Fila 1

1. \(\text{dom } f = \mathbb{R} \setminus \{2\} \) non ci sono simmetrie.
 - \(\lim_{x \to 2} f(x) = \pm \infty \), \(x = 2 \) asintoto verticale, \(\lim_{x \to \pm \infty} f(x) = \pm \infty \); non ammette altri asintoti.
 - \(f'(x) = -\frac{4}{(x-2)^2} + \frac{4\sqrt{3}}{x-2} + 1 \) \(\text{dom } f' = \text{dom } f \).

Non ci sono punti di non derivabilità
- crescente in \((-\infty, -2 - 2\sqrt{3}] \) e in \([6 - 2\sqrt{3}, +\infty) \); decrescente in \(] -2 - 2\sqrt{3}, 2[\) e in \(] 2, 6 - 2\sqrt{3} \]; \(x = -2 - 2\sqrt{3} \) punto di massimo relativo stazionario; \(x = 6 - 2\sqrt{3} \) punto di minimo relativo stazionario; \(f \) è illimitata.
- \(f''(x) = \frac{8}{(x-2)^3} - \frac{4\sqrt{3}}{(x-2)^2} \), convessa in \(]2, 2 + \frac{2}{\sqrt{3}}[\), concava in \(] -\infty, 2[\) e in \(]2 + \frac{2}{\sqrt{3}}, +\infty[\); \(x = 2 + \frac{2}{\sqrt{3}} \) punto di flesso.

2. \(z_0 = \frac{1}{7}, z_1 = \frac{1}{7} \left(-\frac{1}{2} + \frac{\sqrt{3}i}{2} \right), z_2 = \frac{1}{7} \left(-\frac{1}{2} - \frac{\sqrt{3}i}{2} \right) \)

3. \(\ell = 2^2 \)

4. \(\ell = 0 \) se \(0 < \alpha < 4 \), \(\ell = -3 \) se \(\alpha = 4 \), \(\ell = -\infty \) se \(\alpha > 4 \).

5. \(\text{Area} = \frac{3}{2} \log \frac{3}{2} - \frac{1}{2} \)

6. L’integrale converge per \(\beta < \frac{2}{3} \)

7. \(y(x) = 4e^{2x} - 7e^x + \sin x + 3 \cos x \)
Fila 2

1. dom\(f = \mathbb{R} \setminus \{3\} \) non ci sono simmetrie.
 - \(\lim_{x \to 3^\pm} f(x) = \pm \infty \), \(x = 3 \) asintoto verticale, \(\lim_{x \to \pm \infty} f(x) = \pm \infty \); non ammette altri asintoti.
 - \(f'(x) = -\frac{4}{(x-3)^2} + \frac{4\sqrt{8}}{x-3} + 1 \) \(\text{dom}\ f' = \text{dom}\ f \).

Non ci sono punti di non derivabilità
- crescente in \(]-\infty, -3-2\sqrt{8}[\) e in \(]9-2\sqrt{8}, +\infty[\); decrescente in \(]-3-2\sqrt{8}, 3[\) e in \(]3, 9-2\sqrt{8}[\).
 - \(x = -3-2\sqrt{8} \) punto di massimo relativo stagonario; \(x = 9-2\sqrt{8} \) punto di minimo relativo stagonario; \(f \) è illimitata.
 - \(f''(x) = \frac{8}{(x-3)^3} - \frac{4\sqrt{8}}{(x-3)^2} \), convessa in \(]3, 3+\frac{2}{\sqrt{8}}[\), concava in \(]-\infty, 3[\) e in \(]3+\frac{2}{\sqrt{8}}, +\infty[\); \(x = 3+\frac{2}{\sqrt{8}} \) punto di flesso.

2. \(z_0 = \frac{1}{6}, z_1 = \frac{1}{6} \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i \right), z_2 = \frac{1}{6} \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) \)

3. \(\ell = 3^3 \)

4. \(\ell = 0 \) se \(0 < \alpha < 4 \), \(\ell = -5 \) se \(\alpha = 4 \), \(\ell = -\infty \) se \(\alpha > 4 \).

5. \(\text{Area} = \frac{4}{3} \log \frac{4}{3} - \frac{1}{3} \)

6. L’integrale converge per \(\beta < \frac{2}{5} \)

7. \(y(x) = 5e^{2x} - 8e^x + \sin x + 3\cos x \)

Fila 3

1. dom\(f = \mathbb{R} \setminus \{4\} \) non ci sono simmetrie.
 - \(\lim_{x \to 4^\pm} f(x) = \pm \infty \), \(x = 4 \) asintoto verticale, \(\lim_{x \to \pm \infty} f(x) = \pm \infty \); non ammette altri asintoti.
 - \(f'(x) = -\frac{4}{(x-4)^2} + \frac{4\sqrt{15}}{x-4} + 1 \) \(\text{dom}\ f' = \text{dom}\ f \).

Non ci sono punti di non derivabilità
- crescente in \(]-\infty, -4-2\sqrt{15}[\) e in \(]12-2\sqrt{15}, +\infty[\); decrescente in \(]-4-2\sqrt{15}, 4[\) e in \(]4, 12-2\sqrt{15}[\).
 - \(x = -4-2\sqrt{15} \) punto di massimo relativo stagonario; \(x = 12-2\sqrt{15} \) punto di minimo relativo stagonario; \(f \) è illimitata.
 - \(f''(x) = \frac{8}{(x-4)^3} - \frac{4\sqrt{15}}{(x-4)^2} \), convessa in \(]4, 4+\frac{2}{\sqrt{15}}[\), concava in \(]-\infty, 4[\) e in \(]4+\frac{2}{\sqrt{15}}, +\infty[\);
 \(x = 4+\frac{2}{\sqrt{15}} \) punto di flesso.

2. \(z_0 = \frac{1}{5}, z_1 = \frac{1}{5} \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i \right), z_2 = \frac{1}{5} \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) \)

3. \(\ell = 4^4 \)

4. \(\ell = 0 \) se \(0 < \alpha < 4 \), \(\ell = -7 \) se \(\alpha = 4 \), \(\ell = -\infty \) se \(\alpha > 4 \).
5. \[\text{Area} = \frac{5}{4} \log \frac{5}{4} - \frac{1}{4} \]

6. L'integrale converge per \(\beta < \frac{2}{7} \)

7. \(y(x) = 6e^{2x} - 9e^x + \sin x + 3 \cos x \)

Fila 4

1. \(\text{dom} f = \mathbb{R} \setminus \{5\} \) non ci sono simmetrie.

 - \(\lim_{x \to 5^\pm} f(x) = \pm\infty, x = 5 \) asintoto verticale, \(\lim_{x \to \pm\infty} f(x) = \pm\infty \); non ammette altri asintoti.

 \[f'(x) = -\frac{4}{(x-5)^2} + \frac{4\sqrt{24}}{x-5} + 1 \quad \text{dom} f' = \text{dom} f. \]

 Non ci sono punti di non derivabilità

 - crescente in \(]-\infty, -5 - 2\sqrt{24}[\) e in \(]15 - 2\sqrt{24}, +\infty[\); decrescente in \(]-5 - 2\sqrt{24}, 5[\) e in \(]5, 15 - 2\sqrt{24}[\); \(x = 5 \) punto di massimo relativo stazionario; \(x = 15 - 2\sqrt{24} \) punto di minimo relativo stazionario; \(f \) è illimitata.

 \[f''(x) = \frac{8}{(x-5)^3} - \frac{4\sqrt{35}}{(x-6)^2}, \text{ convessa in }]5, 5 + \frac{2}{\sqrt{24}}[, \text{ concava in }]-\infty, 5[\) e in \(]5 + \frac{2}{\sqrt{24}}, +\infty[\); \(x = 5 + \frac{2}{\sqrt{24}} \) punto di flesso.

2. \(z_0 = \frac{1}{4}, z_1 = \frac{1}{4} \left(-\frac{1}{2} + \frac{\sqrt{3}}{2}i \right), z_2 = \frac{1}{4} \left(-\frac{1}{2} - \frac{\sqrt{3}}{2}i \right) \)

3. \(\ell = 5^5 \)

4. \(\ell = 0 \) se \(0 < \alpha < 4, \ell = -9 \) se \(\alpha = 4, \ell = -\infty \) se \(\alpha > 4 \).

5. \(\text{Area} = \frac{6}{9} \log \frac{6}{9} - \frac{1}{9} \)

6. L'integrale converge per \(\beta < \frac{2}{7} \)

7. \(y(x) = 7e^{2x} - 10e^x + \sin x + 3 \cos x \)

Fila 5

1. \(\text{dom} f = \mathbb{R} \setminus \{6\} \) non ci sono simmetrie.

 - \(\lim_{x \to 6^\pm} f(x) = \pm\infty, x = 6 \) asintoto verticale, \(\lim_{x \to \pm\infty} f(x) = \pm\infty \); non ammette altri asintoti.

 \[f'(x) = -\frac{4}{(x-6)^2} + \frac{4\sqrt{35}}{x-6} + 1 \quad \text{dom} f' = \text{dom} f. \]

 Non ci sono punti di non derivabilità

 - crescente in \(]-\infty, -6 - 2\sqrt{35}[\) e in \(]18 - 2\sqrt{35}, +\infty[\); decrescente in \(]-6 - 2\sqrt{35}, 6[\) e in \(]6, 18 - 2\sqrt{35}[\); \(x = -6 - 2\sqrt{35} \) punto di massimo relativo stazionario; \(x = 18 - 2\sqrt{35} \) punto di minimo relativo stazionario; \(f \) è illimitata.

 \[f''(x) = \frac{8}{(x-6)^3} - \frac{4\sqrt{35}}{(x-6)^2}, \text{ convessa in }]6, 6 + \frac{2}{\sqrt{35}}[, \text{ concava in }]-\infty, 6[\) e in \(]6 + \frac{2}{\sqrt{35}}, +\infty[\); \(x = 6 + \frac{2}{\sqrt{35}} \) punto di flesso.
2. \[z_0 = \frac{1}{3}, \quad z_1 = \frac{1}{3} \left(-\frac{1}{2} + \frac{\sqrt{3}}{2} i \right), \quad z_2 = \frac{1}{3} \left(-\frac{1}{2} - \frac{\sqrt{3}}{2} i \right) \]

3. \[\ell = 6^6 \]

4. \[\ell = 0 \text{ se } 0 < \alpha < 4, \quad \ell = -11 \text{ se } \alpha = 4, \quad \ell = -\infty \text{ se } \alpha > 4. \]

5. \[\text{Area} = \frac{7}{6} \log \frac{7}{6} - \frac{1}{6} \]

6. L’integrale converge per \(\beta < \frac{2}{13} \)

7. \[y(x) = 8e^{2x} - 10e^x + \sin x + 3 \cos x \]

Fila 6

1. \(\text{dom} f = \mathbb{R} \setminus \{7\} \) non ci sono simmetrie.

 - \(\lim_{x \to 7^\pm} f(x) = \pm\infty, \quad x = 7 \) asintoto verticale, \(\lim_{x \to \pm\infty} f(x) = \pm\infty \); non ammette altri asintoti.

 \[
 f'(x) = -\frac{4}{(x - 7)^2} + \frac{4\sqrt{48}}{x - 7} + 1 \quad \text{dom} f' = \text{dom} f.
 \]

 Non ci sono punti di non derivabilità

 - crescente in \(] -\infty, -7 - 2\sqrt{48} [\) e in \(] 21 - 2\sqrt{48}, +\infty [\); decrescente in \(] -7 - 2\sqrt{48}, 7 [\) e in \(] 7, 21 - 2\sqrt{48} [\).

 \[x = -7 - 2\sqrt{48} \] punto di massimo relativo stazionario; \(x = 21 - 2\sqrt{48} \) punto di minimo relativo stazionario; \(f \) è illimitata.

 - \(f''(x) = \frac{8}{(x - 7)^3} - \frac{4\sqrt{15}}{(x - 7)^2} \), convessa in \(7, 7 + \frac{2}{\sqrt{48}} [\), concava in \(] -\infty, 7 [\) e in \(] 7 + \frac{2}{\sqrt{48}}, +\infty [\).

 \(x = 7 + \frac{2}{\sqrt{48}} \) punto di flesso.

2. \[z_0 = \frac{1}{2}, \quad z_1 = \frac{1}{2} \left(-\frac{1}{2} + \frac{\sqrt{7}}{2} i \right), \quad z_2 = \frac{1}{2} \left(-\frac{1}{2} - \frac{\sqrt{7}}{2} i \right) \]

3. \[\ell = 7^7 \]

4. \[\ell = 0 \text{ se } 0 < \alpha < 4, \quad \ell = -13 \text{ se } \alpha = 4, \quad \ell = -\infty \text{ se } \alpha > 4. \]

5. \[\text{Area} = \frac{8}{7} \log \frac{8}{7} - \frac{1}{7} \]

6. L’integrale converge per \(\beta < \frac{2}{13} \)

7. \[y(x) = 9e^{2x} - 12e^x + \sin x + 3 \cos x \]