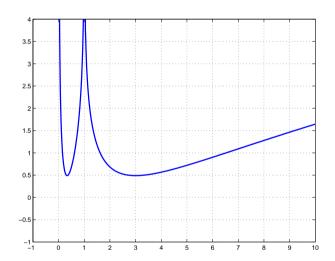
Il NUMERO della FILA è contenuto nel testo dell'esercizio n° 5 ed è il punto in cui bisogna studiare la continuità e la derivabilità di f.

- 1. (a) dom $f =]0, 1[\cup]1, +\infty[$. La funzione non presenta simmetrie.
 - (b) $\lim_{x\to 0^+} f(x) = +\infty$, x = 0 asintoto verticale destro, $\lim_{x\to 1} f(x) = +\infty$, x = 1 asintoto verticale completo, $\lim_{x\to +\infty} f(x) = +\infty$, non c'è asintoto obliquo in quanto la funzione si comporta come $\log^2(x)$ per $x \to +\infty$.
 - (c) $f'(x) = \frac{1}{x} \left[\frac{\log^2 x \log^2 3}{\log x} \right]$ dom f' = dom f.
 - (d) f strettamente crescente in $]\frac{1}{3},1[$ e in $]3,+\infty[$; f strettamente decrescente in]1,3[; $x=\frac{1}{3}$ e x=3 entrambi punti di minimo relativo e assoluto. Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.
 - (e) f ammette almeno un punto di flesso nell'intervallo $]1, +\infty[$, perché la funzione all'infinito ha un andamento logaritmico (quindi concava).



- **2.** La retta y = x (contata due volte)
- 3. Il limite è $\ell = e^{-2}$.
- 4. La serie converge assolutamente.
- 5. La funzione è continua e derivabile per $\alpha = 2$, altrimenti punto di discontinuità eliminabile.
- 6. L'integrale vale $\frac{\pi^2}{28}$.
- 7. La soluzione del problema di Cauchy è: $y(x) = \sin 7x + \frac{1}{48}\cos x$.

Fila 2

- 1. (a) dom $f =]0, 1[\cup]1, +\infty[$. La funzione non presenta simmetrie.
 - (b) $\lim_{x\to 0^+} f(x) = +\infty$, x=0 asintoto verticale destro, $\lim_{x\to 1} f(x) = +\infty$, x=1 asintoto verticale completo, $\lim_{x\to +\infty} f(x) = +\infty$, non c'è asintoto obliquo in quanto la funzione si comporta come $\log^2(x)$ per $x\to +\infty$.
 - (c) $f'(x) = \frac{1}{x} \left[\frac{\log^2 x \log^2 4}{\log x} \right]$ $\operatorname{dom} f' = \operatorname{dom} f.$
 - (d) f strettamente crescente in $]\frac{1}{4},1[$ e in $]4,+\infty[$; f strettamente decrescente in]1,4[; $x=\frac{1}{4}$ e x=4 entrambi punti di minimo relativo e assoluto. Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.
 - (e) f ammette almeno un punto di flesso nell'intervallo $]1, +\infty[$, perché la funzione all'infinito ha un andamento logaritmico (quindi concava).
- **2.** La retta y = x (contata due volte)
- 3. Il limite è $\ell = e^{-3}$.
- 4. La serie converge assolutamente.
- 5. La funzione è continua e derivabile per $\alpha = 3$, altrimenti punto di discontinuità eliminabile.
- 6. L'integrale vale $\frac{\pi^2}{24}$.
- 7. La soluzione del problema di Cauchy è: $y(x) = \sin 6x + \frac{1}{35}\cos x$.

- 1. (a) dom $f =]0, 1[\cup]1, +\infty[$. La funzione non presenta simmetrie.
 - (b) $\lim_{x\to 0^+} f(x) = +\infty$, x=0 asintoto verticale destro, $\lim_{x\to 1} f(x) = +\infty$, x=1 asintoto verticale completo, $\lim_{x\to +\infty} f(x) = +\infty$, non c'è asintoto obliquo in quanto la funzione si comporta come $\log^2(x)$ per $x\to +\infty$.
 - (c) $f'(x) = \frac{1}{x} \left[\frac{\log^2 x \log^2 5}{\log x} \right]$ $\operatorname{dom} f' = \operatorname{dom} f.$
 - (d) f strettamente crescente in $]\frac{1}{5},1[$ e in $]5,+\infty[$; f strettamente decrescente in]1,5[; $x=\frac{1}{5}$ e x=5 entrambi punti di minimo relativo e assoluto. Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.
 - (e) f ammette almeno un punto di flesso nell'intervallo $]1, +\infty[$, perché la funzione all'infinito ha un andamento logaritmico (quindi concava).
- **2.** La retta y = x (contata due volte)
- 3. Il limite è $\ell = e^{-4}$.
- 4. La serie converge assolutamente.

- 5. La funzione è continua e derivabile per $\alpha = 4$, altrimenti punto di discontinuità eliminabile.
- **6.** L'integrale vale $\frac{\pi^2}{20}$.
- 7. La soluzione del problema di Cauchy è: $y(x) = \sin 5x + \frac{1}{24}\cos x$.

Fila 4

- 1. (a) dom $f = [0, 1] \cup [1, +\infty[$. La funzione non presenta simmetrie.
 - (b) $\lim_{x\to 0^+} f(x) = +\infty$, x=0 asintoto verticale destro, $\lim_{x\to 1} f(x) = +\infty$, x=1 asintoto verticale completo, $\lim_{x\to +\infty} f(x) = +\infty$, non c'è asintoto obliquo in quanto la funzione si comporta come $\log^2(x)$ per $x\to +\infty$.
 - (c) $f'(x) = \frac{1}{x} \left[\frac{\log^2 x \log^2 6}{\log x} \right]$ $\operatorname{dom} f' = \operatorname{dom} f.$
 - (d) f strettamente crescente in $]\frac{1}{6},1[$ e in $]6,+\infty[$; f strettamente decrescente in]1,6[; $x=\frac{1}{6}$ e x=6 entrambi punti di minimo relativo e assoluto. Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.
 - (e) f ammette almeno un punto di flesso nell'intervallo $]1,+\infty[$, perché la funzione all'infinito ha un andamento logaritmico (quindi concava).
- **2.** La retta y = x (contata due volte)
- 3. Il limite è $\ell = e^{-5}$.
- 4. La serie converge assolutamente.
- 5. La funzione è continua e derivabile per $\alpha=5$, altrimenti punto di discontinuità eliminabile.
- 6. L'integrale vale $\frac{\pi^2}{16}$.
- 7. La soluzione del problema di Cauchy è: $y(x) = \sin 4x + \frac{1}{15}\cos x$.

- 1. (a) dom $f =]0, 1[\cup]1, +\infty[$. La funzione non presenta simmetrie.
 - (b) $\lim_{x\to 0^+} f(x) = +\infty$, x=0 asintoto verticale destro, $\lim_{x\to 1} f(x) = +\infty$, x=1 asintoto verticale completo, $\lim_{x\to +\infty} f(x) = +\infty$, non c'è asintoto obliquo in quanto la funzione si comporta come $\log^2(x)$ per $x\to +\infty$.
 - (c) $f'(x) = \frac{1}{x} \left[\frac{\log^2 x \log^2 7}{\log x} \right]$ $\operatorname{dom} f' = \operatorname{dom} f.$
 - (d) f strettamente crescente in $]\frac{1}{7},1[$ e in $]7,+\infty[$; f strettamente decrescente in]1,7[; $x=\frac{1}{7}$ e x=7 entrambi punti di minimo relativo e assoluto. Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.

- (e) f ammette almeno un punto di flesso nell'intervallo $]1, +\infty[$, perché la funzione all'infinito ha un andamento logaritmico (quindi concava).
- **2.** La retta y = x (contata due volte)
- 3. Il limite è $\ell = e^{-6}$.
- 4. La serie converge assolutamente.
- 5. La funzione è continua e derivabile per $\alpha = 6$, altrimenti punto di discontinuità eliminabile.
- 6. L'integrale vale $\frac{\pi^2}{12}$.
- 7. La soluzione del problema di Cauchy è: $y(x) = \sin 3x + \frac{1}{8}\cos x$.

- 1. (a) dom $f = [0, 1] \cup [1, +\infty[$. La funzione non presenta simmetrie.
 - (b) $\lim_{x\to 0^+} f(x) = +\infty$, x=0 asintoto verticale destro, $\lim_{x\to 1} f(x) = +\infty$, x=1 asintoto verticale completo, $\lim_{x\to +\infty} f(x) = +\infty$, non c'è asintoto obliquo in quanto la funzione si comporta come $\log^2(x)$ per $x\to +\infty$.
 - (c) $f'(x) = \frac{1}{x} \left[\frac{\log^2 x \log^2 8}{\log x} \right]$ $\operatorname{dom} f' = \operatorname{dom} f.$
 - (d) f strettamente crescente in $]\frac{1}{8},1[$ e in $]8,+\infty[$; f strettamente decrescente in]1,8[; $x=\frac{1}{8}$ e x=8 entrambi punti di minimo relativo e assoluto. Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.
 - (e) f ammette almeno un punto di flesso nell'intervallo $]1, +\infty[$, perché la funzione all'infinito ha un andamento logaritmico (quindi concava).
- **2.** La retta y = x (contata due volte)
- 3. Il limite è $\ell = e^{-7}$.
- 4. La serie converge assolutamente.
- 5. La funzione è continua e derivabile per $\alpha=7$, altrimenti punto di discontinuità eliminabile.
- **6.** L'integrale vale $\frac{\pi^2}{8}$.
- 7. La soluzione del problema di Cauchy è: $y(x) = \sin 2x + \frac{1}{3}\cos x$.