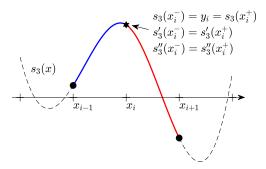
Interpolazione con spline

Dati i punti $(x_i, y_i) \in \mathbb{R}^2$ per i = 0, ..., n, definisco $I_i = [x_i, x_{i+1}]$ l'intervallino tra due nodi successivi.

Una spline cubica è una funzione $s_3 : \mathbb{R} \to \mathbb{R}$ con queste proprietà:

- 1. $s_3 \in C^2([x_0, x_n])$, cioè s è globalmente di classe C^2 ,
- 2. $s_{3|I_i} \in \mathbb{P}_3$ per $i=0,\ldots,n-1$, cioè s è un polinominio di grado 3 su ogni intervallino,
- 3. $s_3(x_i) = y(i)$ per i = 0, ..., n, cioè s interpola i dati.



Dire $s_{3|I_i}\in\mathbb{P}_3$ per $i=0,\ldots,n-1$ vuol dire che sull'intervallino i-simo s è caratterizzata da 4 parametri:

$$s_3(x) = a_i x^3 + b_i x^2 + c_i x + d_i \qquad \forall x \in I_i.$$

Se ho n intervalli, il **numero totale di parametri (incogniti)** che caratterizzano $s \ge 4n$.

Quante equazioni abbiamo per determinarli?:

- (n+1) condizioni di interpolazione (nei nodi x_i , $i=0,\ldots,n$),
- (n-1) condizioni di continuità $s_3(x_i^-) = s_3(x_i^+)$ (nei nodi x_i , $i=1,\ldots,n-1$),
- ▶ (n-1) condizioni di continuità della derivata prima $s_3'(x_i^-) = s_3'(x_i^+)$,
- ▶ (n-1) condizioni di continuità della derivata seconda $s_3''(x_i^-) = s_3''(x_i^+)$,

In totale: 4n - 2 equazioni.

Servono ancora 2 condizioni per chiudere il sistema:

- **spline naturali**: impongono che $s_3''(x_0^+) = 0$ e $s_3''(x_n^-) = 0$,
- **spline not-a-knot**: impongono che $s_3'''(x_1^-) = s_3'''(x_1^+)$ e $s_3'''(x_{n-1}^-) = s_3'''(x_{n-1}^+)$.

Analisi dell'errore dell'interpolazione spline

Sia

$$H = \max_{1 \le i \le n} |x_i - x_{i-1}|$$

Se $f \in C^4([x_0, x_n])$, esiste una costante $c_2 > 0$ indipendente da H t.c. $(s_3$ dipende da H):

$$E_s(H) = \|f - s_3\|_{\infty} = \max_{\substack{x_0 \le x \le x_n \ x_0 \le x \le x_n}} |f(x) - s_3(x)| \le c_2 H^4 \|f^{(4)}\|_{\infty}$$

Se i nodi x_i sono equispaziati, allora $c_2 = 5/384$.

