Analisi	Matematica	1 $-$	SECONDO	TEST
(M-Z)				

 $16~{\rm gennaio}~2018$

Cognomi FOGLIO A

Corsi di laurea: INFLT, ETELT

<u> </u>	D:	Matricola	
Caoname e name	Firma	Matricola	
Cognonic C nome			

Corso di Laurea: \Diamond INFLT, \Diamond ETELT

Istruzioni

- 1. PROIBITO usare libri, quaderni, calcolatori, telefoni cellulari, smartphone, smartwatch.
- 2. CONSEGNARE questo foglio e tutti i fogli di protocollo.
- 3. TENERE il foglio B come promemoria delle risposte date.
- 4. TEMPO a disposizione: 90 min.
- 1. Sia data la seguente funzione f reale di variabile reale definita da:

$$f(x) = \begin{cases} \arctan(\log|x| - 2x) & \text{se } x \neq 0, \\ -\frac{\pi}{2} & \text{se } x = 0. \end{cases}$$

Si sa che $dom(f) = \mathbb{R}$, che la funzione non presenta simmetrie, che gli unici asintoti sono: $y = -\pi/2$ asintoto orizzontale destro, $y = \pi/2$ asintoto orizzontale sinistro, che f è continua su tutto il suo dominio.

Calcolare la funzione derivata prima di f e determinarne il dominio, classificando eventuali punti di non derivabilità.

Risposta [punti 2.5]:

Studiare la crescenza e decrescenza di f, calcolando, qualora esistano, punti di massimo/minimo relativo e punti di massimo/minimo assoluto per f.

Risposta [punti 1.5]:

Senza calcolare la derivata seconda di f, discutere la possibile esistenza di punti di flesso.

Risposta [punti 1]:

Tracciare sul foglio di protocollo un grafico qualitativo della funzione f, in accordo con i risultati ottenuti.

Risposta [punti 1]:

2. Discutere, al variare di
$$\alpha \in \mathbb{R}$$
, il carattere della serie
$$\sum_{n=2}^{+\infty} \frac{\left[7\alpha - \cos\left(\frac{1}{n}\right)\right]^2}{\left(e^{1/n^2} - 1\right)(n+1)^3}$$

Risposta [punti 3]:

3. Calcolare il limite $\lim_{x\to 0} \frac{\sin(x) - \arctan(x)}{\left(e^{x/4} - 1 + \sinh(x^{10})\right) \left(\frac{1}{x}\log(1 + x^3) + \cos(x) - 1\right)}$

Risposta [punti 3]:

4. Calcolare l'integrale $\int_0^{\sqrt[3]{5}} x^{1/2} \arctan x^{3/2} \, dx \, .$

Risposta [punti 3]:

5. Determinare l'integrale generale $y(x,c_1,c_2)$ dell'equazione differenziale $y''-y'-2y=xe^x$

Risposta [punti 2]: