
Discretization of the 1d Poisson equation
Given Ω = (xa, xb), ∂Ω = boundary of Ω, given the functions
f : Ω → R and g : ∂Ω → R, we look for the approximation of the
solution u : Ω → R of the Poisson equation

{

−u′′ = f in Ω
u = g on ∂Ω

by the centered 2nd-order finite difference scheme:

{

−
ui−1 − 2ui + ui+1

h2
= f (xi) i = 2, . . . ,N − 1

u1 = g(xa), uN = g(xb)

or equivalently

{

−ui−1 + 2ui − ui+1 = h2f (xi ) i = 2, . . . ,N − 1
u1 = g(xa), uN = g(xb)
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The mesh grid We fix N ∈ N and we define the equispaced points
xi (for i = 1, . . . ,N) in Ω = (xa, xb), with x1 = xa and xb = xN .
Then we set h = (xb − xa)/(N − 1) (the space between two
consecutive points).
The unknown vector
It is a column vector u with N entries, it will hold the
approximations of the exact solution at the point xi .
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The matrix approximating the Laplace operator by centered
2nd-order finite difference scheme
(We move h2 on the right hand side)

A =



















1 0 0 . . . 0

−1 2 −1
...

0
. . .

. . .
. . . 0

... −1 2 −1
0 . . . 0 0 1



















e=ones(N,1);

A=spdiags([-e,2*e,-e],(-1:1),N,N);

A(1,:)=zeros(1,N); A(1,1)=1;

A(N,:)=zeros(1,N); A(N,N)=1;

c©Paola Gervasio - Numerical Methods - 2012 3



The right hand side with Dirichlet boundary conditions
b = [ua, h

2f (x2), . . . , h
2f (xN−1), ub]

T .

f=@(x)[...]; ua=...; ub=...;

b=h^2*f(x); b(1)=ua; b(N)=ub;

The linear system
Solve: Au = b

The plot
plot(x,u)

The error (if we know the exact solution and we want to check the
code)

uex=@(x)[...];

UEX=uex(x);

err=max(abs(UEX-u));
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First test case (to check if the code works well)

Exercise 1. (espde1) Ω = (0, 10), f (x) = 2 cos(x)/ex ,
g(x) = sin(x)/ex .
The exact solution is uex (x) = sin(x)/ex .
If N = 40, the error err = maxxi

|uex (x) − u(x)| ≃ 0.0094
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Error analysis

Now take N = 10, 20, 40, 80, 160, solve the Poisson problem and
collect the errors in a vector.
Plot the solutions computed with various N and plot the errors vs
h = (xb − xa)/(N − 1), to check that it decays as h2.
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Exercise 2. Ω = (−2, 10), f (x) = −0.1χ(−1/2,1/2) − 0.3χ(4.5,5.5),
ua = ub = 0.
f (x) represents the discontinuous load on an elastic string with
tension equal to one, which is fixed at the end-points. The solution
u(x) of the Poisson problem is the displacement of the bar.
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The heat equation

Given Ω = (xa, xb), ∂Ω = boundary of Ω, (t0,T ) ⊂ R, given the
functions f : Ω× (t0,T ) → R and g : ∂Ω× (t0,T ) → R, given the
thermal diffusivity µ, we look for the approximation of the solution
u : Ω × (t0,T ) → R of the heat equation







∂u
∂t

− µ∂2u
∂x2 = f in Ω × (t0,T )

u = g on ∂Ω × (t0,T )
u = u0 in Ω × {t0}

by approximating the time derivative by BE and the space
derivative by the centered 2nd order finite difference scheme.
{x1, x2, . . . , xN} are equispaced points in Ω with x1 = xa and
xN = xb, h is the step along x , so that uj(t) = u(xj , t).
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The semi-discretization of the heat equation yields a system of
ordinary differential equations of the following form







du

dt
(t) = −

µ

h2
Au(t) + f(t) ∀t > 0,

u(0) = u
0,

where u(t) = (u1(t), . . . , uN(t))T is the vector of unknowns,
f(t) = (f1(t), . . . , fN(t))T , u

0 = (u0(x1), . . . , u
0(xN))T , and A is

the tridiagonal matrix introduced for the Poisson problem.
Now we discretize the time interval: {t(0), t(1), . . . , t(k), . . .} are
equispaced points in [t0,T ]. The time-step is ∆t
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The BE method applied to the heat equation reads







u
(k+1) − u

(k)

∆t
= −

µ

h2
Au

(k+1) + f
(k+1), k = 0, 1, . . .

u
0 given

We can write a matlab function to implement this scheme.
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Exercise 3. (espde3) Solve the heat equation in (xa, xb) = (0, 1)
with µ = 1, f (x , t) = − sin(x) sin(t) + sin(x) cos(t), initial
condition u(x , 0) = sin(x) and boundary conditions u(0, t) = 0 and
u(1, t) = sin(1) cos(t). In this case the exact solution is
u(x , t) = sin(x) cos(t). Compute the errors
maxi=0,...,N |u(xi , 1) − uM

i | with respect to the time-step ∆t on a
uniform space grid with h = 0.002.
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Exercise 4. (espde4) We consider a homogeneous, three meters
long aluminium bar with uniform section. We are interested in
simulating the evolution of the temperature in the bar starting
from a suitable initial condition, by solving the heat equation. If we
impose adiabatic conditions on the lateral surface of the bar (i.e.
homogeneous Neumann conditions), and Dirichlet conditions at
the end sections of the bar, the temperature only depends on the
axial space variable (denoted by x). Thus the problem can be
modeled by the one-dimensional heat equation with f = 0,
completed by the initial condition at t = t0 and by Dirichlet
boundary conditions at the end points of the reduced
computational domain Ω = (0,L) (L = 3m). Pure aluminium has
thermal conductivity k = 237 W/(m K), density ρ = 2700kg/m3

and specific heat capacity c = 897 J/(kg K), then its thermal
diffusivity is µ = 9.786 · 10−5m2/s. Finally we consider the initial
condition T (x , 0) = 500 K if x ∈ (1, 2), 250 K otherwise and the
Dirichlet boundary conditions T (0, t) = T (3, t) = 250 K.
Compute the numerical solution by BE (in time) + FD2 (in space).
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