and chimney discharge f =
ω , being χω the characteristic function of the set ω = { x ∈ R 

2 :

 x − x c | < 0 . 02 } and x c = (0 . 5 , 0 . 5) . Homogeneous boundary condi-

ions are set on the boundary ∂�. 

Since the largest variation of the solution occurs in a small re-

ion around the set ω, the computational domain � is split into

he subsets �2 = (0 . 45 , 0 . 55) 2 and �1 = � \ �2 , then indepen-

ent meshes are designed there, with the aim to better approxi-

ate the solution in proximity of the chimney position. More pre-

isely, 5 × 5 quads Q are used in � (for a total amount of 1681
8 2 
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Fig. 14. At top, the mesh used in the simulation of the diffusion of pollutant concentration (the right picture is a zoom of the left one). At bottom, the numerical solution 

obtained by both the INTERNODES with Lagrange interpolant as intergrid operator (at left) and by monodomain conforming SEM Q 32 on the whole � (at right). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15. Traces of the numerical solutions plotted in Fig. 14 versus the curvilinear 

abscissa s that starts from the point (0.45, 0.45) and moves counterclockwise along 

�. 
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t

 

O  

a  
degrees of freedoms) and P 1 FEM with h max = 1 / 20 in �1 (711 d.o.f

and 1331 triangles). 

INTERNODES is used to compute the numerical solution, using

either the Lagrange or the RL-RBF interpolants as intergrid oper-

ators. The external domain �1 plays the role of master (choosing

�2 as master would yield a singular problem, as the reaction coef-

ficient α is null and ∂�2 = �2 is sctrictly internal to �). 

In Fig. 14 we plot both the mesh (top) and the pollutant con-

centration (bottom left) obtained by solving problem (1) by IN-

TERNODES method with Lagrange interpolation at the interfaces.

The plot at bottom right of Fig. 14 refers to the numerical solution

obtained by conforming SEM on a uniform mesh of 8 × 8 quads

in � with polynomial degree p = 32 . The range of the color bars

used to plot the two numerical solutions is the same, the black

box marks the interface � between the two subdomains. 

In Fig. 15 we plot the traces along � of the numerical solutions

u 1, δ and u 2, δ shown in Fig. 14 bottom-left, as well as the trace of

the monodomain SEM solution u SEM 

of Fig. 14 bottom-right. The

curves are plotted versus the curvilinear abscissa s that starts from

the point (0.45, 0.45) and moves counterclockwise along �. 

This test highlights the numerical robustness of INTERNODES

when addressing grid non-conformity featuring severe aspect ra-

tio. 

10. Numerical solution of a fluid flow past a cylinder 

In this Section we consider the numerical simulation of a fluid

flow past a 3D cylindrical obstacle at two different Reynolds num-

bers, that are Re = 20 and Re = 100 , see [54] . 

We model the flow dynamics by the Navier–Stokes equations

for an incompressible fluid. The equations are discretized in space
y means of the Finite Element method and in time by Finite Dif-

erences. More specifically, we use P 1 - P 1 finite elements for the

patial approximation of the fluid velocity and pressure variables

stabilized by SUPG), respectively, while a second order backward

ifferentiation formula is used for the time discretization (see, e.g.

49] ). The nonlinear convective term in the fluid momentum equa-

ion is linearized by means of a second order temporal extrapola-

ion [30,31] . 

In order to compare the numerical results obtained by INTERN-

DES with those available in the literature we compute the drag

nd lift coefficients of the cylinder. To this end, we introduce a
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(a) Boundary layer refinement obtained by progressive
reduction of the mesh size (cross section).

(b) Independent meshes for the far field and the
boundary layer zones (cross section).

Fig. 16. Two different strategies to realize boundary layers mesh refinements. 

Fig. 17. Zoom of the meshes and the velocity fields in the region close to the cylinder on a cut plane at z = 0 . 205 m : in the first row we show the meshes used for the 

numerical simulations. In the second row we plot the velocity fields obtained. 
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nit vector directed as the incoming flow 

ˆ v ∞ 

= 

v ∞ 

‖ V ∞ 

‖ , and a unit

ector ˆ n ∞ 

orthogonal to ˆ v ∞ 

. The aerodynamic drag and lift coeffi-

ients for the cylinder read: 

 D (u , p) = − 1 

q ∞ 

S 

∮ 
S 

( σ f (u , p) ̂  n ) · ˆ v ∞ 

d�, (44) 

 L (u , p) = 

1 

q ∞ 

S 

∮ 
S 

( σ f (u , p) ̂  n ) · ˆ n ∞ 

d�, (45) 

here u and p are the velocity and pressure variables, σ f is the

auchy stress tensor of the fluid, q ∞ 

= 

1 
2 ρV 2 ∞ 

is the dynamic pres-

ure, ρ is the density of the fluid and S is the surface area of the

ylinder. 

For an accurate estimation of the aerodynamic coefficients, the

se of a boundary layer refinement of the computational mesh

round the cylinder is mandatory (see [32] ). A possible strategy

o generate such a refinement consists in gradually decreasing the

esh element size in the domain while approaching the cylinder,

s shown in Fig. 16 (a). An alternative strategy relies in splitting the

omputational fluid domain into two sub-domains with indepen-

ent (non-conforming) meshes, see Fig. 16 (b): the finer mesh is

sed to represent the boundary layer around the cylinder while the

oarse one for the far field. In the latter case, after space and time

iscretization of the Navier–Stokes equations, the algebraic form of
he linear system to be solved reads 

 

 

F 1 0 −I T �1 
M �1 


12 M 

−1 
�2 

0 F 2 I T �2 −
21 I �1 
I �2 

0 

⎤ ⎦ 

[ 

(u f 1 , p f 1 ) 
T 

(u f 2 , p f 2 ) 
T 

λ2 

] 

= 

[ 

b 1 

b 2 

0 

] 

. (46) 

In (46) , we denoted by F 1 and F 2 the fully discrete form of the

uid problem in the master and slave portions of the domain, re-

pectively. The matrices I �1 
and I �2 

restrict vectors defined on the

aster and slave domain to their interface, respectively, and ac-

ount for the continuity of the velocities (imposed strongly). Their

ransposes account for the continuity of the normal stresses (im-

osed weakly). We notice that system (46) is written in the so-

alled augmented form as we introduced the auxiliary variable λ2 

hich can be regarded as a vector of Lagrange multipliers used to

nforce the continuity of the velocities at the interface. 

We solve (46) using the preconditioned GMRES method. The

reconditioner is built up by neglecting block −I T 
�

M �1 

12 M 

−1 
�

in

1 2 
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Fig. 18. Horizontal view of the meshes used for the numerical example at Reynolds 100. 

Fig. 19. Visualization of the numerical solution obtained at times t = 2 s (top row), t = 4 s (middle row) and t = 6 s (bottom row). On the left column we report the fluid 

velocity while on the right the fluid pressure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 12 

Numerical results obtained for the benchmark problem at Re = 20 . The reference 

drag and lift coefficients are C D = 6 . 18533 and C L = 0 . 009401 , respectively. 

Mesh level DOF C D C L % error C D % error C L 

1 149,004 6.39269 0.003331 3.35 64.56 

2 250,400 6.26037 0.005431 1.21 42.22 

3 531,992 6.20392 0.006838 0.31 27.26 

4 1,209,060 6.17584 0.009412 0.15 0.11 

 

d  

l  

d  

T  

o  

f  

o  

(  

s  

t  

m  

m  

o

(46) yielding a new matrix P that can be factorized as follows 

P = P 1 · P 2 = 

[ 

F 1 0 0 

0 I 0 

−
21 I �1 
0 I 

] [ 

I 0 0 

0 F 2 I T �2 

0 I �2 
0 

] 

≈
[ ˜ F 1 0 0 

0 I 0 

−
21 I �1 
0 I 

] [ 

I 0 0 

0 

˜ F 2 I T �2 

0 I �2 
0 

] 

= ̃

 P 1 · ˜ P 2 = ̃

 P . (47)

P 1 refers solely to the master domain and P 2 to the slave. The

further approximation that we have operated consists in replacing

both F 1 and F 2 with a SIMPLE preconditioner [23] , ˜ F 1 in �1 and 

˜ F 2 
in �2 . Notice that F 2 encodes Dirichlet conditions on the velocity

field at the interface, whereas F 1 is associated with Neumann con-

ditions on the normal stresses, and SIMPLE changes accordingly. 

Remark 10.1. The new preconditioner ˜ P can in fact be formally

derived from FaCSI, a preconditioner introduced in [21] for fluid-

structure interaction problems, in the case in which the interface

movement is dealt with explicitly in time and the block pertaining

to the structure is replaced by the fluid problem in the domain �1 .

The values of the physical parameters for the fluid as well as

the boundary conditions used in our simulations are those de-

scribed in [54] . The essential boundary condition on the fluid ve-

locity at the cylinder surface is imposed in weak form [2,33] . 
In Table 12 we report the drag and lift coefficients of the cylin-

er obtained using different fluid meshes in which the boundary

ayer refinement was obtained as in Fig. 16 (a). We used 373,068

egrees of freedom in the master domain and 103,768 in the slave.

he coarser mesh is used to represent the far field while the finer

ne is around the cylinder. In this example, the mesh-size used

or the coarser mesh is the one of Mesh Level 1 while the one

f the finer mesh coincides with the mesh-size of Mesh level 4

see Table 12 ). Furthermore, the far field domain is considered as

lave domain while the one around the cylinder is the master. In

his way the interface degrees of freedom of the master (finer) do-

ain are primal unknowns of the problem (see Eq. (29) ). We re-

ark that the ratio between the mesh size of the far field and the

ne in the boundary layer is approximately 6. 
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Fig. 20. Plot over line, between points P1 = (0.5,0,0.205) and P2 = (0.5,0.41,0.205), of the flow velocity at different times. 
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Table 13 

Comparison of the aerodynamic coefficients computed with ref- 

erence values available in literature [54] . 

Maximum C D Maximum C L Minimum C L 

Computed 3.3017 0.0029 −0.011017 

Reference 3.2978 0.0028 −0.010999 
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The numerical simulation performed using two non-conforming

eshes yields a lift coefficient C L = 0 . 009487 and a drag coeffi-

ient C D = 6 . 19713 . The errors with respect to reference values are

.91% and 0.19% on the estimation of the lift and the drag coef-

cients, respectively. To analyze the computational costs, we com-

are the average time to complete a single time step and the num-

er of linear solver iterations on the fully conforming simulation

ith Mesh level 4 of Table 12 and the one by INTERNODES with

on-conforming meshes. The approach based on the use of non-

onforming meshes leads to a reduction of the 50% of the time to

erform a time step (thanks to the fact that the number of de-

rees with non-conforming meshes is roughly half of the one of

esh level 4). Furthermore, we observe that the average (over the

ime steps) number of linear solver iterations is 25, and does not

iffer from the one of a fully conforming case. 

Finally, we report the results obtained for Re = 100 . In

ig. 18 we show the fluid meshes considered for the region close to

he obstacle and the far field. In this unsteady case, the geometry

n which we use a finer mesh is extended to embed also the wake

egion behind the cylinder. We consider the far field domain as the

lave domain, while the one near the cylinder as master. The com-

utational meshes yield 281,393 degrees of freedom in the slave

omain and 844,179 in the master. The aspect ratio between the

esh sizes of the slave and master domains at their interface is

pproximately 3. 

The same problem of fluid flow past a cylinder has also been

nvestigated in [25] by a dual mortar approach for non-conforming

eshes tying a fine boundary layer grid in the near field with a

oarser grid in the far field. 

In Fig, 19 we show the numerical results computed at different

imes on a cut plane parallel to the z axis (located at z = 0 . 205 m ):

e notice that both the velocity and pressure solutions obtained in

he master and slave domains are in very good agreement at their

nterface. In addition, we notice that the velocity field computed at

ime t = 4 s (shown in Fig. 19 ) is in very good agreement w.r.t. the

ne reported in [25] , Fig. 16 . 

m

 

o  
To better assess the behavior of the solution across the inter-

ace, in Fig. 20 we plot the fluid velocity along a vertical line pass-

ng through both the master and slave sub-domains. 

Finally, in Table 13 , we compare the aerodynamic coefficients

f the cylinder computed numerically with those available in liter-

ture. 

1. Conclusions 

In this work we introduced INTERNODES, an accurate and

asy to implement interpolation based method for coupling the

olutions of PDEs on subdomains that feature non-conforming

iscretizations (non-conforming grids, non-conforming polynomial 

egrees and non-matching geometries). Individual subdomains are

iscretized either by the finite element method or by the spectral

lement method. 

The non-conforming problem was formulated in variational

orm as a generalized Galerkin problem in which two intergrid

perators are designed for transferring the solution and its fluxes

cross the non-conforming subdomain interfaces. These operators

re based on interpolation: both Lagrangian and Radial Basis Func-

ions interpolation were considered in this work. 

We extensively investigated the convergence properties of IN-

ERNODES by numerically solving an elliptic problem in which the

ubdomains were discretized by non-conforming FEM–FEM, SEM–

EM and SEM–FEM (even in the presence of geometrically non-

atching interfaces). 

A comparative study with the mortar method was carried

ut and we showed that the orders of convergence obtained by



40 S. Deparis et al. / Computers and Fluids 141 (2016) 22–41 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

 

 

 

INTERNODES are essentially the same as those generated by the

mortar method. 

Finally, we tested the new method by solving the benchmark

problem of the fluid flow past a cylinder at different Reynolds

numbers in which independent (non-conforming) meshes for the

boundary layer and the far field parts of the domain were consid-

ered. 

INTERNODES turns out to be very effective in treating severe

grid non-conformity and polynomial non-conformity. 
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