Il NUMERO della FILA è contenuto nel testo dell'esercizio 8 ed è la metà dell'ordinata della condizione iniziale.

Fila 1

1. dom $f = \mathbb{R}$. La funzione è pari.

 $\lim_{x\to\pm\infty} f(x) = 0$. La retta y=0 è asintoto orizzontale completo. Non esistono asintoti verticali nè obliqui.

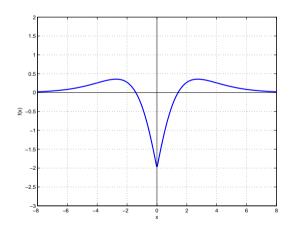
La derivata prima è

$$f'(x) = \begin{cases} (2x - x^2 + 2)e^{-x} & x > 0\\ (2x + x^2 - 2)e^x & x < 0. \end{cases}$$

 $\operatorname{dom} f' = \mathbb{R} \setminus \{0\}$. Il punto x = 0 è un punto angoloso, infatti $f'_{-}(0) = -2$, $f'_{+}(0) = 2$. f è crescente in $(-\infty, -1 - \sqrt{3}) \cup (0, 1 + \sqrt{3})$ e decrescente in $(-1 - \sqrt{3}, 0) \cup (1 + \sqrt{3}, \infty)$. $x = -1 - \sqrt{3}$ e $x = 1 + \sqrt{3}$ sono punti di massimo relativo e assoluto, x = 0 è punto di minimo relativo e assoluto.

$$f''(x) = \begin{cases} (x^2 - 4x)e^{-x} & x > 0\\ (x^2 + 4x)e^x & x < 0. \end{cases}$$

Si hanno due punti di flesso, uno nell'intervallo $(-\infty, -4)$ ed uno in $(4, +\infty)$.



- 2. La serie è convergente
- 3. Il limite vale $\ell = 7$
- 4. $y(x) = e^{x-x \log x} + 1$

1. dom $f = \mathbb{R}$. La funzione è pari.

 $\lim_{x\to\pm\infty} f(x) = 0$. La retta y=0 è asintoto orizzontale completo. Non esistono asintoti verticali nè obliqui.

La derivata prima è

$$f'(x) = \begin{cases} (2x - x^2 + 3)e^{-x} & x > 0\\ (2x + x^2 - 3)e^x & x < 0. \end{cases}$$

 $\operatorname{dom} f' = \mathbb{R} \setminus \{0\}$. Il punto x = 0 è un punto angoloso, infatti $f'_{-}(0) = -3$, $f'_{+}(0) = 3$. f è crescente in $(-\infty, -3) \cup (0, 3)$ e decrescente in $(-3, 0) \cup (3, \infty)$. $x = \pm 3$ sono punti di massimo relativo e assoluto, x = 0 è punto di minimo relativo e assoluto.

$$f''(x) = \begin{cases} (x^2 - 4x - 1)e^{-x} & x > 0\\ (x^2 + 4x - 1)e^x & x < 0. \end{cases}$$

Si hanno due punti di flesso, uno nell'intervallo $(-\infty, -2 - \sqrt{5})$ ed uno in $(2 + \sqrt{5}, +\infty)$.

- 2. La serie è convergente
- 3. Il limite vale $\ell = 6$
- 4. $y(x) = 3e^{x-x \log x} + 1$

Fila 3

1. dom $f = \mathbb{R}$. La funzione è pari.

 $\lim_{x\to\pm\infty} f(x) = 0$. La retta y=0 è asintoto orizzontale completo. Non esistono asintoti verticali nè obliqui.

La derivata prima è

$$f'(x) = \begin{cases} (2x - x^2 + 4)e^{-x} & x > 0\\ (2x + x^2 - 4)e^x & x < 0. \end{cases}$$

dom $f' = \mathbb{R} \setminus \{0\}$. Il punto x = 0 è un punto angoloso, infatti $f'_{-}(0) = -4$, $f'_{+}(0) = 4$. f è crescente in $(-\infty, -1 - \sqrt{5}) \cup (0, 1 + \sqrt{5})$ e decrescente in $(-1 - \sqrt{5}, 0) \cup (1 + \sqrt{5}, \infty)$. $x = -1 - \sqrt{5}$ e $x = 1 + \sqrt{5}$ sono punti di massimo relativo e assoluto, x = 0 è punto di minimo relativo e assoluto.

$$f''(x) = \begin{cases} (x^2 - 4x - 2)e^{-x} & x > 0\\ (x^2 + 4x - 2)e^x & x < 0. \end{cases}$$

Si hanno due punti di flesso, uno nell'intervallo $(-\infty, -2 - \sqrt{6})$ ed uno in $(2 + \sqrt{6}, +\infty)$.

- 2. La serie è convergente
- 3. Il limite vale $\ell = 5$
- 4. $y(x) = 5e^{x-x \log x} + 1$

Fila 4

1. dom $f = \mathbb{R}$. La funzione è pari.

 $\lim_{x\to\pm\infty} f(x) = 0$. La retta y=0 è asintoto orizzontale completo. Non esistono asintoti verticali nè obliqui.

La derivata prima è

$$f'(x) = \begin{cases} (2x - x^2 + 5)e^{-x} & x > 0\\ (2x + x^2 - 5)e^x & x < 0. \end{cases}$$

 $\operatorname{dom} f' = \mathbb{R} \setminus \{0\}$. Il punto x = 0 è un punto angoloso, infatti $f'_{-}(0) = -5$, $f'_{+}(0) = 5$. f è crescente in $(-\infty, -1 - \sqrt{6}) \cup (0, 1 + \sqrt{6})$ e decrescente in $(-1 - \sqrt{6}, 0) \cup (1 + \sqrt{6}, \infty)$. $x = -1 - \sqrt{6}$ e $x = 1 + \sqrt{6}$ sono punti di massimo relativo e assoluto, x = 0 è punto di minimo relativo e assoluto.

$$f''(x) = \begin{cases} (x^2 - 4x - 3)e^{-x} & x > 0\\ (x^2 + 4x - 3)e^x & x < 0. \end{cases}$$

Si hanno due punti di flesso, uno nell'intervallo $(-\infty, -2 - \sqrt{7})$ ed uno in $(2 + \sqrt{7}, +\infty)$.

- 2. La serie è convergente
- 3. Il limite vale $\ell = 4$
- 4. $y(x) = 7e^{x-x\log x} + 1$

Fila 5

1. dom $f = \mathbb{R}$. La funzione è pari.

 $\lim_{x\to\pm\infty} f(x) = 0$. La retta y=0 è asintoto orizzontale completo. Non esistono asintoti verticali nè obliqui.

La derivata prima è

$$f'(x) = \begin{cases} (2x - x^2 + 6)e^{-x} & x > 0\\ (2x + x^2 - 6)e^x & x < 0. \end{cases}$$

dom $f' = \mathbb{R} \setminus \{0\}$. Il punto x = 0 è un punto angoloso, infatti $f'_{-}(0) = -6$, $f'_{+}(0) = 6$. f è crescente in $(-\infty, -1 - \sqrt{7}) \cup (0, 1 + \sqrt{7})$ e decrescente in $(-1 - \sqrt{7}, 0) \cup (1 + \sqrt{7}, \infty)$. $x = -1 - \sqrt{7}$ e $x = 1 + \sqrt{7}$ sono punti di massimo relativo e assoluto, x = 0 è punto di minimo relativo e assoluto.

$$f''(x) = \begin{cases} (x^2 - 4x - 4)e^{-x} & x > 0\\ (x^2 + 4x - 4)e^x & x < 0. \end{cases}$$

Si hanno due punti di flesso, uno nell'intervallo $(-\infty, -2 - \sqrt{8})$ ed uno in $(2 + \sqrt{8}, +\infty)$.

2. La serie è convergente

- 3. Il limite vale $\ell = 3$
- 4. $y(x) = 9e^{x-x \log x} + 1$

Fila 6

1. dom $f = \mathbb{R}$. La funzione è pari.

 $\lim_{x\to\pm\infty} f(x) = 0$. La retta y=0 è asintoto orizzontale completo. Non esistono asintoti verticali nè obliqui.

La derivata prima è

$$f'(x) = \begin{cases} (2x - x^2 + 7)e^{-x} & x > 0\\ (2x + x^2 - 7)e^x & x < 0. \end{cases}$$

 $\operatorname{dom} f' = \mathbb{R} \setminus \{0\}$. Il punto x = 0 è un punto angoloso, infatti $f'_{-}(0) = -7$, $f'_{+}(0) = 7$. f è crescente in $(-\infty, -1 - \sqrt{8}) \cup (0, 1 + \sqrt{8})$ e decrescente in $(-1 - \sqrt{8}, 0) \cup (1 + \sqrt{8}, \infty)$. $x = -1 - \sqrt{8}$ e $x = 1 + \sqrt{8}$ sono punti di massimo relativo e assoluto, x = 0 è punto di minimo relativo e assoluto.

$$f''(x) = \begin{cases} (x^2 - 4x - 5)e^{-x} & x > 0\\ (x^2 + 4x - 5)e^x & x < 0. \end{cases}$$

Si hanno due punti di flesso, uno nell'intervallo $(-\infty, -5)$ ed uno in $(5, +\infty)$.

- 2. La serie è convergente
- 3. Il limite vale $\ell=2$
- 4. $y(x) = 11e^{x-x\log x} + 1$