Il NUMERO della FILA è contenuto nel testo dell'esercizio 8 e coincide con il valore assegnato a y'(0).

Fila 1

 $dom(f) =]-\infty, -2] \cup [2, +\infty[. f \text{ non è pari né dispari};$

 $\lim_{\substack{x\to\pm\infty\\y=-\frac{x}{2}}}f(x)=+\infty.$ $y=-\frac{x}{2}$ è asintoto obliquo a $-\infty,\ y=\frac{x}{2}$ è asintoto obliquo a $+\infty.\ f$ non ammette altri asintoti.

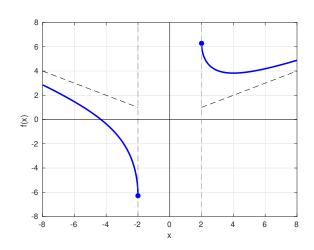
$$f'(x) = \frac{1}{2} \frac{x}{\sqrt{x^2 - 4}} - \frac{8|x|}{x^2 \sqrt{x^2 - 4}}$$

 $dom(f') = dom(f) \setminus \{-2, 2\}$, i punti esclusi sono a tangenza verticale.

x=4 è punto stazionario

f è crescente in $]4, +\infty[$ e decrescente in $]-\infty, -2[\cup]2, 4[$

x=-2 è punto di minimo assoluto, x=2 è punto di massimo relativo, x=4 è punto di minimo relativo.



- **2.** Si ha $w = 7\sqrt{2}e^{i\pi/4}$. Le radici terze di w sono $z_0 = \sqrt[3]{7\sqrt{2}}e^{i\pi/12}$, $z_1 = \sqrt[3]{7\sqrt{2}}e^{i3\pi/4}$, $z_2 = \sqrt[3]{7\sqrt{2}}e^{i17\pi/12}$.
- Il limite vale $\ell = \frac{\pi}{4}$
- La serie converge se e solo se $\alpha > \frac{2}{3}$
- **5**. Il limite vale $\ell = \frac{1}{14}$
- f è continua in x = 3 ed ivi ammette un punto angoloso 6.
- L'integrale vale $8 \log \left(\frac{3}{2}\right) 3$
- $y(x) = -\sin(x)\cos(x) + 2\sin(x)$

Fila 2

 $dom(f) =]-\infty, -3] \cup [3, +\infty[. f non è pari né dispari;$

$$\lim_{x \to \pm \infty} f(x) = +\infty.$$

 $y = -\frac{x}{3}$ è asintoto obliquo a $-\infty$, $y = \frac{x}{3}$ è asintoto obliquo a $+\infty$. f non ammette altri asintoti.

$$f'(x) = \frac{1}{3} \frac{x}{\sqrt{x^2 - 9}} - \frac{12|x|}{x^2 \sqrt{x^2 - 9}}$$

 $\mathrm{dom}(f')=\mathrm{dom}(f)\setminus\{-3,3\},$ i punti esclusi sono a tangenza verticale.

x = 6 è punto stazionario

f è crescente in $]6, +\infty[$ e decrescente in $]-\infty, -3[\cup]3, 6[$

x=-3 è punto di minimo assoluto, x=3 è punto di massimo relativo, x=6 è punto di minimo relativo.

Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.

- Si <u>ha</u> $w = 6\sqrt{2}e^{i\pi/4}$. Le radici terze di w sono $z_0 = \sqrt[3]{6\sqrt{2}}e^{i\pi/12}$, $z_1 = \sqrt[3]{6\sqrt{2}}e^{i3\pi/4}$, $z_2 = \sqrt[3]{6\sqrt{2}}e^{i\pi/4}$ $\sqrt[3]{6\sqrt{2}}e^{i17\pi/12}$.
- Il limite vale $\ell = \frac{\pi}{6}$
- La serie converge se e solo se $\alpha > \frac{2}{5}$
- Il limite vale $\ell = \frac{1}{12}$ **5**.
- f è continua in x=5 ed ivi ammette un punto angoloso 6.
- L'integrale vale $18 \log \left(\frac{4}{3}\right) 5$
- $y(x) = -\sin(x)\cos(x) + 3\sin(x)$

Fila 3

 $\mathrm{dom}(f) =]-\infty, -4] \cup [4, +\infty[.\ f$ non è pari né dispari;

$$\lim_{x \to +\infty} f(x) = +\infty$$

 $\lim_{x\to\pm\infty}f(x)=+\infty.$ $y=-\frac{x}{4}$ è asintoto obliquo a $-\infty,\,y=\frac{x}{4}$ è asintoto obliquo a $+\infty.$ f non ammette altri asintoti.

$$f'(x) = \frac{1}{4} \frac{x}{\sqrt{x^2 - 16}} - \frac{16|x|}{x^2 \sqrt{x^2 - 16}}$$

 $dom(f') = dom(f) \setminus \{-4, 4\}$, i punti esclusi sono a tangenza verticale.

x = 8 è punto stazionario

fè crescente in]8,+∞[e decrescente in] $-\infty,-4[\cup]4,8[$

x=-4 è punto di minimo assoluto, x=4 è punto di massimo relativo, x=8 è punto di minimo relativo.

- Si ha $w = 5\sqrt{2}e^{i\pi/4}$. Le radici terze di w sono $z_0 = \sqrt[3]{5\sqrt{2}}e^{i\pi/12}$, $z_1 = \sqrt[3]{5\sqrt{2}}e^{i3\pi/4}$, $z_2 = \sqrt[3]{5\sqrt{2}}e^{i\pi/4}$ $\sqrt[3]{5\sqrt{2}}e^{i17\pi/12}$.
- Il limite vale $\ell = \frac{\pi}{8}$
- La serie converge se e solo se $\alpha > \frac{2}{7}$
- Il limite vale $\ell = \frac{1}{10}$ **5**.
- f è continua in x = 7 ed ivi ammette un punto angoloso 6.
- L'integrale vale $32 \log \left(\frac{5}{4}\right) 7$
- $y(x) = -\sin(x)\cos(x) + 4\sin(x)$

Fila 4

 $dom(f) =]-\infty, -5] \cup [5, +\infty[. f \text{ non è pari né dispari};$

 $\lim_{x\to\pm\infty}f(x)=+\infty.$ $y=-\frac{x}{5}$ è asintoto obliquo a $-\infty,\,y=\frac{x}{5}$ è asintoto obliquo a $+\infty.$ f non ammette altri asintoti.

$$f'(x) = \frac{1}{5} \frac{x}{\sqrt{x^2 - 25}} - \frac{20|x|}{x^2 \sqrt{x^2 - 25}}$$

 $dom(f') = dom(f) \setminus \{-5, 5\}$, i punti esclusi sono a tangenza verticale.

x = 10 è punto stazionario

f è crescente in $]10, +\infty[$ e decrescente in $]-\infty, -5[\cup]5, 10[$

x=-5 è punto di minimo assoluto, x=5 è punto di massimo relativo, x=10 è punto di minimo relativo.

- Si ha $w = 4\sqrt{2}e^{i\pi/4}$. Le radici terze di w sono $z_0 = \sqrt[3]{4\sqrt{2}}e^{i\pi/12}$, $z_1 = \sqrt[3]{4\sqrt{2}}e^{i3\pi/4}$, $z_2 = \sqrt[3]{4\sqrt{2}}e^{i\pi/12}$ $\sqrt[3]{4\sqrt{2}}e^{i17\pi/12}$.
- Il limite vale $\ell = \frac{\pi}{10}$
- La serie converge se e solo se $\alpha > \frac{2}{9}$
- Il limite vale $\ell = \frac{1}{8}$ **5**.
- f è continua in x = 9 ed ivi ammette un punto angoloso
- L'integrale vale $50 \log \left(\frac{6}{5}\right) 9$
- $y(x) = -\sin(x)\cos(x) + 5\sin(x)$

 $dom(f) =]-\infty, -6] \cup [6, +\infty[. f \text{ non è pari né dispari};$

$$\lim_{x \to +\infty} f(x) = +\infty.$$

 $y = -\frac{x}{6}$ è asintoto obliquo a $-\infty$, $y = \frac{x}{6}$ è asintoto obliquo a $+\infty$. f non ammette altri asintoti.

$$f'(x) = \frac{1}{6} \frac{x}{\sqrt{x^2 - 36}} - \frac{24|x|}{x^2 \sqrt{x^2 - 36}}$$

 $dom(f') = dom(f) \setminus \{-6, 6\}$, i punti esclusi sono a tangenza verticale.

x=12 è punto stazionario

f è crescente in $]12, +\infty[$ e decrescente in $]-\infty, -6[\cup]6, 12[$

x=-6 è punto di minimo assoluto, x=6 è punto di massimo relativo, x=12 è punto di minimo relativo.

Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.

- Si ha $w = 3\sqrt{2}e^{i\pi/4}$. Le radici terze di w sono $z_0 = \sqrt[3]{3\sqrt{2}}e^{i\pi/12}$, $z_1 = \sqrt[3]{3\sqrt{2}}e^{i3\pi/4}$, $z_2 = \sqrt[3]{3\sqrt{2}}e^{i\pi/4}$ $\sqrt[3]{3\sqrt{2}}e^{i17\pi/12}$
- 3. Il limite vale $\ell = \frac{\pi}{12}$
- La serie converge se e solo se $\alpha > \frac{2}{11}$
- Il limite vale $\ell = \frac{1}{6}$ **5**.
- f è continua in x = 11 ed ivi ammette un punto angoloso 6.
- L'integrale vale $72 \log \left(\frac{7}{6}\right) 11$
- $y(x) = -\sin(x)\cos(x) + 6\sin(x)$

Fila 6

 $dom(f) =]-\infty, -7] \cup [7, +\infty[. f \text{ non è pari né dispari};$

$$\lim_{x \to +\infty} f(x) = +\infty$$

 $\lim_{x\to\pm\infty}f(x)=+\infty.$ $y=-\frac{x}{7}$ è asintoto obliquo a $-\infty,\,y=\frac{x}{7}$ è asintoto obliquo a $+\infty.$ f non ammette altri asintoti.

$$f'(x) = \frac{1}{7} \frac{x}{\sqrt{x^2 - 49}} - \frac{28|x|}{x^2 \sqrt{x^2 - 49}}$$

 $dom(f') = dom(f) \setminus \{-7, 7\}$, i punti esclusi sono a tangenza verticale.

x = 14 è punto stazionario

f è crescente in $]14, +\infty[$ e decrescente in $]-\infty, -7[\cup]7, 14[$

x=-7 è punto di minimo assoluto, x=7 è punto di massimo relativo, x=14 è punto di minimo relativo.

- Si <u>ha</u> $w = 2\sqrt{2}e^{i\pi/4}$. Le radici terze di w sono $z_0 = \sqrt[3]{2\sqrt{2}}e^{i\pi/12}$, $z_1 = \sqrt[3]{2\sqrt{2}}e^{i3\pi/4}$, $z_2 = \sqrt[3]{2\sqrt{2}}e^{i\pi/4}$ $\sqrt[3]{2\sqrt{2}}e^{i17\pi/12}$
- Il limite vale $\ell = \frac{\pi}{14}$

- 4. La serie converge se e solo se $\alpha > \frac{2}{13}$
- 5. Il limite vale $\ell = \frac{1}{4}$
- 6. f è continua in x=13 ed ivi ammette un punto angoloso
- 7. L'integrale vale $98 \log \left(\frac{8}{7}\right) 13$
- 8. $y(x) = -\sin(x)\cos(x) + 7\sin(x)$