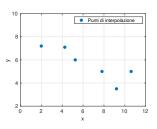
Interpolazione di dati. Problema 1

Si intende determinare nel piano xy la traiettoria seguita da un robot che viene impiegato per un ciclo di lavorazione in un'industria. Il robot deve rispettare determinati vincoli di movimento: in particolare, si vuole che al tempo iniziale il robot si trovi fermo nella posizione (2,7.2) e che



poi transiti per i punti riportati nella seguente tabella:

x_i	2.00	4.25	5.25	7.81	9.20	10.60
Уi	7.2	7.1	6.0	5.0	3.5	5.0

Determinare la traiettoria del robot, supponendo che esso sia assimilabile ad un punto materiale.

Determinare le traiettorie interpolatorie che il robot può compiere, utilizzando:

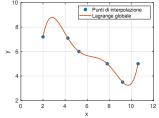
- 1. l'interpolazione globale di Lagrange,
- 2. l'interpolazione composita lineare di Lagrange,
- 3. le spline cubiche.

Rappresentare graficamente le traiettorie insieme ai punti di passaggio.

Nell'ottica di avere una traiettoria breve ed allo stesso tempo regolare, quale approssimazione è da preferirsi?

Svolgimento del punto 1. (interp. globale di Lagrange)

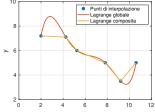
- 1.1. definire i vettori (colonna) dei dati x=[x0;...; xn] e y=[y0;...; yn]
- **1.2.** costruire la matrice di Vander-Monde: X=vander(x)



- **1.3.** risolvere il sistema di Vander-Monde e trovare il vettore a dei coefficienti del polinomio
- **1.4.** definire un vettore x1 di ascisse molto più fitte delle ascisse di x (ad esempio con il comando linspace)
- **1.5.** valutare il polinomio sul vettore di ascisse x1 con il comando polyval: y1=polyval(a,x1)
- **1.6.** rappresentare con il comando plot i punti dati (senza congiungerli) e il polinomio interpolatore valutato nei nodi x1 con una linea continua.

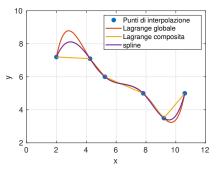
Svolgimento del punto 2. (interp. composita di Lagrange)

- **2.1.** definire i vettori (colonna) dei dati x=[x0;...; xn] e y=[y0;...; yn]
- **2.2.** definire un vettore x1 di ascisse molto più fitte delle ascisse di x (ad esempio con il comando linspace)



- **2.3.** costruire l'interpolatore lineare composito $p_1^c(x)$ con il comando y1=interp1(x,y,x1). y1 è un vettore della dimensione di x1 che contiene i valori di p_1^c nei punti del vettore x1
- **2.4.** rappresentare con il comando plot i punti dati (senza congiungerli) e il polinomio interpolatore valutato nei nodi x1 con una linea continua.

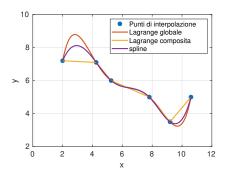
Svolgimento del punto 3. (interp. con spline cubiche)



Come per il punto 2, ma con 2.3 sostituito da: **3.3** costruire la spline cubica $s_3(x)$ con il comando y1=spline(x,y,x1). y1 è un vettore della dimensione di x1 che contiene i valori di s_3 nei punti del vettore x1

Confronto degli interpolatori costruiti

L'interpolatore globale di Lagrange genera la traiettoria più lunga sul primo e ultimo intervallino, ma è la traiettoria più regolare (C^{∞}). L'interpolatore composito di Lagrange genera la traiettoria più corta, ma meno regolare, è solo C^0 . La **spline** è un compromesso tra le due interpolazioni



precedenti: la traiettoria è abbastanza regolare (C^2) e non è eccessivamente lunga.

Problema 2 (es_clima): climatologia

La temperatura T in prossimità del suolo varia al variare della concentrazione K di acido carbonico (H_2CO_3) e della latitudine L. Sia \overline{K} la concentrazione di H_2CO_3 di riferimento (qui quella del 1896, normalizzata a 1). Le variazioni di temperatura media $\Delta T = T_K - T_{\overline{K}}$ corrispondenti a K = 1.5 sono riportate nella tabella al variare della latitudine L:

Si vuole dare un'approssimazione della variazione di temperatura ΔT a Roma (la latitudine di Roma è L=+42) e ad Oslo (L=+59), utilizzando interpolazione globale di Lagrange, interpolazione composita lineare e interpolazione con spline cubiche. Le approssimazioni trovate sono significative?

Svolgimento

Impostare il lavoro come si è fatto per il problema es_robot. Per valutare le variazioni di temperatura a Roma e ad Oslo:

```
% Lagrange globale
T_roma1=polyval(a,42); T_oslo1=polyval(a,59);
% interpolazione composita lineare
T_roma2=interp1(x,y,42); T_oslo2=interp1(x,y,59);
% interpolazione spline
T_roma3=spline(x,y,42); T_oslo3=spline(x,y,59);
```

