Il NUMERO della FILA è contenuto nel testo dell'esercizio n° 5 e si ottiene sottraendo 1 al numero che moltiplica $x^{\frac{\log(2-\cos x)}{\sin x}}$.

Fila 1

- 1. (a) dom $f = \mathbb{R}$. La funzione non presenta simmetrie.
 - (b) $\lim_{x \to +\infty} f(x) = 0$, quindi la retta y = 0 è asintoto orizzontale destro per f(x). $\lim_{x \to -\infty} f(x) = +\infty$ e non esiste asintoto obliquo per $x \to -\infty$ in quanto la funzione si comporta come un'esponenziale. Non sono presenti asintoti verticali in quanto il dominio di f è tutto \mathbb{R} .

(c)

$$f'(x) = \begin{cases} (1-x)e^{2-x} & \text{per } x > 0\\ (x-1)e^{2-x} & \text{per } x < 0 \end{cases}$$

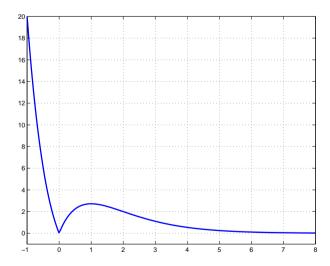
dom $f' = \mathbb{R} \setminus \{0\}$. Il punto x = 0 è un punto angoloso per f, si ha infatti $f'_{+}(0) = \pm e^{2}$.

(d) f strettamente crescente in (0,1); f strettamente decrescente in $(-\infty,0) \cup (1,+\infty)$; x=0 è punto di minimo relativo e assoluto, x=1 è punto di massimo relativo. Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.

(e)

$$f''(x) = \begin{cases} (x-2)e^{2-x} & \text{per } x > 0\\ (2-x)e^{2-x} & \text{per } x < 0 \end{cases}$$

f strettamente convessa in $(-\infty,0) \cup (2,+\infty)$; f strettamente concava in (0,2); x=2 è punto di flesso a tangente obliqua.



- **2.** Si ha $w = 2 \cdot 2^3 e^{i\pi}$. Le radici complesse di w sono $z_0 = \sqrt[3]{2} \left(1 + \sqrt{3}i\right), z_1 = -2\sqrt[3]{2}, z_2 = \sqrt[3]{2} \left(1 \sqrt{3}i\right)$.
- 3. Il limite è $\ell = 0$ se $0 < \alpha < 2$, $\ell = 1$ se $\alpha = 2$, $\ell = +\infty$ se $\alpha > 2$.
- 4. La serie converge se $\beta < \frac{2}{3}$, diverge altrimenti.

- 5. Il limite vale $\ell = 2$.
- **6.** L'integrale vale $\frac{1}{3}(\sqrt{2}\pi 4)$.
- 7. La soluzione del problema di Cauchy è: $y(x) = \frac{1}{6}(x^2 + 1)$.

Fila 2

- 1. (a) dom $f = \mathbb{R}$. La funzione non presenta simmetrie.
 - (b) $\lim_{x \to +\infty} f(x) = 0$, quindi la retta y = 0 è asintoto orizzontale destro per f(x). $\lim_{x \to -\infty} f(x) = +\infty$ e non esiste asintoto obliquo per $x \to -\infty$ in quanto la funzione si comporta come un'esponenziale. Non sono presenti asintoti verticali in quanto il dominio di f è tutto \mathbb{R} .

(c)

$$f'(x) = \begin{cases} (1-x)e^{3-x} & \text{per } x > 0\\ (x-1)e^{3-x} & \text{per } x < 0 \end{cases}$$

dom $f' = \mathbb{R} \setminus \{0\}$. Il punto x = 0 è un punto angoloso per f, si ha infatti $f'_{+}(0) = \pm e^{3}$.

(d) f strettamente crescente in (0,1); f strettamente decrescente in $(-\infty,0) \cup (1,+\infty)$; x=0 è punto di minimo relativo e assoluto, x=1 è punto di massimo relativo. Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.

(e)

$$f''(x) = \begin{cases} (x-2)e^{3-x} & \text{per } x > 0\\ (2-x)e^{3-x} & \text{per } x < 0 \end{cases}$$

f strettamente convessa in $(-\infty,0) \cup (2,+\infty)$; f strettamente concava in (0,2); x=2 è punto di flesso a tangente obliqua.

- **2.** Si ha $w = 3 \cdot 2^3 e^{i\pi}$. Le radici complesse di w sono $z_0 = \sqrt[3]{3} \left(1 + \sqrt{3}i\right), z_1 = -2\sqrt[3]{3}, z_2 = \sqrt[3]{3} \left(1 \sqrt{3}i\right)$.
- 3. Il limite è $\ell = 0$ se $0 < \alpha < 3$, $\ell = 1$ se $\alpha = 3$, $\ell = +\infty$ se $\alpha > 3$.
- 4. La serie converge se $\beta < \frac{2}{5}$, diverge altrimenti.
- 5. Il limite vale $\ell = 3$.
- **6.** L'integrale vale $\frac{1}{5}(\sqrt{2}\pi 4)$.
- 7. La soluzione del problema di Cauchy è: $y(x) = \frac{1}{8}(x^2 + 1)$.

Fila 3

1. (a) dom $f = \mathbb{R}$. La funzione non presenta simmetrie.

(b) $\lim_{x \to +\infty} f(x) = 0$, quindi la retta y = 0 è asintoto orizzontale destro per f(x). $\lim_{x \to -\infty} f(x) = +\infty$ e non esiste asintoto obliquo per $x \to -\infty$ in quanto la funzione si comporta come un'esponenziale. Non sono presenti asintoti verticali in quanto il dominio di f è tutto \mathbb{R} .

(c)

$$f'(x) = \begin{cases} (1-x)e^{4-x} & \text{per } x > 0\\ (x-1)e^{4-x} & \text{per } x < 0 \end{cases}$$

dom $f' = \mathbb{R} \setminus \{0\}$. Il punto x = 0 è un punto angoloso per f, si ha infatti $f'_+(0) = \pm e^4$.

(d) f strettamente crescente in (0,1); f strettamente decrescente in $(-\infty,0) \cup (1,+\infty)$; x=0 è punto di minimo relativo e assoluto, x=1 è punto di massimo relativo. Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.

(e)

$$f''(x) = \begin{cases} (x-2)e^{4-x} & \text{per } x > 0\\ (2-x)e^{4-x} & \text{per } x < 0 \end{cases}$$

f strettamente convessa in $(-\infty,0) \cup (2,+\infty)$; f strettamente concava in (0,2); x=2 è punto di flesso a tangente obliqua.

- **2.** Si ha $w = 4 \cdot 2^3 e^{i\pi}$. Le radici complesse di w sono $z_0 = \sqrt[3]{4} \left(1 + \sqrt{3}i\right), z_1 = -2\sqrt[3]{4}, z_2 = \sqrt[3]{4} \left(1 \sqrt{3}i\right)$.
- 3. Il limite è $\ell=0$ se $0<\alpha<4,\ \ell=1$ se $\alpha=4,\ \ell=+\infty$ se $\alpha>4$.
- 4. La serie converge se $\beta < \frac{2}{7}$, diverge altrimenti.
- 5. Il limite vale $\ell = 4$.
- **6.** L'integrale vale $\frac{1}{7}(\sqrt{2}\pi 4)$.
- 7. La soluzione del problema di Cauchy è: $y(x) = \frac{1}{10}(x^2 + 1)$.

Fila 4

- 1. (a) dom $f = \mathbb{R}$. La funzione non presenta simmetrie.
 - (b) $\lim_{x \to +\infty} f(x) = 0$, quindi la retta y = 0 è asintoto orizzontale destro per f(x). $\lim_{x \to -\infty} f(x) = +\infty$ e non esiste asintoto obliquo per $x \to -\infty$ in quanto la funzione si comporta come un'esponenziale. Non sono presenti asintoti verticali in quanto il dominio di f è tutto \mathbb{R} .

(c)

$$f'(x) = \begin{cases} (1-x)e^{5-x} & \text{per } x > 0\\ (x-1)e^{5-x} & \text{per } x < 0 \end{cases}$$

dom $f' = \mathbb{R} \setminus \{0\}$. Il punto x = 0 è un punto angoloso per f, si ha infatti $f'_{+}(0) = \pm e^{5}$.

(d) f strettamente crescente in (0,1); f strettamente decrescente in $(-\infty,0) \cup (1,+\infty)$; x=0 è punto di minimo relativo e assoluto, x=1 è punto di massimo relativo. Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.

$$f''(x) = \begin{cases} (x-2)e^{5-x} & \text{per } x > 0\\ (2-x)e^{5-x} & \text{per } x < 0 \end{cases}$$

f strettamente convessa in $(-\infty,0) \cup (2,+\infty)$; f strettamente concava in (0,2); x=2 è punto di flesso a tangente obliqua.

- **2.** Si ha $w = 5 \cdot 2^3 e^{i\pi}$. Le radici complesse di w sono $z_0 = \sqrt[3]{5} \left(1 + \sqrt{3}i\right), z_1 = -2\sqrt[3]{5}, z_2 = \sqrt[3]{5} \left(1 \sqrt{3}i\right)$.
- 3. Il limite è $\ell = 0$ se $0 < \alpha < 5$, $\ell = 1$ se $\alpha = 5$, $\ell = +\infty$ se $\alpha > 5$.
- 4. La serie converge se $\beta < \frac{2}{9}$, diverge altrimenti.
- 5. Il limite vale $\ell = 5$.
- **6.** L'integrale vale $\frac{1}{9}(\sqrt{2}\pi 4)$.
- 7. La soluzione del problema di Cauchy è: $y(x) = \frac{1}{12}(x^2 + 1)$.

Fila 5

- 1. (a) dom $f = \mathbb{R}$. La funzione non presenta simmetrie.
 - (b) $\lim_{x \to +\infty} f(x) = 0$, quindi la retta y = 0 è asintoto orizzontale destro per f(x). $\lim_{x \to -\infty} f(x) = +\infty$ e non esiste asintoto obliquo per $x \to -\infty$ in quanto la funzione si comporta come un'esponenziale. Non sono presenti asintoti verticali in quanto il dominio di f è tutto \mathbb{R} .

(c)

$$f'(x) = \begin{cases} (1-x)e^{6-x} & \text{per } x > 0\\ (x-1)e^{6-x} & \text{per } x < 0 \end{cases}$$

dom $f' = \mathbb{R} \setminus \{0\}$. Il punto x = 0 è un punto angoloso per f, si ha infatti $f'_{\pm}(0) = \pm e^6$.

- (d) f strettamente crescente in (0,1); f strettamente decrescente in $(-\infty,0) \cup (1,+\infty)$; x=0 è punto di minimo relativo e assoluto, x=1 è punto di massimo relativo. Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.
- (e)

$$f''(x) = \begin{cases} (x-2)e^{6-x} & \text{per } x > 0\\ (2-x)e^{6-x} & \text{per } x < 0 \end{cases}$$

f strettamente convessa in $(-\infty,0) \cup (2,+\infty)$; f strettamente concava in (0,2); x=2 è punto di flesso a tangente obliqua.

- **2.** Si ha $w = 6 \cdot 2^3 e^{i\pi}$. Le radici complesse di w sono $z_0 = \sqrt[3]{6} \left(1 + \sqrt{3}i\right)$, $z_1 = -2\sqrt[3]{6}$, $z_2 = \sqrt[3]{6} \left(1 \sqrt{3}i\right)$.
- 3. Il limite è $\ell = 0$ se $0 < \alpha < 6$, $\ell = 1$ se $\alpha = 6$, $\ell = +\infty$ se $\alpha > 6$.
- 4. La serie converge se $\beta < \frac{2}{11}$, diverge altrimenti.

- 5. Il limite vale $\ell = 6$.
- **6.** L'integrale vale $\frac{1}{11}(\sqrt{2}\pi 4)$.
- 7. La soluzione del problema di Cauchy è: $y(x) = \frac{1}{14}(x^2 + 1)$.

Fila 6

- 1. (a) dom $f = \mathbb{R}$. La funzione non presenta simmetrie.
 - (b) $\lim_{x \to +\infty} f(x) = 0$, quindi la retta y = 0 è asintoto orizzontale destro per f(x). $\lim_{x \to -\infty} f(x) = +\infty$ e non esiste asintoto obliquo per $x \to -\infty$ in quanto la funzione si comporta come un'esponenziale. Non sono presenti asintoti verticali in quanto il dominio di f è tutto \mathbb{R} .

(c)

$$f'(x) = \begin{cases} (1-x)e^{7-x} & \text{per } x > 0\\ (x-1)e^{7-x} & \text{per } x < 0 \end{cases}$$

dom $f' = \mathbb{R} \setminus \{0\}$. Il punto x = 0 è un punto angoloso per f, si ha infatti $f'_{\pm}(0) = \pm e^7$.

(d) f strettamente crescente in (0,1); f strettamente decrescente in $(-\infty,0) \cup (1,+\infty)$; x=0 è punto di minimo relativo e assoluto, x=1 è punto di massimo relativo. Non esistono punti di massimo assoluto in quanto f è illimitata superiormente.

(e)

$$f''(x) = \begin{cases} (x-2)e^{7-x} & \text{per } x > 0\\ (2-x)e^{7-x} & \text{per } x < 0 \end{cases}$$

f strettamente convessa in $(-\infty,0) \cup (2,+\infty)$; f strettamente concava in (0,2); x=2 è punto di flesso a tangente obliqua.

- **2.** Si ha $w = 7 \cdot 2^3 e^{i\pi}$. Le radici complesse di w sono $z_0 = \sqrt[3]{7} \left(1 + \sqrt{3}i\right), z_1 = -2\sqrt[3]{7}, z_2 = \sqrt[3]{7} \left(1 \sqrt{3}i\right)$.
- 3. Il limite è $\ell = 0$ se $0 < \alpha < 7$, $\ell = 1$ se $\alpha = 7$, $\ell = +\infty$ se $\alpha > 7$.
- 4. La serie converge se $\beta < \frac{2}{13}$, diverge altrimenti.
- 5. Il limite vale $\ell = 7$.
- 6. L'integrale vale $\frac{1}{13}(\sqrt{2}\pi 4)$.
- 7. La soluzione del problema di Cauchy è: $y(x) = \frac{1}{16}(x^2 + 1)$.