Linear Systems

Exercise 3. Solve the linear system Ax = b with:

1. the backslash command

2. LU factorization and forward-backward substitutions,
where

1 13 0 5
2 1 2 -1 4
A= 3 6 4 1 b= 14
1 -2 1 3 3
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Solution Inizialize the matrix and the r.h.s.
A=[....]; b=[...];

Solve it by backslash: x=A\b;
Solve it by LU factorization: [L,U]=1u(A);

L =
0.3333 0.2500 1.0000 0
0.6667 0.7500 -0.2381 1.0000
1.0000 0 0 0
0.3333 1.0000 0 0
U =

3.0000 6.0000 4.0000 1.0000
0 -4.0000 -0.3333 2.6667
0 0 1.75600 -1.0000
0 0 0 -3.9048

Why is not L lower triangular?
In fact, matlab performs LU with pivoting and
L holds the effect of pivoting.
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If we want to separate the pivoting effects from matrix L, the
correct comand is: [L,U,P]1=1u(4);

L =
1.0000 0 0 0
0.3333 1.0000 0 0
0.3333 0.2500 1.0000 0
0.6667 0.7500 -0.2381 1.0000
U =
3.0000 6.0000 4.0000 1.0000
0 -4.0000 -0.3333 2.6667
0 0 1.7500 -1.0000
0 0 0 -3.9048
P =
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0 -

. . . . mits
P is a permutation matrix such that L- U = P - A and it takes into BS

account the pivoting of the rows.
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In order to solve correctly the system we have:

Ax=b < PAx = Pb < LUx = Pb < L(Ux) = Pb
~——
y

and then

Ly =Pb
Ux=y

The matlab instructions are:

[L,U,P1=1u(A);
y=L\ (P*Db) ;
x=U\y;
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Advantages of pivoting

Exercise 4
Let us consider the linear system Ax = b with

1 1+05-1071% 3 5+05-1071°
A= |2 2 20 b= 24
3 6 4 13

1. Solve the linear system by LU factorization without pivoting
(use the function lufact.m, download it by
dm.ing.unibs.it/gervasio/Nummeth/matlab) and print the
computed solution

2. Solve the linear system by 1u factorization of matlab (it
implements pivoting) and print the computed solution

3. Compare the numerical solution with the exact one

x=[1,1,1]T,
Mes
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Solution
1. By calling lufact.m (the syntax is the same as lu:
[L,Ul=1lufact(A)), we obtain the solution

X:
-4.000000000000003e+00
6.000000000000000e+00
1.000000000000000e+00

which is very far from the exact solution.
We can compute the relative error between numerical and exact
solutions:

xex=ones(3,1);

err=norm(x-xex) /norm(xex)

err =
4.082482904638631e+00

it is about 408%. ""Eé
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By solving the linear system with pivoting
[L,U,P]1=1u(A); y=L\(P*b); x=U\y;
we obtain

X:
1.000000000000002e+00
9.999999999999991e-01
1.000000000000000e+00

Now the relative error w.r.t the exact solution is

err=norm(x-xex) /norm(xex)
err =
1.146633409319802e-15

about 1017%.
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Remarks.

LU factorization terminates even without pivoting. Neverthless
rounding errors propagate very much.

Without pivoting the multipliers are:

mo1 =2, my1 =3 e m3p = —3.4e + 15> 1. m3p is the most
responsible of the rounding errors propagation.

L =
1.0000e+00 0 0
2.0000e+00 1.0000e+00 0
3.0000e+00 -3.3777e+15 1.0000e+00
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With pivoting the multipliers are: mp; =2/3, m3; =1/3 e
msp = 1/2, all are less than 1.

L =
1.0000e+00 0 0
6.6667e-01 1.0000e+00 0
3.3333e-01  5.0000e-01 1.0000e+00

It is better to use pivoting in any situation.
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Exercise 5. Solve the linear system Ax = b, where A is symmetric
and positive definite

5 13 0 5
1 42 2 -1 4
A= 3 27 1 b= 14
0 -1 1 3 3

with a suitable method.

Solution. We can use Cholesky factorization: RTR = A.

RTy=b

Ax:b@RTRx:b(:){
Rx=y

A=[...1; b=[...];
R=chol(A);
y=R’\b; x=R\y
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We can use also both Gradient and Conjugate Gradient method.
Download grad.m and conjgra.m by the usual web-page.

help grad

help conjgra

x0=rand(4,1); kmax=100; tol=1.e-8;
[xg,kkg,errgl=grad(A,b,x0,kmax,tol);
[xcg,kkcg,errcgl=conjgra(A,b,x0,kmax,tol) ;

As predicted by the theory, both methods converge. The conjugate
gradient converges exactly in n=4 iterations.
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Matlab functions for Conjugate Gradient and Bi-CGStab
The command pcg implements the Conjugate Gradient method

[x,flag,relres,iter,resvec]=pcg(A,b,tol,nmax, [, [1,x0);

Remark. p stands for preconditioned and the empty variables
[1, [] are used to pass the preconditioner.

What is a preconditioner?

When K>(A) > 1, instead of solving Ax = b we can solve the
equivalent preconditioned system

P 1Ax=P'b

where P is the preconditioner and it is an invertible matrix with

the property that Ko(P~1A) < K(A).

If Ko(P~1A) < K»(A), the preconditioned system is less sensible

to rounding errors and an iterative method converges more quickly.

The problem is how to build the preconditioner, but this is outside ung;
the scope of this lesson. 3
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Like-Conjugate Gradient methods for non-SPD matrices
1. Conjugate Gradient Squared (CGS)

[x,flag,relres,iter,resvec]=cgs(A,b,tol,nmax, [, [1,x0);

2. Bi-Conjugate Gradient (BiCG)

[x,flag,relres,iter,resvec]=bicg(A,b,tol,nmax, [1, [],x0);

3. Bi-Conjugate Gradient Stabilized (BiCGStab)

[x,flag,relres,iter,resvec]=bicgstab(A,b,tol,nmax, [], [1,x0
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Fast instructions to define matrices and vectors
Let A be the following matrix (n = 100):
aij=1i fori=1,...n
aj=1 forj=1,..,n
ap=1 fori=1,..,n
How to define and display it
n=100;
A=diag(1:n); A(1,:)=ones(1,n); A(:,1)=ones(n,1);
spy(A) % to display the pattern of A

= The matrix A has only 298 non-
null entries (the total number
o of entries is 10000) and it oc-
@ cupies 80000 Byte, every zero
entry occupies 8 Byte

. We do not want to store zeros
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double sparse format of Matlab
To store only non-zero entries we can use the sparse array of
Matlab

n=100;

Al=spdiags((1:n)’,0,n,n); A1(1,:)=ones(1,n);

A1(:,1)=ones(n,1);

Al =
(1,1)
(2,1)
(3,1)
(4,1)
(5,1)

N

(99,99) 99
(1,100) 1
(100,100) 100

The matrix Al occupies 3980 Byte
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sparse format
In displaying the content of a double sparse array we have:
row-index i, column-index j, entry A(i,j).

It is possible to convert sparse arrays in full ones and viceversa:
sparse converts double array in double (sparse) array
full converts double (sparse) array in double array
If A1 holds a sparse array and A a full array:

AF1=full(A1); % AF1 is full
AS=sparse(A); % AS is sparse
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spdiags command

Exercise 6. Solve the linear system Ax = b of size n with

1 0 O
-1 2 -1
A= 0
-1
| 0 ... 0

where h=1/(n—1).
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Solution. The matrix A is not symmetric, due to the first and last
rows. At the same time, the first and last rows say that x; = 0.1

and x, = 0.5. We can modify the system:

1 0 0
-1 2 -1
0
: -1
| 0 0
in
[0 0 O 0
0 2 -1
0 0
: -1 2 0
| 0 0 0 0
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We replace x; = 0.1 and x, = 0.5 on the right and we eliminate
both first and last rows, first and last column:

2 -1 ... 0 X2 1 0.1

-1 2 -1 X3 1 0
S L=
-1 2 -1 Xpn—2 1 0

0 ..o =1 2 Xn—1 1 0.5

and now A is symmetric. It is also positive definite. We solve the
system by pcg.m
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n=30; e=ones(n,1);
A=spdiags([-e,2*xe,-e],(-1:1),n-2,n-2);

spy (A)

The command A = spdiags(B,D,n,m) creates a sparse matrix A of size

n x m. The column vectors of the array B are put inside the diagonals of
A specified by D = [dy, da, . .., di]

\ B N MY
_1\ 3
-2
1 2
-3 1
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h=1/(n-1);

b=h"2*ones(n-2,1); b(1)=b(1)+0.1; b(n-2)=b(n-2)+0.5;
x0=rand(n-2,1); kmax=100; tol=1.e-12;
[x,flag,relres,iter,resvec]=pcg(A,b,tol,kmax, [, []1,x0);
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The fill-in phenomenon

pattern of A pattern of U

The fill-in occurs in direct methods during the elimination (or
factorization). Even if the matrix A has a few non-null entries, the
matrix U = of LU factorization (but also A of GEM) can have very
high density. All the direct methods act on the matrix and they
transofrm it in a denser matrix.

On the contrary iterative methods do not modify the matrix, then
no fill-in occurs in iterative methods. ""Eé
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