
ODE for the driven oscillator with damping

g(t)

K

m

R
x(t)

Simple oscillator composed of a mass m, a spring with spring
constant K .
The external force g(t) drives the system, where t is the time,
while R is the internal damping coefficient (friction).
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The displacement x(t) of the mass m at time t is the solution of
the ode

mx ′′(t) + Rx ′(t) + K (x(t) − L) = g(t) t ≥ t0

where L is the rest length of the spring.
It is a 2nd-order ode. Two initial conditions are needed:
x(t0) = x0 initial position
x ′(t0) = 0 initial velocity
Case 1.
Set g(t) ≡ 0 (no driven force), R = 0 (no friction), K = 1, m = 1,
L = 1 x0 = 2, T = 100.
Compute the numerical solution with the explicit Runge-Kutta
scheme of order 4 and with h = 0.1, h = 1, h = 2, h = 4.
In a second time, solve the problem by FE with h = 0.1, h = 0.01
and h = 0.001. Comment on the results.
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Solution. The explicit Runge-Kutta scheme of order 4 is:
- explicit,
- one-step,
- fourth-order accurate,
- absolutely stable under conditions on h. Its stability region is:
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Download:
http://dm.ing.unibs.it/gervasio/Nummeth/matlab/rk4.m
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Input and output are as in the previous functions:

[tn,un]=rk4(odefun,tspan,y0,Nh)

Let us reduce the 2nd-order ode

mx ′′(t) + Rx ′(t) + K (x(t) − L) = g(t)

in a system of 1st-order equations:
y1(t) = x(t),
y2(t) = x ′(t) = y ′

1
(t)

then explicit x ′′(t) , so that
x ′′(t) = −(R/m)x ′(t) − (K/m)(x(t) − L) + g(t)/m:























y ′

1
(t) = y2(t)

y ′

2
(t) = −(R/m)y2(t) − (K/m)(y1(t) − L) + g(t)/m

y1(t0) = x0

y2(t0) = v0
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By setting: y(t) = [y1(t), y2(t)]
t ,

y′(t) = [y ′

1
(t), y ′

2
(t)]t ,

y(t0) = [y1(t0), y2(t0)]
t ,

F(t, y(t)) =

[

y2(t)
−(R/m)y2(t) − (K/m)(y1(t) − L) + g(t)/m,

]

the vector form of the ode reads:
{

y′(t) = F(t, y(t)) t ≥ t0
y(t0) = y0
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Numerical results for RK4
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Comments on the numerical results

The solution is good only when h = 0.1, it is periodic without
damping.
When h = 1, h = 2 the solutions vanishes when t grows, but it is
not a physical solution, we have not damping in our system. The
solution dies since there is a numerical damping that acts as the
friction does. The unphysical behavior is due to large h (not
accurate results).
When h = 4 the numerical solution blows up, in this case the
absolute stability is missed out.
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Absolute stability for periodic solutions

The absolute stability concept can be extended to periodic
solutions.
We say that the scheme is absolutely stable if the numerical
solution reflects the behavior of the exact solution when t → ∞.
When h = 0.1, 1, 2 the absolute stability is satisfied and the
solution remains bounded.
When h = 4 the absolute stability is missed out: the solution
shows oscillations with increasing amplitude.

c©Paola Gervasio - Numerical Methods - 2012 8



Validation of the results

The given problem is linear, since

F(t, y(t)) = Ay(t) + g(t)

where

A =

[

0 1
−K/m −R/m

]

The eigenvalues of A are λ1 = i , λ2 = −i .
In using RK4, we have not a formula that gives explicit bounds on
h as for FE, but we have to compare the position of λi with the
absolute stability region.
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Absolute stability region of RK4 and FE
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The eigenvalues λ12 = ±i ∈ ARK4 and hλi ∈ ARK4 for any
0 < h . 2.8, coherently with our numerical results: oscillations
arised only when h = 4.
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Numerical results for FE

0 10 20 30 40 50 60 70 80 90 100
−200

−100

0

100

200

t

h=0.1

 

 
y

1
(t)

y
2
(t)

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

t

h=0.01

 

 
y

1
(t)

y
2
(t)

0 10 20 30 40 50 60 70 80 90 100
−2

0

2

4

t

h=0.001

 

 
y

1
(t)

y
2
(t)

Even if we use a very small h, the numerical solution shows oscillations
with increasing amplitude. This is explained by the fact that AFE does
not intersect the imaginary axis and there is no h that leads λi inside
AFE . Recall that AFE is open.

When the ode system has pure imaginary eigenvalues, FE is not a

candidate to solve such a system.
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Case 2. Set R 6= 0 and/or g(t) 6= 0 and try to solve the same
problem as before, analyzing all properties.
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