Il NUMERO della FILA è contenuto nel testo dell'esercizio 4 ed è il numero naturale precedente a quello sottratto ad e^x .

Fila 1

- 1. Il luogo geometrico è l'unione della circonferenza di centro C=7i e raggio r=8 e dei tre punti $z_0=i,\,z_{1,2}=\pm\frac{\sqrt{3}}{2}-\frac{1}{2}i.$
- 2. Il limite vale $\ell = 1$;
- 3. $\forall \alpha \in \mathbb{R}$ la funzione è continua da destra e discontinua da sinistra in x = 7. In particolare, se $\alpha = 0$ si ha un punto di salto, se $\alpha \neq 0$ si ha un punto di discontinuità di seconda specie;
- 4. dom $f =]-\infty$, log $2[\cup] \log 2$, $+\infty[$.

 $\lim_{x\to-\infty} f(x) = -\infty$. $\lim_{x\to+\infty} f(x) = +\infty$.

 $\lim_{x\to(\log 2)^{\pm}} f(x) = -\infty$, La retta $x = \log 2$ è asintoto verticale completo. La retta y = 2x è asintoto obliquo per $x \to +\infty$. La retta $y = x + \log 2$ è asintoto obliquo per $x \to -\infty$.

$$f'(x) = 1 + \frac{e^x}{e^x - 2} = \frac{2e^x - 2}{e^x - 2}$$

 $dom f' \equiv dom f$, non ci sono punti di non derivabilità.

f è crescente in $]-\infty,0[\cup]\log 2,+\infty[$, decrescente in $]0,\log 2[$.

Il punto x=0 è punto di massimo relativo stazionario. La funzione non ammette punti di massimo o minimo assoluto in quanto è illimitata.

$$f''(x) = -\frac{2e^x}{(e^x - 2)^2}$$

f è concava in tutto il suo dominio e non ha punti di flesso.

Fila 2

- 1. Il luogo geometrico è l'unione della circonferenza di centro C=6i e raggio r=7 e dei tre punti $z_0=i, z_{1,2}=\pm \frac{\sqrt{3}}{2}-\frac{1}{2}i.$
- 2. Il limite vale $\ell = 1$;
- 3. $\forall \alpha \in \mathbb{R}$ la funzione è continua da destra e discontinua da sinistra in x = 6. In particolare, se $\alpha = 0$ si ha un punto di salto, se $\alpha \neq 0$ si ha un punto di discontinuità di seconda specie;
- 4. dom $f =]-\infty$, log $3[\cup] \log 3$, $+\infty[$.

 $\lim_{x\to-\infty} f(x) = -\infty$. $\lim_{x\to+\infty} f(x) = +\infty$.

 $\lim_{x\to(\log 3)^{\pm}} f(x) = -\infty$, La retta $x = \log 3$ è asintoto verticale completo. La retta y = 2x è asintoto obliquo per $x \to +\infty$. La retta $y = x + \log 3$ è asintoto obliquo per $x \to -\infty$.

$$f'(x) = 1 + \frac{e^x}{e^x - 3} = \frac{2e^x - 3}{e^x - 3}$$

 $\operatorname{dom} f' \equiv \operatorname{dom} f$, non ci sono punti di non derivabilità.

f è crescente in $]-\infty, \log \frac{3}{2}[\cup] \log 3, +\infty[$, decrescente in $] \log \frac{3}{2}, \log 3[$.

Il punto $x = \log \frac{3}{2}$ è punto di massimo relativo stazionario. La funzione non ammette punti di massimo o minimo assoluto in quanto è illimitata.

$$f''(x) = -\frac{3e^x}{(e^x - 3)^2}$$

f è concava in tutto il suo dominio e non ha punti di flesso

Fila 3

- 1. Il luogo geometrico è l'unione della circonferenza di centro C=5i e raggio r=6 e dei tre punti $z_0=i,\,z_{1,2}=\pm\frac{\sqrt{3}}{2}-\frac{1}{2}i.$
- 2. Il limite vale $\ell = 1$;
- 3. $\forall \alpha \in \mathbb{R}$ la funzione è continua da destra e discontinua da sinistra in x = 5. In particolare, se $\alpha = 0$ si ha un punto di salto, se $\alpha \neq 0$ si ha un punto di discontinuità di seconda specie;
- 4. dom $f =]-\infty$, $\log 4[\cup] \log 4$, $+\infty[$.

 $\lim_{x\to-\infty} f(x) = -\infty$. $\lim_{x\to+\infty} f(x) = +\infty$.

 $\lim_{x\to(\log 4)^{\pm}} f(x) = -\infty$, La retta $x = \log 4$ è asintoto verticale completo. La retta y = 2x è asintoto obliquo per $x \to +\infty$. La retta $y = x + \log 4$ è asintoto obliquo per $x \to -\infty$.

$$f'(x) = 1 + \frac{e^x}{e^x - 4} = \frac{2e^x - 4}{e^x - 4}$$

 $dom f' \equiv dom f$, non ci sono punti di non derivabilità.

f è crescente in $]-\infty, \log 2[\cup] \log 4, +\infty[$, decrescente in $] \log 2, \log 4[$.

Il punto $x = \log 2$ è punto di massimo relativo stazionario. La funzione non ammette punti di massimo o minimo assoluto in quanto è illimitata.

$$f''(x) = -\frac{4e^x}{(e^x - 4)^2}$$

f è concava in tutto il suo dominio e non ha punti di flesso.

Fila 4

- 1. Il luogo geometrico è l'unione della circonferenza di centro C=4i e raggio r=5 e dei tre punti $z_0=i,\,z_{1,2}=\pm\frac{\sqrt{3}}{2}-\frac{1}{2}i.$
- 2. Il limite vale $\ell = 1$;

- 3. $\forall \alpha \in \mathbb{R}$ la funzione è continua da destra e discontinua da sinistra in x = 4. In particolare, se $\alpha = 0$ si ha un punto di salto, se $\alpha \neq 0$ si ha un punto di discontinuità di seconda specie;
- 4. dom $f =]-\infty$, log $5[\cup] \log 5$, $+\infty[$.

 $\lim_{x\to-\infty} f(x) = -\infty$. $\lim_{x\to+\infty} f(x) = +\infty$.

 $\lim_{x\to(\log 5)^{\pm}} f(x) = -\infty$, La retta $x = \log 5$ è asintoto verticale completo. La retta y = 2x è asintoto obliquo per $x \to +\infty$. La retta $y = x + \log 5$ è asintoto obliquo per $x \to -\infty$.

$$f'(x) = 1 + \frac{e^x}{e^x - 5} = \frac{2e^x - 5}{e^x - 5}$$

 $dom f' \equiv dom f$, non ci sono punti di non derivabilità.

f è crescente in $]-\infty, \log \frac{5}{2}[\cup] \log 5, +\infty[$, decrescente in $] \log \frac{5}{2}, \log 5[$.

Il punto $x = \log \frac{5}{2}$ è punto di massimo relativo stazionario. La funzione non ammette punti di massimo o minimo assoluto in quanto è illimitata.

$$f''(x) = -\frac{5e^x}{(e^x - 5)^2}$$

f è concava in tutto il suo dominio e non ha punti di flesso.

Fila 5

- 1. Il luogo geometrico è l'unione della circonferenza di centro C=3i e raggio r=4 e dei tre punti $z_0=i,\,z_{1,2}=\pm\frac{\sqrt{3}}{2}-\frac{1}{2}i.$
- **2.** Il limite vale $\ell = 1$;
- 3. $\forall \alpha \in \mathbb{R}$ la funzione è continua da destra e discontinua da sinistra in x = 3. In particolare, se $\alpha = 0$ si ha un punto di salto, se $\alpha \neq 0$ si ha un punto di discontinuità di seconda specie;
- 4. dom $f =]-\infty, \log 6[\cup] \log 6, +\infty[$.

 $\lim_{x \to -\infty} f(x) = -\infty. \lim_{x \to +\infty} f(x) = +\infty.$

 $\lim_{x\to(\log 6)^{\pm}} f(x) = -\infty$, La retta $x = \log 6$ è asintoto verticale completo. La retta y = 2x è asintoto obliquo per $x \to +\infty$. La retta $y = x + \log 6$ è asintoto obliquo per $x \to -\infty$.

$$f'(x) = 1 + \frac{e^x}{e^x - 6} = \frac{2e^x - 6}{e^x - 6}$$

 $\mathrm{dom}f'\equiv\mathrm{dom}f,$ non ci sono punti di non derivabilità.

fè c
rescente in] $-\infty, \log 3[\cup] \log 6, +\infty[,$ decrescente in] $\log 3, \log 6[.$

Il punto $x = \log 3$ è punto di massimo relativo stazionario. La funzione non ammette punti di massimo o minimo assoluto in quanto è illimitata.

$$f''(x) = -\frac{6e^x}{(e^x - 6)^2}$$

f è concava in tutto il suo dominio e non ha punti di flesso.

Fila 6

- 1. Il luogo geometrico è l'unione della circonferenza di centro C=2i e raggio r=3 e dei tre punti $z_0=i,\,z_{1,2}=\pm\frac{\sqrt{3}}{2}-\frac{1}{2}i.$
- 2. Il limite vale $\ell = 1$;
- 3. $\forall \alpha \in \mathbb{R}$ la funzione è continua da destra e discontinua da sinistra in x = 2. In particolare, se $\alpha = 0$ si ha un punto di salto, se $\alpha \neq 0$ si ha un punto di discontinuità di seconda specie;
- 4. dom $f =]-\infty$, log $7[\cup] \log 7$, $+\infty[$.

$$\lim_{x\to-\infty} f(x) = -\infty$$
. $\lim_{x\to+\infty} f(x) = +\infty$.

 $\lim_{x\to(\log 7)^{\pm}} f(x) = -\infty$, La retta $x = \log 7$ è asintoto verticale completo. La retta y = 2x è asintoto obliquo per $x \to +\infty$. La retta $y = x + \log 7$ è asintoto obliquo per $x \to -\infty$.

$$f'(x) = 1 + \frac{e^x}{e^x - 7} = \frac{2e^x - 7}{e^x - 7}$$

 $dom f' \equiv dom f$, non ci sono punti di non derivabilità.

f è crescente in $]-\infty, \log \frac{7}{2}[\cup] \log 7, +\infty[$, decrescente in $] \log \frac{7}{2}, \log 7[$.

Il punto $x = \log \frac{7}{2}$ è punto di massimo relativo stazionario. La funzione non ammette punti di massimo o minimo assoluto in quanto è illimitata.

$$f''(x) = -\frac{7e^x}{(e^x - 7)^2}$$

f è concava in tutto il suo dominio e non ha punti di flesso.