Corsi di laurea: INFLT, ETELT

Il NUMERO della FILA è contenuto nel testo dell'esercizio 3 ed è il coefficiente dell'unità immaginaria all'interno del modulo.

Fila 1

3.
$$z_0 = 2e\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_1 = 2e\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_2 = -2ei.$$

4. Il limite vale $\ell = -7e$

5. La funzione è continua in x = 0 da sinistra per ogni valore di α , è continua in x = 0 da destra se $\alpha > 0$, altrimenti si ha un punto di salto.

6. Denotando con α il punto di intersezione tra le curve $y = e^x$ e $y = 1/x^2$, si ha: dom $f =]-\infty, \alpha[\cup]\alpha, +\infty[$;

 $\lim_{x\to-\infty} f(x)=0, y=0$ è asintoto orizzontale sinistro.

 $\lim_{x\to\alpha^{\pm}} f(x) = -\infty$, $x = \alpha$ è asintoto verticale completo.

 $\lim_{x \to +\infty} f(x) = +\infty.$

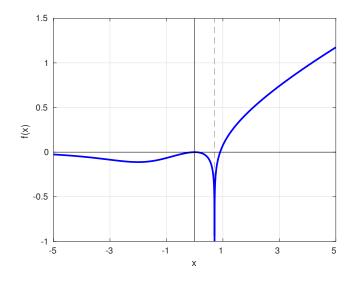
Non esiste asintoto obliquo destro, in quanto risulterebbe m=1/7 e $q=+\infty$.

$$f'(x) = \frac{x(2+x)e^x}{7(x^2e^x - 1)},$$

dom(f') = dom(f), non vi sono punti di non derivabilità.

f è crescente in] $-2,0[\cup]\alpha,+\infty[$ e decrescente in] $-\infty,-2[\cup]0,\alpha[$,

Il punto x = -2 è punto stazionario e di minimo relativo. Il punto x = 0 è punto stazionario e di massimo relativo. f è illimitata e non ha punti di minimo o massimo assoluti



Fila 2

3.
$$z_0 = 3e^2\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_1 = 3e^2\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_2 = -3e^2i.$$

- 4. Il limite vale $\ell = -6e$
- 5. La funzione è continua in x = 0 da sinistra per ogni valore di α , è continua in x = 0 da destra se $\alpha > 0$, altrimenti si ha un punto di salto.
- **6.** Denotando con α il punto di intersezione tra le curve $y = e^x$ e $y = 1/x^2$, si ha: dom $f = [-\infty, \alpha[\cup]\alpha, +\infty[$;

 $\lim_{x\to\infty} f(x) = 0, y = 0$ è asintoto orizzontale sinistro.

 $\lim_{x\to\alpha^\pm}f(x)=-\infty,\,x=\alpha$ è asinto to verticale completo.

 $\lim_{x \to +\infty} f(x) = +\infty.$

Non esiste asintoto obliquo destro, in quanto risulterebbe m = 1/6 e $q = +\infty$.

$$f'(x) = \frac{x(2+x)e^x}{6(x^2e^x - 1)},$$

dom(f') = dom(f), non vi sono punti di non derivabilità.

f è crescente in $]-2,0[\cup]\alpha,+\infty[$ e decrescente in $]-\infty,-2[\cup]0,\alpha[$,

Il punto x = -2 è punto stazionario e di minimo relativo. Il punto x = 0 è punto stazionario e di massimo relativo. f è illimitata e non ha punti di minimo o massimo assoluti

Fila 3

- **3.** $z_0 = 4e^3 \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_1 = 4e^3 \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_2 = -4e^3i.$
- 4. Il limite vale $\ell = -5e$
- 5. La funzione è continua in x=0 da sinistra per ogni valore di α , è continua in x=0 da destra se $\alpha>0$, altrimenti si ha un punto di salto.
- **6.** Denotando con α il punto di intersezione tra le curve $y=e^x$ e $y=1/x^2$, si ha: dom $f=]-\infty,\alpha[\cup]\alpha,+\infty[;$

 $\lim_{x\to-\infty} f(x) = 0, y = 0$ è asintoto orizzontale sinistro.

 $\lim_{x\to\alpha^{\pm}} f(x) = -\infty$, $x = \alpha$ è asintoto verticale completo.

 $\lim_{x \to +\infty} f(x) = +\infty.$

Non esiste asintoto obliquo destro, in quanto risulterebbe m=1/5 e $q=+\infty$.

$$f'(x) = \frac{x(2+x)e^x}{5(x^2e^x - 1)},$$

 $\mathrm{dom}(f')=\mathrm{dom}(f),$ non vi sono punti di non derivabilità.

f è crescente in] $-2,0[\cup]\alpha,+\infty[$ e decrescente in] $-\infty,-2[\cup]0,\alpha[,$

Il punto x=-2 è punto stazionario e di minimo relativo. Il punto x=0 è punto stazionario e di massimo relativo. f è illimitata e non ha punti di minimo o massimo assoluti

Fila 4

- **3.** $z_0 = 5e^4\left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_1 = 5e^4\left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_2 = -5e^4i.$
- 4. Il limite vale $\ell = -4e$
- 5. La funzione è continua in x = 0 da sinistra per ogni valore di α , è continua in x = 0 da destra se $\alpha > 0$, altrimenti si ha un punto di salto.

6. Denotando con α il punto di intersezione tra le curve $y=e^x$ e $y=1/x^2$, si ha: dom $f=[-\infty,\alpha[\cup]\alpha,+\infty[$;

 $\lim_{x\to-\infty} f(x) = 0, y = 0$ è asintoto orizzontale sinistro.

 $\lim_{x\to\alpha^{\pm}} f(x) = -\infty$, $x = \alpha$ è asintoto verticale completo.

 $\lim_{x \to +\infty} f(x) = +\infty.$

Non esiste asintoto obliquo destro, in quanto risulterebbe m=1/4 e $q=+\infty$.

$$f'(x) = \frac{x(2+x)e^x}{4(x^2e^x-1)},$$

dom(f') = dom(f), non vi sono punti di non derivabilità.

f è crescente in $]-2,0[\cup]\alpha,+\infty[$ e decrescente in $]-\infty,-2[\cup]0,\alpha[$,

Il punto x = -2 è punto stazionario e di minimo relativo. Il punto x = 0 è punto stazionario e di massimo relativo. f è illimitata e non ha punti di minimo o massimo assoluti

Fila 5

- **3.** $z_0 = 6e^5 \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_1 = 6e^5 \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_2 = -6e^5i.$
- 4. Il limite vale $\ell = -3e$
- 5. La funzione è continua in x=0 da sinistra per ogni valore di α , è continua in x=0 da destra se $\alpha>0$, altrimenti si ha un punto di salto.
- **6.** Denotando con α il punto di intersezione tra le curve $y = e^x$ e $y = 1/x^2$, si ha: dom $f =]-\infty, \alpha[\cup]\alpha, +\infty[$;

 $\lim_{x\to-\infty} f(x) = 0, y = 0$ è asintoto orizzontale sinistro.

 $\lim_{x\to\alpha^{\pm}} f(x) = -\infty$, $x = \alpha$ è asintoto verticale completo.

 $\lim_{x \to +\infty} f(x) = +\infty.$

Non esiste asintoto obliquo destro, in quanto risulterebbe m=1/3 e $q=+\infty.$

$$f'(x) = \frac{x(2+x)e^x}{3(x^2e^x-1)}$$

dom(f') = dom(f), non vi sono punti di non derivabilità.

f è crescente in] - 2, 0[U] $\!\alpha, +\infty[$ e decrescente in] - $\!\infty, -2[U] 0, \alpha[,$

Il punto x = -2 è punto stazionario e di minimo relativo. Il punto x = 0 è punto stazionario e di massimo relativo. f è illimitata e non ha punti di minimo o massimo assoluti

Fila 6

- **3.** $z_0 = 7e^6 \left(\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_1 = 7e^6 \left(-\frac{\sqrt{3}}{2} + \frac{1}{2}i\right), z_2 = -7e^6i.$
- 4. Il limite vale $\ell = -2e$
- 5. La funzione è continua in x = 0 da sinistra per ogni valore di α , è continua in x = 0 da destra se $\alpha > 0$, altrimenti si ha un punto di salto.
- **6.** Denotando con α il punto di intersezione tra le curve $y=e^x$ e $y=1/x^2$, si ha: dom $f=]-\infty,\alpha[\cup]\alpha,+\infty[$;

 $\lim_{x\to-\infty} f(x) = 0, y = 0$ è asintoto orizzontale sinistro.

 $\lim_{x\to\alpha^\pm}f(x)=-\infty,\,x=\alpha$ è asinto to verticale completo. $\lim_{x \to +\infty} f(x) = +\infty.$

Non esiste asintoto obliquo destro, in quanto risulterebbe m=1/2 e $q=+\infty$.

$$f'(x) = \frac{x(2+x)e^x}{2(x^2e^x-1)},$$

dom(f') = dom(f), non vi sono punti di non derivabilità.

f è crescente in] - 2, 0[U] $\!\alpha, +\infty[$ e decrescente in] - $\!\infty, -2[U] 0, \alpha[,$

Il punto x=-2 è punto stazionario e di minimo relativo. Il punto x=0 è punto stazionario e di massimo relativo. f è illimitata e non ha punti di minimo o massimo assoluti