Linear Systems

Exercise 3. Solve the linear system Ax = b with:

1. the backslash command

2. LU factorization and forward-backward substitutions,
where

1 13 0 5
2 1 2 -1 4
A= 3 6 4 1 b= 14
1 -2 1 3 3

(©Paola Gervasio - Numerical Methods - 2012

Solution Inizialize the matrix and the r.h.s.
A=[....]; b=[...];

Solve it by backslash: x=A\b;
Solve it by LU factorization: [L,U]=1u(A);

L =
0.3333 0.2500 1.0000 0
0.6667 0.7500 -0.2381 1.0000
1.0000 0 0 0
0.3333 1.0000 0 0
U =

3.0000 6.0000 4.0000 1.0000
0 -4.0000 -0.3333 2.6667
0 0 1.75600 -1.0000
0 0 0 -3.9048

Why is not L lower triangular?
In fact, matlab performs LU with pivoting and
L holds the effect of pivoting.

(©Paola Gervasio - Numerical Methods - 2012

If we want to separate the pivoting effects from matrix L, the
correct comand is: [L,U,P]1=1u(4);

L =
1.0000 0 0 0
0.3333 1.0000 0 0
0.3333 0.2500 1.0000 0
0.6667 0.7500 -0.2381 1.0000
U =
3.0000 6.0000 4.0000 1.0000
0 -4.0000 -0.3333 2.6667
0 0 1.7500 -1.0000
0 0 0 -3.9048
P =
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0 -

. . . . mits
P is a permutation matrix such that L- U = P - A and it takes into BS

account the pivoting of the rows.
(©Paola Gervasio - Numerical Methods - 2012 3

In order to solve correctly the system we have:

Ax=b < PAx = Pb < LUx = Pb < L(Ux) = Pb
~——
y

and then

Ly =Pb
Ux=y

The matlab instructions are:

[L,U,P1=1u(A);
y=L\ (P*Db) ;
x=U\y;

(©Paola Gervasio - Numerical Methods - 2012 4

Advantages of pivoting

Exercise 4
Let us consider the linear system Ax = b with

1 1+05-1071% 3 5+05-1071°
A= |2 2 20 b= 24
3 6 4 13

1. Solve the linear system by LU factorization without pivoting
(use the function lufact.m, download it by
dm.ing.unibs.it/gervasio/Nummeth/matlab) and print the
computed solution

2. Solve the linear system by 1u factorization of matlab (it
implements pivoting) and print the computed solution

3. Compare the numerical solution with the exact one

x=[1,1,1]T,
Mes

(©Paola Gervasio - Numerical Methods - 2012 5

Solution
1. By calling lufact.m (the syntax is the same as lu:
[L,Ul=1lufact(A)), we obtain the solution

X:
-4.000000000000003e+00
6.000000000000000e+00
1.000000000000000e+00

which is very far from the exact solution.
We can compute the relative error between numerical and exact
solutions:

xex=ones(3,1);

err=norm(x-xex) /norm(xex)

err =
4.082482904638631e+00

it is about 408%. ""Eé

(©Paola Gervasio - Numerical Methods - 2012 6

By solving the linear system with pivoting
[L,U,P]1=1u(A); y=L\(P*b); x=U\y;
we obtain

X:
1.000000000000002e+00
9.999999999999991e-01
1.000000000000000e+00

Now the relative error w.r.t the exact solution is

err=norm(x-xex) /norm(xex)
err =
1.146633409319802e-15

about 1017%.

(©Paola Gervasio - Numerical Methods - 2012 7

Remarks.

LU factorization terminates even without pivoting. Neverthless
rounding errors propagate very much.

Without pivoting the multipliers are:

mo1 =2, my1 =3 e m3p = —3.4e + 15> 1. m3p is the most
responsible of the rounding errors propagation.

L =
1.0000e+00 0 0
2.0000e+00 1.0000e+00 0
3.0000e+00 -3.3777e+15 1.0000e+00

(©Paola Gervasio - Numerical Methods - 2012

With pivoting the multipliers are: mp; =2/3, m3; =1/3 e
msp = 1/2, all are less than 1.

L =
1.0000e+00 0 0
6.6667e-01 1.0000e+00 0
3.3333e-01 5.0000e-01 1.0000e+00

It is better to use pivoting in any situation.

(©Paola Gervasio - Numerical Methods - 2012 9

Exercise 5. Solve the linear system Ax = b, where A is symmetric
and positive definite

5 13 0 5
1 42 2 -1 4
A= 3 27 1 b= 14
0 -1 1 3 3

with a suitable method.

Solution. We can use Cholesky factorization: RTR = A.

RTy=b

Ax:b@RTRx:b(:){
Rx=y

A=[...1; b=[...];
R=chol(A);
y=R’\b; x=R\y

(©Paola Gervasio - Numerical Methods - 2012

10

We can use also both Gradient and Conjugate Gradient method.
Download grad.m and conjgra.m by the usual web-page.

help grad

help conjgra

x0=rand(4,1); kmax=100; tol=1.e-8;
[xg,kkg,errgl=grad(A,b,x0,kmax,tol);
[xcg,kkcg,errcgl=conjgra(A,b,x0,kmax,tol) ;

As predicted by the theory, both methods converge. The conjugate
gradient converges exactly in n=4 iterations.

(©Paola Gervasio - Numerical Methods - 2012 11

Matlab functions for Conjugate Gradient and Bi-CGStab
The command pcg implements the Conjugate Gradient method

[x,flag,relres,iter,resvec]=pcg(A,b,tol,nmax, [, [1,x0);

Remark. p stands for preconditioned and the empty variables
[1, [] are used to pass the preconditioner.

What is a preconditioner?

When K>(A) > 1, instead of solving Ax = b we can solve the
equivalent preconditioned system

P 1Ax=P'b

where P is the preconditioner and it is an invertible matrix with

the property that Ko(P~1A) < K(A).

If Ko(P~1A) < K»(A), the preconditioned system is less sensible

to rounding errors and an iterative method converges more quickly.

The problem is how to build the preconditioner, but this is outside ung;
the scope of this lesson. 3

(©Paola Gervasio - Numerical Methods - 2012 12

Like-Conjugate Gradient methods for non-SPD matrices
1. Conjugate Gradient Squared (CGS)

[x,flag,relres,iter,resvec]=cgs(A,b,tol,nmax, [, [1,x0);

2. Bi-Conjugate Gradient (BiCG)

[x,flag,relres,iter,resvec]=bicg(A,b,tol,nmax, [1, [],x0);

3. Bi-Conjugate Gradient Stabilized (BiCGStab)

[x,flag,relres,iter,resvec]=bicgstab(A,b,tol,nmax, [], [1,x0

(©Paola Gervasio - Numerical Methods - 2012 13

Fast instructions to define matrices and vectors
Let A be the following matrix (n = 100):
aij=1i fori=1,...n
aj=1 forj=1,..,n
ap=1 fori=1,..,n
How to define and display it
n=100;
A=diag(1:n); A(1,:)=ones(1,n); A(:,1)=ones(n,1);
spy(A) % to display the pattern of A

= The matrix A has only 298 non-
null entries (the total number
o of entries is 10000) and it oc-
@ cupies 80000 Byte, every zero
entry occupies 8 Byte

. We do not want to store zeros

(©Paola Gervasio - Numerical Methods - 2012 14

00
0 10 2 3 4 5 6 70 8 9 100
nz=298

double sparse format of Matlab
To store only non-zero entries we can use the sparse array of
Matlab

n=100;

Al=spdiags((1:n)’,0,n,n); A1(1,:)=ones(1,n);

A1(:,1)=ones(n,1);

Al =
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)

N

(99,99) 99
(1,100) 1
(100,100) 100

The matrix Al occupies 3980 Byte

(©Paola Gervasio - Numerical Methods - 2012

15

sparse format
In displaying the content of a double sparse array we have:
row-index i, column-index j, entry A(i,j).

It is possible to convert sparse arrays in full ones and viceversa:
sparse converts double array in double (sparse) array
full converts double (sparse) array in double array
If A1 holds a sparse array and A a full array:

AF1=full(A1); % AF1 is full
AS=sparse(A); % AS is sparse

(©Paola Gervasio - Numerical Methods - 2012 16

spdiags command

Exercise 6. Solve the linear system Ax = b of size n with

1 0 O
-1 2 -1
A= 0
-1
| 0 ... 0

where h=1/(n—1).

(©Paola Gervasio - Numerical Methods - 2012

[0.1]
h2

B2

0.5

Solution. The matrix A is not symmetric, due to the first and last
rows. At the same time, the first and last rows say that x; = 0.1

and x, = 0.5. We can modify the system:

1 0 0
-1 2 -1
0
: -1
| 0 0
in
[0 0 O 0
0 2 -1
0 0
: -1 2 0
| 0 0 0 0

(©Paola Gervasio - Numerical Methods - 2012

X1
X2

Xn—1
Xn

0.1

h2
0.5

X1 —

0
0
L
-1
1
i
"

18

We replace x; = 0.1 and x, = 0.5 on the right and we eliminate
both first and last rows, first and last column:

2 -1 ... 0 X2 1 0.1

-1 2 -1 X3 1 0
S L=
-1 2 -1 Xpn—2 1 0

0 ..o =1 2 Xn—1 1 0.5

and now A is symmetric. It is also positive definite. We solve the
system by pcg.m

(©Paola Gervasio - Numerical Methods - 2012 19

n=30; e=ones(n,1);
A=spdiags([-e,2*xe,-e],(-1:1),n-2,n-2);

spy (A)

The command A = spdiags(B,D,n,m) creates a sparse matrix A of size

n x m. The column vectors of the array B are put inside the diagonals of
A specified by D = [dy, da, . .., di]

\ B N MY
_1\ 3
-2
1 2
-3 1

(©Paola Gervasio - Numerical Methods - 2012 N 20

h=1/(n-1);

b=h"2*ones(n-2,1); b(1)=b(1)+0.1; b(n-2)=b(n-2)+0.5;
x0=rand(n-2,1); kmax=100; tol=1.e-12;
[x,flag,relres,iter,resvec]=pcg(A,b,tol,kmax, [, []1,x0);

(©Paola Gervasio - Numerical Methods - 2012 21

The fill-in phenomenon

pattern of A pattern of U

The fill-in occurs in direct methods during the elimination (or
factorization). Even if the matrix A has a few non-null entries, the
matrix U = of LU factorization (but also A of GEM) can have very
high density. All the direct methods act on the matrix and they
transofrm it in a denser matrix.

On the contrary iterative methods do not modify the matrix, then
no fill-in occurs in iterative methods. ""Eé

(©Paola Gervasio - Numerical Methods - 2012 22

